Esempio n. 1
0
def test_if_dmdc_model_is_accurate_with_known_controlmatrix(
    data_2D_linear_control_system, ):
    X, C, A, B = data_2D_linear_control_system
    model = Koopman()

    DMDc = regression.DMDc(svd_rank=3, control_matrix=B)
    model = Koopman(regressor=DMDc).fit(X, C)
    Aest = model.state_transition_matrix
    assert_allclose(Aest, A, 1e-07, 1e-12)
Esempio n. 2
0
def test_observables_integration(data_random, observables):
    x = data_random
    model = Koopman(observables=observables).fit(x)
    check_is_fitted(model)

    y = model.predict(x)
    assert y.shape[1] == x.shape[1]
Esempio n. 3
0
def test_dmdc_for_highdim_system(data_drss):
    Y, U, A, B, C = data_drss

    DMDc = regression.DMDc(svd_rank=7, svd_output_rank=5)
    model = Koopman(regressor=DMDc)
    model.fit(Y, U)

    # Check spectrum
    Aest = model.state_transition_matrix
    W, V = np.linalg.eig(A)
    West, Vest = np.linalg.eig(Aest)

    idxTrue = np.argsort(W)
    idxEst = np.argsort(West)
    assert_allclose(W[idxTrue], West[idxEst], 1e-07, 1e-12)

    # Check eigenvector reconstruction
    r = 5
    Uc, sc, Vch = np.linalg.svd(C, full_matrices=False)
    Sc = np.diag(sc[:r])
    Cinv = np.dot(Vch[:, :r].T, np.dot(np.linalg.inv(Sc), Uc[:, :r].T))
    P = model.projection_matrix_output
    Atilde = np.dot(Cinv, np.dot(np.dot(P, np.dot(Aest, P.T)), C))
    Wtilde, Vtilde = np.linalg.eig(Atilde)

    idxTilde = np.argsort(Wtilde)
    assert_allclose(W[idxTrue], Wtilde[idxTilde], 1e-07, 1e-12)
    # Evecs may be accurate up to a sign; ensured by seeding random generator
    # when producing the data set
    assert_allclose(V[:, idxTrue], Vtilde[:, idxTilde], 1e-07, 1e-12)
Esempio n. 4
0
def test_simulate_accuracy(data_2D_superposition):
    x = data_2D_superposition

    model = Koopman().fit(x)

    n_steps = 10
    x_pred = model.simulate(x[0], n_steps=n_steps)
    assert_allclose(x[1:n_steps + 1], x_pred)
Esempio n. 5
0
def test_simulate_accuracy_dmdc(data_2D_linear_control_system):
    X, C, _, _ = data_2D_linear_control_system

    DMDc = regression.DMDc(svd_rank=3)
    model = Koopman(regressor=DMDc).fit(X, C)

    n_steps = len(C)
    x_pred = model.simulate(X[0, :], C, n_steps=n_steps - 1)
    assert_allclose(X[1:n_steps, :], x_pred, 1e-07, 1e-12)
Esempio n. 6
0
def test_simulate_with_time_delay(data_2D_superposition):
    x = data_2D_superposition

    observables = TimeDelay()
    model = Koopman(observables=observables)
    model.fit(x)

    n_steps = 10
    n_consumed_samples = observables.n_consumed_samples
    x_pred = model.simulate(x[:n_consumed_samples + 1], n_steps=n_steps)
    assert_allclose(x[n_consumed_samples + 1:n_consumed_samples + n_steps + 1],
                    x_pred)
Esempio n. 7
0
def test_if_fitted(data_random):
    x = data_random
    model = Koopman()

    with pytest.raises(NotFittedError):
        model.predict(x)
    with pytest.raises(NotFittedError):
        model.simulate(x)
    with pytest.raises(NotFittedError):
        model.koopman_matrix
    with pytest.raises(NotFittedError):
        model._step(x)
Esempio n. 8
0
def test_score_complex_data(data_random_complex):
    x = data_random_complex
    model = Koopman().fit(x)

    with pytest.raises(ValueError):
        model.score(x, cast_as_real=False)
Esempio n. 9
0
def test_score_with_target(data_2D_superposition):
    x = data_2D_superposition
    model = Koopman().fit(x)

    # Test with a target
    assert model.score(x[::2], y=x[1::2]) > 0.8
Esempio n. 10
0
def test_score_without_target(data_2D_superposition):
    x = data_2D_superposition
    model = Koopman().fit(x)

    # Test without a target
    assert model.score(x) > 0.8
Esempio n. 11
0
def test_koopman_matrix_shape(data_random):
    x = data_random
    model = Koopman().fit(x)
    assert model.koopman_matrix.shape[0] == model.n_output_features_
Esempio n. 12
0
def test_predict_shape(data_random):
    x = data_random

    model = Koopman().fit(x)
    assert x.shape == model.predict(x).shape
Esempio n. 13
0
def test_fit(data_random):
    x = data_random
    model = Koopman().fit(x)
    check_is_fitted(model)
Esempio n. 14
0
def test_observables_integration_accuracy(data_1D_cosine, observables):
    x = data_1D_cosine
    model = Koopman(observables=observables, quiet=True).fit(x)

    assert model.score(x) > 0.95
Esempio n. 15
0
def test_pykoopman():
    model = Koopman()
    assert isinstance(model, Koopman)