Esempio n. 1
0
def test_kalman_filter_update():
    kf = KalmanFilter(
        data.transition_matrix,
        data.observation_matrix,
        data.transition_covariance,
        data.observation_covariance,
        data.transition_offsets,
        data.observation_offset,
        data.initial_state_mean,
        data.initial_state_covariance)

    # use Kalman Filter
    (x_filt, V_filt) = kf.filter(X=data.observations)

    # use online Kalman Filter
    n_timesteps = data.observations.shape[0]
    n_dim_state = data.transition_matrix.shape[0]
    x_filt2 = np.zeros((n_timesteps, n_dim_state))
    V_filt2 = np.zeros((n_timesteps, n_dim_state, n_dim_state))
    for t in range(n_timesteps - 1):
        if t == 0:
            x_filt2[0] = data.initial_state_mean
            V_filt2[0] = data.initial_state_covariance
        (x_filt2[t + 1], V_filt2[t + 1]) = kf.filter_update(
            x_filt2[t], V_filt2[t], data.observations[t + 1],
            transition_offset=data.transition_offsets[t]
        )
    assert_array_almost_equal(x_filt, x_filt2)
    assert_array_almost_equal(V_filt, V_filt2)
Esempio n. 2
0
def test_kalman_pickle():
    kf = KalmanFilter(
        data.transition_matrix,
        data.observation_matrix,
        data.transition_covariance,
        data.observation_covariance,
        data.transition_offsets,
        data.observation_offset,
        data.initial_state_mean,
        data.initial_state_covariance,
        em_vars='all')

    # train and get log likelihood
    X = data.observations[0:10]
    kf = kf.em(X, n_iter=5)
    loglikelihood = kf.loglikelihood(X)

    # pickle Kalman Filter
    store = StringIO()
    pickle.dump(kf, store)
    clf = pickle.load(StringIO(store.getvalue()))

    # check that parameters came out already
    np.testing.assert_almost_equal(loglikelihood, kf.loglikelihood(X))

    # store it as BytesIO as well
    store = BytesIO()
    pickle.dump(kf, store)
    kf = pickle.load(BytesIO(store.getvalue()))
Esempio n. 3
0
def test_kalman_sampling():
    kf = KalmanFilter(
        data.transition_matrix,
        data.observation_matrix,
        data.transition_covariance,
        data.observation_covariance,
        data.transition_offsets,
        data.observation_offset,
        data.initial_state_mean,
        data.initial_state_covariance)

    (x, z) = kf.sample(100)
    assert_true(x.shape == (100, data.transition_matrix.shape[0]))
    assert_true(z.shape == (100, data.observation_matrix.shape[0]))
Esempio n. 4
0
def test_kalman_fit():
    # check against MATLAB dataset
    kf = KalmanFilter(
        data.transition_matrix,
        data.observation_matrix,
        data.initial_transition_covariance,
        data.initial_observation_covariance,
        data.transition_offsets,
        data.observation_offset,
        data.initial_state_mean,
        data.initial_state_covariance,
        em_vars=['transition_covariance', 'observation_covariance'])

    loglikelihoods = np.zeros(5)
    for i in range(len(loglikelihoods)):
        loglikelihoods[i] = kf.loglikelihood(data.observations)
        kf.em(X=data.observations, n_iter=1)

    assert_true(np.allclose(loglikelihoods, data.loglikelihoods[:5]))

    # check that EM for all parameters is working
    kf.em_vars = 'all'
    n_timesteps = 30
    for i in range(len(loglikelihoods)):
        kf.em(X=data.observations[0:n_timesteps], n_iter=1)
        loglikelihoods[i] = kf.loglikelihood(data.observations[0:n_timesteps])
    for i in range(len(loglikelihoods) - 1):
        assert_true(loglikelihoods[i] < loglikelihoods[i + 1])
Esempio n. 5
0
def check_dims(n_dim_state, n_dim_obs, kwargs):
    kf = KalmanFilter(**kwargs)
    (transition_matrices, transition_offsets, transition_covariance,
     observation_matrices, observation_offsets, observation_covariance,
     initial_state_mean, initial_state_covariance) = (
        kf._initialize_parameters()
    )
    assert_true(transition_matrices.shape == (n_dim_state, n_dim_state))
    assert_true(transition_offsets.shape == (n_dim_state,))
    assert_true(transition_covariance.shape == (n_dim_state, n_dim_state))
    assert_true(observation_matrices.shape == (n_dim_obs, n_dim_state))
    assert_true(observation_offsets.shape == (n_dim_obs,))
    assert_true(observation_covariance.shape == (n_dim_obs, n_dim_obs))
    assert_true(initial_state_mean.shape == (n_dim_state,))
    assert_true(
        initial_state_covariance.shape == (n_dim_state, n_dim_state)
    )
Esempio n. 6
0
def test_kalman_predict():
    kf = KalmanFilter(
        data.transition_matrix,
        data.observation_matrix,
        data.transition_covariance,
        data.observation_covariance,
        data.transition_offsets,
        data.observation_offset,
        data.initial_state_mean,
        data.initial_state_covariance)

    x_smooth = kf.smooth(X=data.observations)[0]
    assert_array_almost_equal(
        x_smooth[:501],
        data.smoothed_state_means[:501],
        decimal=7
    )
Esempio n. 7
0
def test_kalman_filter():
    kf = KalmanFilter(
        data.transition_matrix,
        data.observation_matrix,
        data.transition_covariance,
        data.observation_covariance,
        data.transition_offsets,
        data.observation_offset,
        data.initial_state_mean,
        data.initial_state_covariance)

    (x_filt, V_filt) = kf.filter(X=data.observations)
    assert_array_almost_equal(
        x_filt[:500],
        data.filtered_state_means[:500],
        decimal=7
    )
    assert_array_almost_equal(
        V_filt[:500],
        data.filtered_state_covariances[:500],
        decimal=7
    )