Esempio n. 1
0
    def test_not_empty_result(self):
        df = stock.get_index_ohlcv_by_date("20190101", "20190228", "코스피 200")
        self.assertNotEqual(df.empty, True)

        df = stock.get_index_ohlcv_by_date("20190101", "20190228", "코스닥 150")
        self.assertNotEqual(df.empty, True)

        df = stock.get_index_status_by_group("20190228", "KOSPI")
        self.assertNotEqual(df.empty, True)

        df = stock.get_index_status_by_group("20190228", "KOSDAQ")
        self.assertNotEqual(df.empty, True)
Esempio n. 2
0
def get_index_ohlcv(ticker: str, fromdate: date,
                    todate: date) -> Dict[date, Ohlcv]:
    df = stock.get_index_ohlcv_by_date(ticker=ticker,
                                       fromdate=date_to_str(fromdate),
                                       todate=date_to_str(todate))

    # check index changes
    expected_df_columns = ['시가', '고가', '저가', '종가', '거래량', '거래대금']
    for i in range(len(expected_df_columns)):
        assert df.columns[i] == expected_df_columns[
            i], f'Index changed: ({df.index[i]}, {expected_df_columns[i]})'

    # convert Dataframe to dict
    df_dict = df.to_dict(orient='index')

    # marshalling
    result = {}
    for timestamp in df_dict.keys():
        d = timestamp.date()
        values = list(df_dict.get(timestamp).values())
        result.update({
            d:
            Ohlcv(
                open=values[0],
                high=values[1],
                low=values[2],
                close=values[3],
                vol=values[4],
                transaction=values[5],
            )
        })

    return result
Esempio n. 3
0
 def test_ohlcv_with_nan(self):
     df = stock.get_index_ohlcv_by_date("19800101", "20200831", "1001")
     #               시가      고가     저가     종가      거래량        거래대금
     # 날짜
     # 1980-01-04     0.00     0.00     0.00   100.00       95900       602800000
     # 1980-01-05     0.00     0.00     0.00   100.15      131100       776400000
     # 1980-01-07     0.00     0.00     0.00   102.53      358300      2029700000
     # 1980-01-08     0.00     0.00     0.00   105.28      795800      5567200000
     temp = df.iloc[0:5, 0] == np.array([0, 0, 0, 0, 0])
     self.assertEqual(temp.sum(), 5)
Esempio n. 4
0
 def test_ohlcv_with_freq(self):
     df = stock.get_index_ohlcv_by_date("20200101", "20200630", "1001", freq="m")
     #                시가     고가     저가     종가       거래량
     # 날짜
     # 2020-01-31  2201.21  2277.23  2119.01  2119.01  13096066333
     # 2020-02-29  2086.61  2255.49  1980.82  1987.01  13959766513
     # 2020-03-31  1997.03  2089.08  1439.43  1754.64  17091025314
     # 2020-04-30  1737.28  1957.51  1664.13  1947.56  21045120912
     # 2020-05-31  1906.42  2054.52  1894.29  2029.60  16206496902
     temp = df.iloc[0:5, 0] == np.array([2201.21, 2086.61, 1997.03, 1737.28, 1906.42])
     self.assertEqual(temp.sum(), 5)
     self.assertIsInstance(df.index   , pd.core.indexes.datetimes.DatetimeIndex)
     self.assertIsInstance(df.index[0], pd._libs.tslibs.timestamps.Timestamp)
     self.assertTrue(df.index[0] < df.index[-1])
Esempio n. 5
0
 def test_ohlcv_simple(self):
     df = stock.get_index_ohlcv_by_date("20210101", "20210130", "1001")
     #                시가     고가     저가     종가      거래량         거래대금
     # 날짜
     # 2021-01-04  2874.50  2946.54  2869.11  2944.45  1026510465  25011393960858
     # 2021-01-05  2943.67  2990.57  2921.84  2990.57  1519911750  26548380179493
     # 2021-01-06  2993.34  3027.16  2961.37  2968.21  1793418534  29909396443430
     # 2021-01-07  2980.75  3055.28  2980.75  3031.68  1524654500  27182807334912
     # 2021-01-08  3040.11  3161.11  3040.11  3152.18  1297903388  40909490005818
     temp = df.iloc[0:5, 0] == np.array([2874.50, 2943.67, 2993.34, 2980.75, 3040.11])
     self.assertEqual(temp.sum(), 5)
     self.assertIsInstance(df.index   , pd.core.indexes.datetimes.DatetimeIndex)
     self.assertIsInstance(df.index[0], pd._libs.tslibs.timestamps.Timestamp)
     self.assertTrue(df.index[0] < df.index[-1])
Esempio n. 6
0
def getKospi200Chart(self):
    date = datetime.date(datetime.now())
    date1yago = datetime.date(datetime.now() - relativedelta(years=1))
    today = date.strftime("%Y%m%d")
    today_1yago = date1yago.strftime("%Y%m%d")

    stock_month = stock.get_index_ohlcv_by_date(today_1yago, today, '1028')

    stock_month.columns = [
        "StartPrice", "HighPrice", "LowPrice", "EndPrice", "Volume"
    ]

    records = json.loads(stock_month.to_json())
    return JsonResponse(records)
Esempio n. 7
0
 def test_ohlcv_in_holiday(self):
     df = stock.get_index_ohlcv_by_date("20210101", "20210101", "1001")
     self.assertIsInstance(df, pd.DataFrame)
     self.assertTrue(df.empty)
Esempio n. 8
0
def getDayIndex(self):
    date = datetime.date(datetime.now())
    date1wago = datetime.date(datetime.now() - relativedelta(weeks=2))
    today = date.strftime("%Y%m%d")
    today1wago = date1wago.strftime("%Y%m%d")

    kospi = stock.get_index_ohlcv_by_date(today1wago, today, '1001')  # KOSPI
    kosdaq = stock.get_index_ohlcv_by_date(today1wago, today, '2001')  # KOSDAQ
    kospi200 = stock.get_index_ohlcv_by_date(today1wago, today,
                                             '1028')  # KOSPI 200

    kospi = kospi.tail(2)
    kosdaq = kosdaq.tail(2)
    kospi200 = kospi200.tail(2)

    # kospi
    kospi_prev = kospi["종가"][0]
    kospi_curr = kospi["종가"][1]

    kospi_diff = kospi_curr - kospi_prev
    kospi_diff = round(kospi_diff, 2)
    kospi_flucRate = ((kospi_curr - kospi_prev) / kospi_prev) * 100
    kospi_flucRate = round(kospi_flucRate, 2)

    # kosdaq
    kosdaq_prev = kosdaq["종가"][0]
    kosdaq_curr = kosdaq["종가"][1]
    print(kosdaq_prev)
    print(kosdaq_curr)
    kosdaq_diff = kosdaq_curr - kosdaq_prev
    kosdaq_diff = round(kosdaq_diff, 2)
    kosdaq_flucRate = ((kosdaq_curr - kosdaq_prev) / kosdaq_prev) * 100
    kosdaq_flucRate = round(kosdaq_flucRate, 2)

    # kospi 200
    kospi200_prev = kospi200["종가"][0]
    kospi200_curr = kospi200["종가"][1]

    kospi200_diff = kospi200_curr - kospi200_prev
    kospi200_diff = round(kospi200_diff, 2)
    kospi200_flucRate = ((kospi200_curr - kospi200_prev) / kospi200_prev) * 100
    kospi200_flucRate = round(kospi200_flucRate, 2)

    json_file = OrderedDict()
    json_file["KOSPI"] = {
        'CurrentPrice': kospi_curr,
        'FluctuatedAmount': kospi_diff,
        'FluctuatedRate': kospi_flucRate
    }
    json_file["KOSDAQ"] = {
        'CurrentPrice': kosdaq_curr,
        'FluctuatedAmount': kosdaq_diff,
        'FluctuatedRate': kosdaq_flucRate
    }
    json_file["KOSPI200"] = {
        'CurrentPrice': kospi200_curr,
        'FluctuatedAmount': kospi200_diff,
        'FluctuatedRate': kospi200_flucRate
    }
    js = json.dumps(json_file)
    return JsonResponse(js, safe=False)