Esempio n. 1
0
    def plot_fit(self, size=None, tol=0.1, axis_on=True):

        n, d = self.D.shape

        if size:
            nrows, ncols = size
        else:
            sq = np.ceil(np.sqrt(n))
            nrows = int(sq)
            ncols = int(sq)

        ymin = np.nanmin(self.D)
        ymax = np.nanmax(self.D)
        print 'ymin: {0}, ymax: {1}'.format(ymin, ymax)

        numplots = np.min([n, nrows * ncols])
        plt.figure()

        for n in xrange(numplots):
            plt.subplot(nrows, ncols, n + 1)
            plt.ylim((ymin - tol, ymax + tol))
            plt.plot(self.L[n, :] + self.S[n, :], 'r')
            plt.plot(self.L[n, :], 'b')
            if not axis_on:
                plt.axis('off')
Esempio n. 2
0
def matrixMontage(spcomps,*args, **kwargs):
    numcomps, width, height=spcomps.shape
    rowcols=int(np.ceil(np.sqrt(numcomps)));           
    for k,comp in enumerate(spcomps):        
        plt.subplot(rowcols,rowcols,k+1)       
        plt.imshow(comp,*args, **kwargs)                             
        plt.axis('off')         
def plot_weightings():
    """Plots all weighting functions defined in :module: splweighting."""
    from scipy.signal import freqz
    from pylab import plt, np

    sample_rate = 48000
    num_samples = 2*4096

    fig, ax = plt.subplots()

    for name, weight_design in sorted(
            _weighting_coeff_design_funsd.items()):
        b, a = weight_design(sample_rate)
        w, H = freqz(b, a, worN=num_samples)

        freq = w*sample_rate / (2*np.pi)

        ax.semilogx(freq, 20*np.log10(np.abs(H)+1e-20),
                    label='{}-Weighting'.format(name))

    plt.legend(loc='lower right')
    plt.xlabel('Frequency / Hz')
    plt.ylabel('Damping / dB')
    plt.grid(True)
    plt.axis([10, 20000, -80, 5])
    return fig, ax
    def plot_fit(self, size=None, tol=0.1, axis_on=True):

        n, d = self.D.shape

        if size:
            nrows, ncols = size
        else:
            sq = np.ceil(np.sqrt(n))
            nrows = int(sq)
            ncols = int(sq)

        ymin = np.nanmin(self.D)
        ymax = np.nanmax(self.D)
        print('ymin: {0}, ymax: {1}'.format(ymin, ymax))

        numplots = np.min([n, nrows * ncols])
        plt.figure()

        for n in range(numplots):
            plt.subplot(nrows, ncols, n + 1)
            plt.ylim((ymin - tol, ymax + tol))
            plt.plot(self.L[n, :] + self.S[n, :], 'r')
            plt.plot(self.L[n, :], 'b')
            if not axis_on:
                plt.axis('off')
Esempio n. 5
0
def plot_stat(rows, cache):
    "Use matplotlib to plot DAS statistics"
    if not PLOT_ALLOWED:
        raise Exception('Matplotlib is not available on the system')
    if cache in ['cache', 'merge']:  # cachein, cacheout, mergein, mergeout
        name_in = '%sin' % cache
        name_out = '%sout' % cache
    else:  # webip, webq, cliip, cliq
        name_in = '%sip' % cache
        name_out = '%sq' % cache

    def format_date(date):
        "Format given date"
        val = str(date)
        return '%s-%s-%s' % (val[:4], val[4:6], val[6:8])

    date_range = [r['date'] for r in rows]
    formated_dates = [format_date(str(r['date'])) for r in rows]
    req_in = [r[name_in] for r in rows]
    req_out = [r[name_out] for r in rows]

    plt.plot(date_range, req_in , 'ro-',\
             date_range, req_out, 'gv-',)
    plt.grid(True)
    plt.axis([min(date_range), max(date_range), \
                0, max([max(req_in), max(req_out)])])
    plt.xticks(date_range, tuple(formated_dates), rotation=17)
    #    plt.xlabel('dates [%s, %s]' % (date_range[0], date_range[-1]))
    plt.ylabel('DAS %s behavior' % cache)
    plt.savefig('das_%s.pdf' % cache, format='pdf', transparent=True)
    plt.close()
def plot_scenarios(scenarios):
    nrows = len(scenarios)
    fig = plt.figure(figsize=(24, nrows))
    n_plot = nrows
    plt.axis('off')
    # plot fake samples
    for iplot in range(nrows):
        for jplot in range(24):
            ax = plt.subplot(n_plot, 24, iplot * 24 + jplot + 1)
            if iplot == 0:
                ax.annotate(f'{jplot:02d}'
                            ':00',
                            xy=(0.5, 1),
                            xytext=(0, 5),
                            xycoords='axes fraction',
                            textcoords='offset points',
                            size='large',
                            ha='center',
                            va='baseline')
            im = plt.imshow(scenarios[iplot, jplot - 1, :, :],
                            cmap=plt.cm.gist_earth_r,
                            norm=LogNorm(vmin=0.01, vmax=50))
            plt.axis('off')
    fig.subplots_adjust(right=0.93)
    cbar_ax = fig.add_axes([0.93, 0.15, 0.007, 0.7])
    cbar = fig.colorbar(im, cax=cbar_ax)
    cbar.set_label('fraction of daily precipitation', fontsize=16)
    cbar.ax.tick_params(labelsize=16)

    return fig
Esempio n. 7
0
def plot_stat(rows, cache):
    "Use matplotlib to plot DAS statistics"
    if  not PLOT_ALLOWED:
        raise Exception('Matplotlib is not available on the system')
    if  cache in ['cache', 'merge']: # cachein, cacheout, mergein, mergeout
        name_in  = '%sin' % cache
        name_out = '%sout' % cache
    else: # webip, webq, cliip, cliq
        name_in  = '%sip' % cache
        name_out = '%sq' % cache
    def format_date(date):
        "Format given date"
        val = str(date)
        return '%s-%s-%s' % (val[:4], val[4:6], val[6:8])
    date_range = [r['date'] for r in rows]
    formated_dates = [format_date(str(r['date'])) for r in rows]
    req_in  = [r[name_in] for r in rows]
    req_out = [r[name_out] for r in rows]

    plt.plot(date_range, req_in , 'ro-',
             date_range, req_out, 'gv-',
    )
    plt.grid(True)
    plt.axis([min(date_range), max(date_range), \
                0, max([max(req_in), max(req_out)])])
    plt.xticks(date_range, tuple(formated_dates), rotation=17)
#    plt.xlabel('dates [%s, %s]' % (date_range[0], date_range[-1]))
    plt.ylabel('DAS %s behavior' % cache)
    plt.savefig('das_%s.pdf' % cache, format='pdf', transparent=True)
    plt.close()
Esempio n. 8
0
def plot_weightings():
    """Plots all weighting functions defined in :module: splweighting."""
    from scipy.signal import freqz
    from pylab import plt, np

    sample_rate = 48000
    num_samples = 2 * 4096

    fig, ax = plt.subplots()

    for name, weight_design in sorted(_weighting_coeff_design_funsd.items()):
        b, a = weight_design(sample_rate)
        w, H = freqz(b, a, worN=num_samples)

        freq = w * sample_rate / (2 * np.pi)

        ax.semilogx(freq,
                    20 * np.log10(np.abs(H) + 1e-20),
                    label='{}-Weighting'.format(name))

    plt.legend(loc='lower right')
    plt.xlabel('Frequency / Hz')
    plt.ylabel('Damping / dB')
    plt.grid(True)
    plt.axis([10, 20000, -80, 5])
    return fig, ax
def create_image(csv_path):
    csv_data, _, _ = read_csv_data(csv_path)
    plt.figure()
    plt.plot(csv_data)
    plt.axis('off')

    plt.savefig('wind_data.png', bbox_inches='tight', dpi=500)
Esempio n. 10
0
def plot_roc_curve(fpr, tpr, label=None):
    """
    Plots Rceiver Operating Characteristic (ROC) curve from false_positive_rate(fpr), true_positive_rate(tpr)
    
    Requires imports:
    from sklearn.metrics import roc_curve
    
    Returns:
    Nothing
    """

    from pylab import mpl, plt
    import matplotlib.pyplot as plt
    import numpy as np
    plt.style.use('seaborn')
    mpl.rcParams['font.family'] = 'arial'
    np.random.seed(1000)
    np.set_printoptions(suppress=True, precision=4)

    plt.plot(fpr, tpr, linewidth=2, label=label)
    plt.plot([0, 1], [0, 1], 'k--')
    plt.axis([0, 1, 0, 1])
    plt.xlabel('False Positive Rate')
    plt.ylabel('True Negatove Rate')
    plot_roc_curve(fpr, tpr)
Esempio n. 11
0
def example_filterbank():
    from pylab import plt
    import numpy as np

    x = _create_impulse(2000)
    gfb = GammatoneFilterbank(density=1)

    analyse = gfb.analyze(x)
    imax, slopes = gfb.estimate_max_indices_and_slopes()
    fig, axs = plt.subplots(len(gfb.centerfrequencies), 1)
    for (band, state), imx, ax in zip(analyse, imax, axs):
        ax.plot(np.real(band))
        ax.plot(np.imag(band))
        ax.plot(np.abs(band))
        ax.plot(imx, 0, 'o')
        ax.set_yticklabels([])
        [ax.set_xticklabels([]) for ax in axs[:-1]]

    axs[0].set_title('Impulse responses of gammatone bands')

    fig, ax = plt.subplots()

    def plotfun(x, y):
        ax.semilogx(x, 20*np.log10(np.abs(y)**2))

    gfb.freqz(nfft=2*4096, plotfun=plotfun)
    plt.grid(True)
    plt.title('Absolute spectra of gammatone bands.')
    plt.xlabel('Normalized Frequency (log)')
    plt.ylabel('Attenuation /dB(FS)')
    plt.axis('Tight')
    plt.ylim([-90, 1])
    plt.show()

    return gfb
Esempio n. 12
0
def example_filterbank():
    from pylab import plt
    import numpy as np

    x = _create_impulse(2000)
    gfb = GammatoneFilterbank(density=1)

    analyse = gfb.analyze(x)
    imax, slopes = gfb.estimate_max_indices_and_slopes()
    fig, axs = plt.subplots(len(gfb.centerfrequencies), 1)
    for (band, state), imx, ax in zip(analyse, imax, axs):
        ax.plot(np.real(band))
        ax.plot(np.imag(band))
        ax.plot(np.abs(band))
        ax.plot(imx, 0, 'o')
        ax.set_yticklabels([])
        [ax.set_xticklabels([]) for ax in axs[:-1]]

    axs[0].set_title('Impulse responses of gammatone bands')

    fig, ax = plt.subplots()

    def plotfun(x, y):
        ax.semilogx(x, 20 * np.log10(np.abs(y)**2))

    gfb.freqz(nfft=2 * 4096, plotfun=plotfun)
    plt.grid(True)
    plt.title('Absolute spectra of gammatone bands.')
    plt.xlabel('Normalized Frequency (log)')
    plt.ylabel('Attenuation /dB(FS)')
    plt.axis('Tight')
    plt.ylim([-90, 1])
    plt.show()

    return gfb
Esempio n. 13
0
def matrixMontage(spcomps, *args, **kwargs):
    numcomps, width, height = spcomps.shape
    rowcols = int(np.ceil(np.sqrt(numcomps)))
    for k, comp in enumerate(spcomps):
        plt.subplot(rowcols, rowcols, k + 1)
        plt.imshow(comp, *args, **kwargs)
        plt.axis('off')
Esempio n. 14
0
 def imshow(self, name):
     '''
     显示灰度图
     '''
     img = self.buffer2img(name)
     plt.imshow(img, cmap='gray')
     plt.axis('off')
     plt.show()
Esempio n. 15
0
 def imshow(self, name):
     '''
     显示灰度图
     '''
     img = self.buffer2img(name)
     plt.imshow(img, cmap='gray')
     plt.axis('off')
     plt.show()
def save_images(images, path):
    fig = plt.figure()
    for i, image in enumerate(images):
        fig.add_subplot(1, len(images), i + 1)
        plt.imshow(image)
        plt.axis('off')
    plt.savefig(path, bbox_inches='tight')
    plt.close()
Esempio n. 17
0
def draw_partitioned_graph(G,
                           partition_obj,
                           layout=None,
                           labels=None,
                           layout_type='spring',
                           node_size=70,
                           node_alpha=0.7,
                           cmap=plt.get_cmap('jet'),
                           node_text_size=12,
                           edge_color='blue',
                           edge_alpha=0.5,
                           edge_tickness=1,
                           edge_text_pos=0.3,
                           text_font='sans-serif'):

    # if a premade layout haven't been passed, create a new one
    if not layout:
        if graph_type == 'spring':
            layout = nx.spring_layout(G)
        elif graph_type == 'spectral':
            layout = nx.spectral_layout(G)
        elif graph_type == 'random':
            layout = nx.random_layout(G)
        else:
            layout = nx.shell_layout(G)

    # prepare the partition list noeds and colors

    list_nodes, node_color = partition_to_draw(partition_obj)

    # draw graph
    nx.draw_networkx_nodes(G,
                           layout,
                           list_nodes,
                           node_size=node_size,
                           alpha=node_alpha,
                           node_color=node_color,
                           cmap=cmap)
    nx.draw_networkx_edges(G,
                           layout,
                           width=edge_tickness,
                           alpha=edge_alpha,
                           edge_color=edge_color)
    #nx.draw_networkx_labels(G, layout,font_size=node_text_size,
    #                        font_family=text_font)

    if labels is None:
        labels = range(len(G))

    edge_labels = dict(zip(G, labels))
    #nx.draw_networkx_edge_labels(G, layout, edge_labels=edge_labels,
    #                            label_pos=edge_text_pos)

    # show graph

    plt.axis('off')
    plt.xlim(0, 1)
    plt.ylim(0, 1)
Esempio n. 18
0
 def plot_mat(self, mat, fn):
     plt.matshow(asarray(mat.todense()))
     plt.axis('equal')
     sh = mat.shape
     plt.gca().set_yticks(range(0, sh[0]))
     plt.gca().set_xticks(range(0, sh[1]))
     plt.grid('on')
     plt.colorbar()
     plt.savefig(join(self.outs_dir, fn))
     plt.close()
Esempio n. 19
0
 def plot_mat(self, mat, fn):
     plt.matshow(asarray(mat.todense()))
     plt.axis('equal')
     sh = mat.shape
     plt.gca().set_yticks(range(0,sh[0]))
     plt.gca().set_xticks(range(0,sh[1]))
     plt.grid('on')
     plt.colorbar()
     plt.savefig(join(self.outs_dir, fn))
     plt.close()
Esempio n. 20
0
def convert_all_to_png(vis_path, out_dir="maps_png", size=None):

    units = {
        'gas_density': 'Gas Density [g/cm$^3$]',
        'Tm': 'Temperature [K]',
        'Tew': 'Temperature [K]',
        'S': 'Entropy []',
        'dm': 'DM Density [g/cm$^3$]',
        'v': 'Velocity [km/s]'
    }

    log_list = ['gas_density']

    for vis_file in os.listdir(vis_path):
        if ".dat" not in vis_file:
            continue
        print "converting %s" % vis_file
        map_type = re.search('sigma_(.*)_[xyz]', vis_file).group(1)

        (image, pixel_size,
         axis_values) = read_visualization_data(vis_path + "/" + vis_file,
                                                size)
        print "image width in Mpc/h: ", axis_values[-1] * 2.0

        x, y = np.meshgrid(axis_values, axis_values)

        cmap_max = image.max()
        cmap_min = image.min()
        ''' plotting '''
        plt.figure(figsize=(5, 4))

        if map_type in log_list:
            plt.pcolor(x, y, image, norm=LogNorm(vmax=cmap_max, vmin=cmap_min))
        else:
            plt.pcolor(x, y, image, vmax=cmap_max, vmin=cmap_min)

        cbar = plt.colorbar()
        if map_type in units.keys():
            cbar.ax.set_ylabel(units[map_type])

        plt.axis(
            [axis_values[0], axis_values[-1], axis_values[0], axis_values[-1]])

        del image

        plt.xlabel(r"$Mpc/h$", fontsize=18)
        plt.ylabel(r"$Mpc/h$", fontsize=18)

        out_file = vis_file.replace("dat", "png")

        plt.savefig(out_dir + "/" + out_file, dpi=150)

        plt.close()
        plt.clf()
Esempio n. 21
0
def draw_mock_graph():
    '''draw the toe energy per meter graph.
    '''
    plt.plot([1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
             [1, 2, 4, 5, 6, 7, 10, 15, 15, 15], 'ro')
    plt.axis([0, 10, 0, 20])
    canvas = pylab.get_current_fig_manager().canvas
    canvas.draw()
    pil_image = Image.frombytes("RGB", canvas.get_width_height(),
                                canvas.tostring_rgb())
    pylab.close()
    return pil_image
Esempio n. 22
0
def convert_all_to_png(vis_path, out_dir = "maps_png", size = None) :

    units = { 'gas_density' : 'Gas Density [g/cm$^3$]',
              'Tm' : 'Temperature [K]',
              'Tew' : 'Temperature [K]',
              'S' : 'Entropy []',
              'dm' : 'DM Density [g/cm$^3$]',
              'v' : 'Velocity [km/s]' }

    log_list = ['gas_density']

    for vis_file in os.listdir(vis_path) :
        if ".dat" not in vis_file :
            continue
        print "converting %s" % vis_file
        map_type = re.search('sigma_(.*)_[xyz]', vis_file).group(1)

        (image, pixel_size, axis_values) = read_visualization_data(vis_path+"/"+vis_file, size)
        print "image width in Mpc/h: ", axis_values[-1]*2.0

        x, y = np.meshgrid( axis_values, axis_values )

        cmap_max = image.max()
        cmap_min = image.min()


        ''' plotting '''
        plt.figure(figsize=(5,4))

        if map_type in log_list:
            plt.pcolor(x,y,image, norm=LogNorm(vmax=cmap_max, vmin=cmap_min))
        else :
            plt.pcolor(x,y,image, vmax=cmap_max, vmin=cmap_min)

        cbar = plt.colorbar()
        if map_type in units.keys() :
            cbar.ax.set_ylabel(units[map_type])

        plt.axis([axis_values[0], axis_values[-1],axis_values[0], axis_values[-1]])

        del image

        plt.xlabel(r"$Mpc/h$", fontsize=18)
        plt.ylabel(r"$Mpc/h$", fontsize=18)

        out_file = vis_file.replace("dat", "png")

        plt.savefig(out_dir+"/"+out_file, dpi=150 )

        plt.close()
        plt.clf()
Esempio n. 23
0
def drawAdoptionNetworkMPL(G, fnum=1, show=False, writeFile=None):
    """Draws the network to matplotlib, coloring the nodes based on adoption. 
    Looks for the node attribute 'adopted'. If the attribute is True, colors 
    the node a different color, showing adoption visually. This function assumes
    that the node attributes have been pre-populated.
    
    :param networkx.Graph G: Any NetworkX Graph object.
    :param int fnum: The matplotlib figure number. Defaults to 1.
    :param bool show: 
    :param str writeFile: A filename/path to save the figure image. If not
                             specified, no output file is written.
    """
    Gclean = G.subgraph([n for n in G.nodes() if n not in nx.isolates(G)])
    plt.figure(num=fnum, figsize=(6,6))
    # clear figure
    plt.clf()
    
    # Blue ('b') node color for adopters, red ('r') for non-adopters. 
    nodecolors = ['b' if Gclean.node[n]['adopted'] else 'r' \
                  for n in Gclean.nodes()]
    layout = nx.spring_layout(Gclean)
    nx.draw_networkx_nodes(Gclean, layout, node_size=80, 
                           nodelist=Gclean.nodes(), 
                           node_color=nodecolors)
    nx.draw_networkx_edges(Gclean, layout, alpha=0.5) # width=4
    
    # TODO: Draw labels of Ii values. Maybe vary size of node.
    # TODO: Color edges blue based on influences from neighbors
    
    influenceEdges = []
    for a in Gclean.nodes():
        for n in Gclean.node[a]['influence']:
            influenceEdges.append((a,n))
    
    if len(influenceEdges)>0:
        nx.draw_networkx_edges(Gclean, layout, alpha=0.5, width=5,
                               edgelist=influenceEdges,
                               edge_color=['b']*len(influenceEdges))
    
    #some extra space around figure
    plt.xlim(-0.05,1.05)
    plt.ylim(-0.05,1.05)
    plt.axis('off')
    
    if writeFile != None:
        plt.savefig(writeFile)
    
    if show:
        plt.show()
Esempio n. 24
0
def plot_fault_framework(fault_framework):
    fm = fault_framework
    plt.plot(fm.Y_PC, fm.DEP, '-o')
    plt.axis('equal')
    plt.axhline(0, color='black')
    plt.gca().set_yticks(fm.DEP)
    plt.gca().set_xticks(fm.Y_PC)
    plt.grid('on')
    plt.xlabel('From trench to continent(km)')
    plt.ylabel('depth (km)')

    for xi, yi, dip in zip(fm.Y_PC, fm.DEP, fm.DIP_D):
        plt.text(xi, yi, 'dip = %.1f'%dip)

    plt.gca().invert_yaxis()
Esempio n. 25
0
def plot_fault_framework(fault_framework):
    fm = fault_framework
    plt.plot(fm.Y_PC, fm.DEP, '-o')
    plt.axis('equal')
    plt.axhline(0, color='black')
    plt.gca().set_yticks(fm.DEP)
    plt.gca().set_xticks(fm.Y_PC)
    plt.grid('on')
    plt.xlabel('From trench to continent(km)')
    plt.ylabel('depth (km)')

    for xi, yi, dip in zip(fm.Y_PC, fm.DEP, fm.DIP_D):
        plt.text(xi, yi, 'dip = %.1f' % dip)

    plt.gca().invert_yaxis()
Esempio n. 26
0
 def plot_overview(self,suffix=''):
     x=self.x; y=self.y; r=self.radius; cx,cy=self.center.real,self.center.imag
     ax=plt.axes()
     plt.scatter(x,y, marker='o', c='b', s=40)
     plt.axhline(y=0,color='grey', zorder=-1)
     plt.axvline(x=0,color='grey', zorder=-2)
     t=linspace(0,2*pi,201)
     circx=r*cos(t) + cx
     circy=r*sin(t) + cy
     plt.plot(circx,circy,'g-')
     plt.plot([cx],[cy],'gx',ms=12)
     if self.ZorY == 'Z':
         philist,flist=[self.phi_a,self.phi_p,self.phi_n],[self.fa,self.fp,self.fn]
     elif self.ZorY == 'Y':
         philist,flist=[self.phi_m,self.phi_s,self.phi_r],[self.fm,self.fs,self.fr]
     for p,f in zip(philist,flist):
         if f is not None:
             xpos=cx+r*cos(p); ypos=cy+r*sin(p); xos=0.2*(xpos-cx); yos=0.2*(ypos-cy)
             plt.plot([0,xpos],[0,ypos],'co-')
             ax.annotate('{:.3f} Hz'.format(f), xy=(xpos,ypos),  xycoords='data',
                         xytext=(xpos+xos,ypos+yos), textcoords='data', #textcoords='offset points',
                         arrowprops=dict(arrowstyle="->", shrinkA=0, shrinkB=10)
                         )
     #plt.xlim(0,0.16)
     #plt.ylim(-0.1,0.1)
     plt.axis('equal')
     if self.ZorY == 'Z':
         plt.xlabel(r'resistance $R$ in Ohm'); plt.ylabel(r'reactance $X$ in Ohm')
     if self.ZorY == 'Y':
         plt.xlabel(r'conductance $G$ in Siemens'); plt.ylabel(r'susceptance $B$ in Siemens')
     plt.title("fitting the admittance circle with Powell's method")
     tx1='best fit (fmin_powell):\n'
     tx1+='center at G+iB = {:.5f} + i*{:.8f}\n'.format(cx,cy)
     tx1+='radius = {:.5f};  '.format(r)
     tx1+='residue: {:.2e}'.format(self.resid)
     txt1=plt.text(-r,cy-1.1*r,tx1,fontsize=8,ha='left',va='top')
     txt1.set_bbox(dict(facecolor='gray', alpha=0.25))
     idxlist=self.to_be_annotated('triple')
     ofs=self.annotation_offsets(idxlist,factor=0.1,xshift=0.15)
     for i,j in enumerate(idxlist):
         xpos,ypos = x[j],y[j]; xos,yos = ofs[i].real,ofs[i].imag
         ax.annotate('{:.1f} Hz'.format(self.f[j]), xy=(xpos,ypos),  xycoords='data',
                     xytext=(xpos+xos,ypos+yos), textcoords='data', #textcoords='offset points',
                     arrowprops=dict(arrowstyle="->", shrinkA=0, shrinkB=10)
                     )
     if self.show: plt.show()
     else: plt.savefig(join(self.sdc.plotpath,'c{}_fitted_{}_circle'.format(self.sdc.case,self.ZorY)+suffix+'.png'), dpi=240)
     plt.close()
Esempio n. 27
0
    def test_dep(self):
        xf = arange(0, 425)
        deps = self.fm.get_dep(xf)
        plt.plot(xf, deps)

        plt.gca().set_yticks(self.fm.DEP)
        plt.gca().set_xticks(self.fm.Y_PC)

        plt.grid('on')
        plt.title('Ground x versus depth')
        plt.xlabel('Ground X (km)')
        plt.ylabel('depth (km)')
        plt.axis('equal')
        plt.gca().invert_yaxis()
        plt.savefig(join(self.outs_dir, '~Y_PC_vs_deps.png'))
        plt.close()
Esempio n. 28
0
    def test_dep(self):
        xf = arange(0, 425)
        deps = self.fm.get_dep(xf)
        plt.plot(xf,deps)

        plt.gca().set_yticks(self.fm.DEP)
        plt.gca().set_xticks(self.fm.Y_PC)
        
        plt.grid('on')
        plt.title('Ground x versus depth')
        plt.xlabel('Ground X (km)')
        plt.ylabel('depth (km)')
        plt.axis('equal')
        plt.gca().invert_yaxis()
        plt.savefig(join(self.outs_dir, '~Y_PC_vs_deps.png'))
        plt.close()
def convolve(arrays, melBank, genere, filter_idx):
  x = []
  melBank_time = np.fft.ifft(melBank) #need to transform melBank to time domain
  for eachClip in arrays:
    result = np.convolve(eachClip, melBank_time)
    x.append(result)
    plotBeforeAfterFilter(eachClip, melBank, melBank_time, result, genere, filter_idx)

  m = np.asmatrix(np.array(x))
  fig, ax = plt.subplots()
  ax.matshow(m.real) #each element has imaginary part. So just plot real part
  plt.axis('equal')
  plt.axis('tight')
  plt.title(genere)
  plt.tight_layout()
  # filename = "./figures/convolution/Convolution_"+"Filter"+str(filter_idx)+genere+".png"
  # plt.savefig(filename)
  plt.show()
Esempio n. 30
0
def draw_partitioned_graph(G, partition_obj, layout=None, labels=None,layout_type='spring', 
               node_size=70, node_alpha=0.7, cmap=plt.get_cmap('jet'),
               node_text_size=12,
               edge_color='blue', edge_alpha=0.5, edge_tickness=1,
               edge_text_pos=0.3,
               text_font='sans-serif'):

    # if a premade layout haven't been passed, create a new one
    if not layout:
        if graph_type == 'spring':
            layout=nx.spring_layout(G)
        elif graph_type == 'spectral':
            layout=nx.spectral_layout(G)
        elif graph_type == 'random':
            layout=nx.random_layout(G)
        else:
            layout=nx.shell_layout(G)

    # prepare the partition list noeds and colors

    list_nodes, node_color = partition_to_draw(partition_obj)
      
    # draw graph
    nx.draw_networkx_nodes(G,layout,list_nodes,node_size=node_size, 
                           alpha=node_alpha, node_color=node_color, cmap = cmap)
    nx.draw_networkx_edges(G,layout,width=edge_tickness,
                           alpha=edge_alpha,edge_color=edge_color)
    #nx.draw_networkx_labels(G, layout,font_size=node_text_size,
    #                        font_family=text_font)

    if labels is None:
        labels = range(len(G))

    edge_labels = dict(zip(G, labels))
    #nx.draw_networkx_edge_labels(G, layout, edge_labels=edge_labels, 
    #                            label_pos=edge_text_pos)

    # show graph

    plt.axis('off')
    plt.xlim(0,1)
    plt.ylim(0,1)
Esempio n. 31
0
def freqz(sosmat, nsamples=44100, sample_rate=44100, plot=True):
    """Plots Frequency response of sosmat."""
    from pylab import np, plt, fft, fftfreq
    x = np.zeros(nsamples)
    x[int(nsamples/2)] = 0.999
    y, states = sosfilter_double_c(x, sosmat)
    Y = fft(y)
    f = fftfreq(len(x), 1.0/sample_rate)
    if plot:
        plt.grid(True)
        plt.axis([0, sample_rate / 2, -100, 5])
        L = 20*np.log10(np.abs(Y[:int(len(x)/2)]) + 1e-17)
        plt.semilogx(f[:int(len(x)/2)], L, lw=0.5)
        plt.hold(True)
        plt.title(u'freqz sos filter')
        plt.xlabel('Frequency / Hz')
        plt.ylabel(u'Damping /dB(FS)')
        plt.xlim((10, sample_rate/2))
        plt.hold(False)
    return x, y, f, Y
Esempio n. 32
0
def freqz(sosmat, nsamples=44100, sample_rate=44100, plot=True):
    """Plots Frequency response of sosmat."""
    from pylab import np, plt, fft, fftfreq
    x = np.zeros(nsamples)
    x[nsamples/2] = 0.999
    y, states = sosfilter_double_c(x, sosmat)
    Y = fft(y)
    f = fftfreq(len(x), 1.0/sample_rate)
    if plot:
        plt.grid(True)
        plt.axis([0, sample_rate / 2, -100, 5])
        L = 20*np.log10(np.abs(Y[:len(x)/2]) + 1e-17)
        plt.semilogx(f[:len(x)/2], L, lw=0.5)
        plt.hold(True)
        plt.title('freqz sos filter')
        plt.xlabel('Frequency / Hz')
        plt.ylabel('Damping /dB(FS)')
        plt.xlim((10, sample_rate/2))
        plt.hold(False)
    return x, y, f, Y
Esempio n. 33
0
def generate_word_cloud(text, no, name=None, show=True):
    ''' Generates a word cloud bitmap given a
        text document (string).
        It uses the Term Frequency (TF) and
        Inverse Document Frequency (IDF) 
        vectorization approach to derive the
        importance of a word -- represented
        by the size of the word in the word cloud.
        
    Parameters
    ==========
    text: str
        text as the basis
    no: int
        number of words to be included
    name: str
        path to save the image
    show: bool
        whether to show the generated image or not
    '''
    tokens = tokenize(text)
    vec = TfidfVectorizer(min_df=2,
                          analyzer='word',
                          ngram_range=(1, 2),
                          stop_words='english')
    vec.fit_transform(tokens)
    wc = pd.DataFrame({'words': vec.get_feature_names(), 'tfidf': vec.idf_})
    words = ' '.join(wc.sort_values('tfidf', ascending=True)['words'].head(no))
    wordcloud = WordCloud(max_font_size=110,
                          background_color='white',
                          width=1024,
                          height=768,
                          margin=10,
                          max_words=150).generate(words)
    if show:
        plt.figure(figsize=(10, 10))
        plt.imshow(wordcloud, interpolation='bilinear')
        plt.axis('off')
        plt.show()
    if name is not None:
        wordcloud.to_file(name)
Esempio n. 34
0
def load_mnist(path, filename='mnist.pkl.gz', plot=True):
    """
    Loads the MNIST dataset. Downloads the data if it doesn't already exist.
    This code is adapted from the deeplearning.net tutorial on classifying
    MNIST data with Logistic Regression: http://deeplearning.net/tutorial/logreg.html#logreg
    :param path: (str) Path to where data lives or should be downloaded too
    :param filename: (str) name of mnist file to download or load
    :return: train_set, valid_set, test_set
    """
    dataset = '{}/{}'.format(path, filename)
    data_dir, data_file = os.path.split(dataset)

    if data_dir == "" and not os.path.isfile(dataset):
        new_path = os.path.join(os.path.split(__file__)[0], "..", "data", dataset)
        if os.path.isfile(new_path) or data_file == 'mnist.pkl.gz':
            dataset = new_path

    if (not os.path.isfile(dataset)) and data_file == 'mnist.pkl.gz':
        import urllib

        origin = ('http://www.iro.umontreal.ca/~lisa/deep/data/mnist/mnist.pkl.gz')
        print 'Downloading data from {}'.format(origin)
        urllib.urlretrieve(origin, dataset)

    print '... loading data'
    f = gzip.open(dataset, 'rb')
    train_set, valid_set, test_set = cPickle.load(f)
    f.close()

    X_train = train_set[0]
    y_train = train_set[1]
    if plot:
        for k in range(25):
            plt.subplot(5,5,k)
            plt.imshow(np.reshape(X_train[k,:], (28,28)))
            plt.axis('off')
            plt.title(y_train[k])

    return train_set, valid_set, test_set
Esempio n. 35
0
    def __call__(self,axis_on_or_off='off',use_lims=True,use_lims_ext=False):
        
        if 0:
            axis_on_or_off = axis_on_or_off.lower()
            if axis_on_or_off not in ['off','on']:
                raise ValueError(axis_on_or_off)
            if use_lims_ext:
                use_lims=False
            if use_lims_ext and use_lims:            
                msg="use_lims={0} AND ".format(use_lims)
                msg+="use_lims_ext={0} ".format(use_lims_ext)
                msg+="but at most one of these can be True."
                raise ValueError(msg)
            Nx=self.Nx
            Ny=self.Ny
#            plt.axis(axis_on_or_off)
            plt.axis('scaled')
            
#            if use_lims:
#                plt.xlim([0,Nx])
#                plt.ylim([0,Ny])
#            if use_lims_ext:
#                plt.xlim([0,Nx+1])
#                plt.ylim([0,Ny+1])
    
                 
            of.plt.axis_ij()  
            return
        
        axis_on_or_off = axis_on_or_off.lower()
        if axis_on_or_off not in ['off','on']:
            raise ValueError(axis_on_or_off)
        if use_lims_ext:
            use_lims=False
        if use_lims_ext and use_lims:            
            msg="use_lims={0} AND ".format(use_lims)
            msg+="use_lims_ext={0} ".format(use_lims_ext)
            msg+="but at most one of these can be True."
            raise ValueError(msg)
        Nx=self.Nx
        Ny=self.Ny
        plt.axis(axis_on_or_off)
        plt.axis('scaled')
        
        if use_lims:
            plt.xlim([0,Nx])
            plt.ylim([0,Ny])
        if use_lims_ext:
            plt.xlim([0,Nx+1])
            plt.ylim([0,Ny+1])

             
        of.plt.axis_ij()  
Esempio n. 36
0
def show_chan_mpl(code,
                  start_date,
                  end_date,
                  stock_days,
                  resample,
                  show_mpl=True,
                  least_init=3,
                  chanK_flag=False,
                  windows=20):
    def get_least_khl_num(resample, idx=0, init_num=3):
        # init = 3
        if init_num - idx > 0:
            initw = init_num - idx
        else:
            initw = 0
        return init_num if resample == 'd' else initw if resample == 'w' else init_num-idx-1 if init_num-idx-1 >0 else 0\
                if resample == 'm' else 5

    stock_code = code  # 股票代码
    # stock_code = '002176' # 股票代码
    # start_date = '2017-09-05'
    # start_date = None
    # end_date = '2017-10-12 15:00:00'  # 最后生成k线日期
    # end_date = None
    # stock_days = 60  # 看几天/分钟前的k线
    # resample = 'd'
    # resample = 'w'
    x_jizhun = 3  # window 周期 x轴展示的时间距离  5:日,40:30分钟, 48: 5分钟
    least_khl_num = get_least_khl_num(resample, init_num=least_init)
    # stock_frequency = '5m' # 1d日线, 30m 30分钟, 5m 5分钟,1m 1分钟
    stock_frequency = resample  # 1d日线, 30m 30分钟, 5m 5分钟,1m 1分钟 w:week
    # chanK_flag = chanK  # True 看缠论K线, False 看k线
    # chanK_flag = True  # True 看缠论K线, False 看k线
    show_mpl = show_mpl

    def con2Cxianduan(stock,
                      k_data,
                      chanK,
                      frsBiType,
                      biIdx,
                      end_date,
                      cur_ji=1,
                      recursion=False,
                      dl=None,
                      chanK_flag=False,
                      least_init=3):
        max_k_num = 4
        if cur_ji >= 6 or len(biIdx) == 0 or recursion:
            return biIdx
        idx = biIdx[len(biIdx) - 1]
        k_data_dts = list(k_data.index)
        st_data = chanK['enddate'][idx]
        if st_data not in k_data_dts:
            return biIdx
        # 重构次级别线段的点到本级别的chanK中

        def refactorXd(biIdx, xdIdxc, chanK, chanKc, cur_ji):
            new_biIdx = []
            biIdxB = biIdx[len(biIdx) - 1] if len(biIdx) > 0 else 0
            for xdIdxcn in xdIdxc:
                for chanKidx in range(len(chanK.index))[biIdxB:]:
                    if judge_day_bao(chanK, chanKidx, chanKc, xdIdxcn, cur_ji):
                        new_biIdx.append(chanKidx)
                        break
            return new_biIdx

        # 判断次级别日期是否被包含

        def judge_day_bao(chanK, chanKidx, chanKc, xdIdxcn, cur_ji):
            _end_date = chanK['enddate'][chanKidx] + datetime.timedelta(
                hours=15) if cur_ji == 1 else chanK['enddate'][chanKidx]
            _start_date = chanK.index[chanKidx] if chanKidx == 0\
                else chanK['enddate'][chanKidx - 1] + datetime.timedelta(minutes=1)
            return _start_date <= chanKc.index[xdIdxcn] <= _end_date

        # cur_ji = 1 #当前级别
        # 符合k线根数大于4根 1日级别, 2 30分钟, 3 5分钟, 4 一分钟
        if not recursion:
            resample = 'd' if cur_ji + 1 == 2 else '5m' if cur_ji + 1 == 3 else \
                'd' if cur_ji + 1 == 5 else 'w' if cur_ji + 1 == 6 else 'd'
        least_khl_num = get_least_khl_num(resample, 1, init_num=least_init)
        print "次级:%s st_data:%s k_data_dts:%s least_khl_num:%s" % (
            len(k_data_dts) - k_data_dts.index(st_data), str(st_data)[:10],
            len(k_data_dts), least_khl_num)
        if cur_ji + 1 != 2 and len(k_data_dts) - k_data_dts.index(
                st_data) >= least_khl_num + 1:
            frequency = '30m' if cur_ji + 1 == 2 else '5m' if cur_ji + 1 == 3 else '1m'
            # else:
            # frequency = 'd' if cur_ji+1==2 else '5m' if cur_ji+1==3 else \
            #                 'd' if cur_ji+1==5 else 'w' if cur_ji+1==6 else 'd'

            start_lastday = str(chanK.index[biIdx[-1]])[0:10]
            print "次级别为:%s cur_ji:%s %s" % (resample, cur_ji, start_lastday)
            # print [chanK.index[x] for x in biIdx]
            k_data_c, cname = get_quotes_tdx(stock,
                                             start=start_lastday,
                                             end=end_date,
                                             dl=dl,
                                             resample=resample)
            print k_data_c.index[0], k_data_c.index[-1]
            chanKc = chan.parse2ChanK(
                k_data_c, k_data_c.values) if chanK_flag else k_data_c
            fenTypesc, fenIdxc = chan.parse2ChanFen(chanKc, recursion=True)
            if len(fenTypesc) == 0:
                return biIdx
            biIdxc, frsBiTypec = chan.parse2ChanBi(
                fenTypesc, fenIdxc, chanKc, least_khl_num=least_khl_num - 1)
            if len(biIdxc) == 0:
                return biIdx
            print "biIdxc:", [round(k_data_c.high[x], 2) for x in biIdxc
                              ], [str(k_data_c.index[x])[:10] for x in biIdxc]
            xdIdxc, xdTypec = chan.parse2Xianduan(
                biIdxc, chanKc, least_windows=1 if least_khl_num > 0 else 0)
            biIdxc = con2Cxianduan(stock,
                                   k_data_c,
                                   chanKc,
                                   frsBiTypec,
                                   biIdxc,
                                   end_date,
                                   cur_ji + 1,
                                   recursion=True)
            print "xdIdxc:%s xdTypec:%s biIdxc:%s" % (xdIdxc, xdTypec, biIdxc)
            if len(xdIdxc) == 0:
                return biIdx
            # 连接线段位为上级别的bi
            lastBiType = frsBiType if len(biIdx) % 2 == 0 else -frsBiType
            if len(biIdx) == 0:
                return refactorXd(biIdx, xdIdxc, chanK, chanKc, cur_ji)
            lastbi = biIdx.pop()
            firstbic = xdIdxc.pop(0)
            # 同向连接
            if lastBiType == xdTypec:
                biIdx = biIdx + refactorXd(biIdx, xdIdxc, chanK, chanKc,
                                           cur_ji)
            # 逆向连接
            else:
                #             print '开始逆向连接'
                _mid = [lastbi] if (lastBiType == -1 and chanK['low'][lastbi] <= chanKc['low'][firstbic])\
                    or (lastBiType == 1 and chanK['high'][lastbi] >= chanKc['high'][firstbic]) else\
                    [chanKidx for chanKidx in range(len(chanK.index))[biIdx[len(biIdx) - 1]:]
                     if judge_day_bao(chanK, chanKidx, chanKc, firstbic, cur_ji)]
                biIdx = biIdx + [_mid[0]] + refactorXd(biIdx, xdIdxc, chanK,
                                                       chanKc, cur_ji)
            # print "次级:",len(biIdx),biIdx,[str(k_data_c.index[x])[:10] for x in biIdx]
        return biIdx

    def get_quotes_tdx(code,
                       start=None,
                       end=None,
                       dl=120,
                       resample='d',
                       show_name=True):

        quotes = tdd.get_tdx_append_now_df_api(
            code=stock_code, start=start, end=end,
            dl=dl).sort_index(ascending=True)
        if not resample == 'd' and resample in tdd.resample_dtype:
            quotes = tdd.get_tdx_stock_period_to_type(quotes,
                                                      period_day=resample)
        quotes.index = quotes.index.astype('datetime64')
        if show_name:
            if 'name' in quotes.columns:
                cname = quotes.name[0]
                # cname_g =cname
            else:
                dm = tdd.get_sina_data_df(code)
                if 'name' in dm.columns:
                    cname = dm.name[0]
                else:
                    cname = '-'
        else:
            cname = '-'
        if quotes is not None and len(quotes) > 0:
            quotes = quotes.loc[:, [
                'open', 'close', 'high', 'low', 'vol', 'amount'
            ]]
        else:
            # log.error("quotes is None check:%s"%(code))
            raise Exception("Code:%s error, df is None%s" % (code))
        return quotes, cname

    quotes, cname = get_quotes_tdx(stock_code,
                                   start_date,
                                   end_date,
                                   dl=stock_days,
                                   resample=resample,
                                   show_name=show_mpl)
    # quotes.rename(columns={'amount': 'money'}, inplace=True)
    # quotes.rename(columns={'vol': 'vol'}, inplace=True)
    # print quotes[-2:]
    # print quotes[:1]
    # 缠论k线
    #         open  close   high    low    volume      money
    # 2017-05-03  15.69  15.66  15.73  15.53  10557743  165075887
    # 2017-05-04  15.66  15.63  15.70  15.52   8343270  130330396
    # 2017-05-05  15.56  15.65  15.68  15.41  18384031  285966842
    # 2017-05-08  15.62  15.75  15.76  15.54  12598891  197310688
    quotes = chan.parse2ChanK(quotes, quotes.values) if chanK_flag else quotes
    # print quotes[:1].index
    # print quotes[-1:].index

    quotes[quotes['vol'] == 0] = np.nan
    quotes = quotes.dropna()
    Close = quotes['close']
    Open = quotes['open']
    High = quotes['high']
    Low = quotes['low']
    T0 = quotes.index.values
    # T0 =  mdates.date2num(T0)
    length = len(Close)

    initial_trend = "down"
    cur_ji = 1 if stock_frequency == 'd' else \
        2 if stock_frequency == '30m' else \
        3 if stock_frequency == '5m' else \
        4 if stock_frequency == 'w' else \
        5 if stock_frequency == 'm' else 6

    log.debug('======笔形成最后一段未完成段判断是否是次级别的走势形成笔=======:%s %s' %
              (stock_frequency, cur_ji))

    x_date_list = quotes.index.values.tolist()
    # for x_date in x_date_list:
    #     d = datetime.datetime.fromtimestamp(x_date/1000000000)
    #     print d.strftime("%Y-%m-%d %H:%M:%S.%f")
    # print x_date_list
    k_data = quotes
    k_values = k_data.values
    # 缠论k线
    chanK = quotes if chanK_flag else chan.parse2ChanK(
        k_data, k_values, chan_kdf=chanK_flag)

    fenTypes, fenIdx = chan.parse2ChanFen(chanK)
    # log.debug("code:%s fenTypes:%s fenIdx:%s k_data:%s" % (stock_code,fenTypes, fenIdx, len(k_data)))
    biIdx, frsBiType = chan.parse2ChanBi(fenTypes,
                                         fenIdx,
                                         chanK,
                                         least_khl_num=least_khl_num)
    # log.debug("biIdx1:%s chanK:%s" % (biIdx, len(chanK)))
    print("biIdx1:%s %s chanK:%s" %
          (biIdx, str(chanK.index.values[biIdx[-1]])[:10], len(chanK)))

    biIdx = con2Cxianduan(stock_code,
                          k_data,
                          chanK,
                          frsBiType,
                          biIdx,
                          end_date,
                          cur_ji,
                          least_init=least_init)
    # log.debug("biIdx2:%s chanK:%s" % (biIdx, len(biIdx)))
    chanKIdx = [(chanK.index[x]) for x in biIdx]

    if len(biIdx) == 0 and len(chanKIdx) == 0:
        print "BiIdx is None and chanKidx is None:%s" % (code)
        return None

    log.debug("con2Cxianduan:%s chanK:%s %s" %
              (biIdx, len(chanK), chanKIdx[-1] if len(chanKIdx) > 0 else None))

    # print quotes['close'].apply(lambda x:round(x,2))

    # print '股票代码', get_security_info(stock_code).display_name
    # print '股票代码', (stock_code), resample, least_khl_num
    #  3.得到分笔结果,计算坐标显示

    def plot_fenbi_seq(biIdx, frsBiType, plt=None, color=None):
        x_fenbi_seq = []
        y_fenbi_seq = []
        for i in range(len(biIdx)):
            if biIdx[i] is not None:
                fenType = -frsBiType if i % 2 == 0 else frsBiType
                #         dt = chanK['enddate'][biIdx[i]]
                # 缠论k线
                dt = chanK.index[biIdx[i]] if chanK_flag else chanK['enddate'][
                    biIdx[i]]
                # print i,k_data['high'][dt], k_data['low'][dt]
                time_long = long(
                    time.mktime(
                        (dt + datetime.timedelta(hours=8)).timetuple()) *
                    1000000000)
                # print x_date_list.index(time_long) if time_long in x_date_list else 0
                if fenType == 1:
                    if plt is not None:
                        if color is None:
                            plt.text(x_date_list.index(time_long),
                                     k_data['high'][dt],
                                     str(k_data['high'][dt]),
                                     ha='left',
                                     fontsize=12)
                        else:
                            col_v = color[0] if fenType > 0 else color[1]
                            plt.text(x_date_list.index(time_long),
                                     k_data['high'][dt],
                                     str(k_data['high'][dt]),
                                     ha='left',
                                     fontsize=12,
                                     bbox=dict(facecolor=col_v, alpha=0.5))

                    x_fenbi_seq.append(x_date_list.index(time_long))
                    y_fenbi_seq.append(k_data['high'][dt])
                if fenType == -1:
                    if plt is not None:
                        if color is None:
                            plt.text(x_date_list.index(time_long),
                                     k_data['low'][dt],
                                     str(k_data['low'][dt]),
                                     va='bottom',
                                     fontsize=12)
                        else:
                            col_v = color[0] if fenType > 0 else color[1]
                            plt.text(x_date_list.index(time_long),
                                     k_data['low'][dt],
                                     str(k_data['low'][dt]),
                                     va='bottom',
                                     fontsize=12,
                                     bbox=dict(facecolor=col_v, alpha=0.5))

                    x_fenbi_seq.append(x_date_list.index(time_long))
                    y_fenbi_seq.append(k_data['low'][dt])
    #             bottom_time = None
    #             for k_line_dto in m_line_dto.member_list[::-1]:
    #                 if k_line_dto.low == m_line_dto.low:
    #                     # get_price返回的日期,默认时间是08:00:00
    #                     bottom_time = k_line_dto.begin_time.strftime('%Y-%m-%d') +' 08:00:00'
    #                     break
    #             x_fenbi_seq.append(x_date_list.index(long(time.mktime(datetime.strptime(bottom_time, "%Y-%m-%d %H:%M:%S").timetuple())*1000000000)))
    #             y_fenbi_seq.append(m_line_dto.low)
        return x_fenbi_seq, y_fenbi_seq

    # print  T0[-len(T0):].astype(dt.date)
    T1 = T0[-len(T0):].astype(datetime.date) / 1000000000
    Ti = []
    if len(T0) / x_jizhun > 12:
        x_jizhun = len(T0) / 12
    for i in range(len(T0) / x_jizhun):
        # print "len(T0)/x_jizhun:",len(T0)/x_jizhun
        a = i * x_jizhun
        d = datetime.date.fromtimestamp(T1[a])
        # print d
        T2 = d.strftime('$%Y-%m-%d$')
        Ti.append(T2)
        # print tab
    d1 = datetime.date.fromtimestamp(T1[len(T0) - 1])
    d2 = (d1 + datetime.timedelta(days=1)).strftime('$%Y-%m-%d$')
    Ti.append(d2)

    ll = Low.min() * 0.97
    hh = High.max() * 1.03

    # ht = HoverTool(tooltips=[
    #             ("date", "@date"),
    #             ("open", "@open"),
    #             ("close", "@close"),
    #             ("high", "@high"),
    #             ("low", "@low"),
    #             ("volume", "@volume"),
    #             ("money", "@money"),])
    # TOOLS = [ht, WheelZoomTool(dimensions=['width']),\
    #          ResizeTool(), ResetTool(),\
    #          PanTool(dimensions=['width']), PreviewSaveTool()]
    if show_mpl:
        fig = plt.figure(figsize=(10, 6))
        ax1 = plt.subplot2grid((10, 1), (0, 0), rowspan=8, colspan=1)
        # ax1 = fig.add_subplot(2,1,1)
        #fig = plt.figure()
        #ax1 = plt.axes([0,0,3,2])

        X = np.array(range(0, length))
        pad_nan = X + nan

        # 计算上 下影线
        max_clop = Close.copy()
        max_clop[Close < Open] = Open[Close < Open]
        min_clop = Close.copy()
        min_clop[Close > Open] = Open[Close > Open]

        # 上影线
        line_up = np.array([High, max_clop, pad_nan])
        line_up = np.ravel(line_up, 'F')
        # 下影线
        line_down = np.array([Low, min_clop, pad_nan])
        line_down = np.ravel(line_down, 'F')

        # 计算上下影线对应的X坐标
        pad_nan = nan + X
        pad_X = np.array([X, X, X])
        pad_X = np.ravel(pad_X, 'F')

        # 画出实体部分,先画收盘价在上的部分
        up_cl = Close.copy()
        up_cl[Close <= Open] = nan
        up_op = Open.copy()
        up_op[Close <= Open] = nan

        down_cl = Close.copy()
        down_cl[Open <= Close] = nan
        down_op = Open.copy()
        down_op[Open <= Close] = nan

        even = Close.copy()
        even[Close != Open] = nan

        # 画出收红的实体部分
        pad_box_up = np.array([up_op, up_op, up_cl, up_cl, pad_nan])
        pad_box_up = np.ravel(pad_box_up, 'F')
        pad_box_down = np.array([down_cl, down_cl, down_op, down_op, pad_nan])
        pad_box_down = np.ravel(pad_box_down, 'F')
        pad_box_even = np.array([even, even, even, even, pad_nan])
        pad_box_even = np.ravel(pad_box_even, 'F')

        # X的nan可以不用与y一一对应
        X_left = X - 0.25
        X_right = X + 0.25
        box_X = np.array([X_left, X_right, X_right, X_left, pad_nan])
        # print box_X
        box_X = np.ravel(box_X, 'F')
        # print box_X
        # Close_handle=plt.plot(pad_X,line_up,color='k')

        vertices_up = np.array([box_X, pad_box_up]).T
        vertices_down = np.array([box_X, pad_box_down]).T
        vertices_even = np.array([box_X, pad_box_even]).T

        handle_box_up = mat.patches.Polygon(vertices_up, color='r', zorder=1)
        handle_box_down = mat.patches.Polygon(vertices_down,
                                              color='g',
                                              zorder=1)
        handle_box_even = mat.patches.Polygon(vertices_even,
                                              color='k',
                                              zorder=1)

        ax1.add_patch(handle_box_up)
        ax1.add_patch(handle_box_down)
        ax1.add_patch(handle_box_even)

        handle_line_up = mat.lines.Line2D(pad_X,
                                          line_up,
                                          color='k',
                                          linestyle='solid',
                                          zorder=0)
        handle_line_down = mat.lines.Line2D(pad_X,
                                            line_down,
                                            color='k',
                                            linestyle='solid',
                                            zorder=0)

        ax1.add_line(handle_line_up)
        ax1.add_line(handle_line_down)

        v = [0, length, Open.min() - 0.5, Open.max() + 0.5]
        plt.axis(v)

        ax1.set_xticks(np.linspace(-2, len(Close) + 2, len(Ti)))

        ax1.set_ylim(ll, hh)

        ax1.set_xticklabels(Ti)

        plt.grid(True)
        plt.setp(plt.gca().get_xticklabels(),
                 rotation=30,
                 horizontalalignment='right')
    '''
    以上代码拷贝自https://www.joinquant.com/post/1756
    感谢alpha-smart-dog

    K线图绘制完毕
    '''

    # print "biIdx:%s chankIdx:%s"%(biIdx,str(chanKIdx[-1])[:10])
    if show_mpl:
        x_fenbi_seq, y_fenbi_seq = plot_fenbi_seq(biIdx, frsBiType, plt)
        # plot_fenbi_seq(fenIdx,fenTypes[0], plt,color=['red','green'])
        plot_fenbi_seq(fenIdx, frsBiType, plt, color=['red', 'green'])
    else:
        x_fenbi_seq, y_fenbi_seq = plot_fenbi_seq(biIdx, frsBiType, plt=None)
        plot_fenbi_seq(fenIdx, frsBiType, plt=None, color=['red', 'green'])
    #  在原图基础上添加分笔蓝线
    inx_value = chanK.high.values
    inx_va = [round(inx_value[x], 2) for x in biIdx]
    log.debug("inx_va:%s count:%s" % (inx_va, len(quotes.high)))
    log.debug("yfenbi:%s count:%s" % ([round(y, 2)
                                       for y in y_fenbi_seq], len(chanK)))
    j_BiType = [
        -frsBiType if i % 2 == 0 else frsBiType for i in range(len(biIdx))
    ]
    BiType_s = j_BiType[-1] if len(j_BiType) > 0 else -2
    # bi_price = [str(chanK.low[idx]) if i % 2 == 0 else str(chanK.high[idx])  for i,idx in enumerate(biIdx)]
    # print ("笔     :%s %s"%(biIdx,bi_price))
    # fen_dt = [str(chanK.index[fenIdx[i]])[:10] if chanK_flag else str(chanK['enddate'][fenIdx[i]])[:10]for i in range(len(fenIdx))]
    fen_dt = [(chanK.index[fenIdx[i]]) if chanK_flag else
              (chanK['enddate'][fenIdx[i]]) for i in range(len(fenIdx))]
    if len(fenTypes) > 0:
        if fenTypes[0] == -1:
            # fen_price = [str(k_data.low[idx]) if i % 2 == 0 else str(k_data.high[idx])  for i,idx in enumerate(fen_dt)]
            low_fen = [idx for i, idx in enumerate(fen_dt) if i % 2 == 0]
            high_fen = [idx for i, idx in enumerate(fen_dt) if i % 2 <> 0]
        else:
            # fen_price = [str(k_data.high[idx]) if i % 2 == 0 else str(k_data.low[idx])  for i,idx in enumerate(fen_dt)]
            high_fen = [idx for i, idx in enumerate(fen_dt) if i % 2 == 0]
            low_fen = [idx for i, idx in enumerate(fen_dt) if i % 2 <> 0]
        # fen_duration =[fenIdx[i] - fenIdx[i -1 ] if i >0 else 0 for i,idx in enumerate(fenIdx)]
    else:
        # fen_price = fenTypes
        # fen_duration = fenTypes
        low_fen = []
        high_fen = []
    # fen_dt = [str(k_data.index[idx])[:10] for i,idx in enumerate(fenIdx)]
    # print low_fen,high_fen
    def dataframe_mode_round(df):
        roundlist = [1, 0]
        df_mode = []
        # df.high.cummin().value_counts()
        for i in roundlist:
            df_mode = df.apply(lambda x: round(x, i)).mode()
            if len(df_mode) > 0:
                break
        return df_mode

    kdl = k_data.loc[low_fen].low
    kdl_mode = dataframe_mode_round(kdl)
    kdh = k_data.loc[high_fen].high
    kdh_mode = dataframe_mode_round(kdh)

    print("kdl:%s" % (kdl.values))
    print("kdh:%s" % (kdh.values))
    print("kdl_mode:%s kdh_mode%s chanKidx:%s" %
          (kdl_mode.values, kdh_mode.values, str(chanKIdx[-1])[:10]))

    lastdf = k_data[k_data.index >= chanKIdx[-1]]
    if BiType_s == -1:
        keydf = lastdf[((lastdf.close >= kdl_mode.max()) &
                        (lastdf.low >= kdl_mode.max()))]
    elif BiType_s == 1:
        keydf = lastdf[((lastdf.close >= kdh_mode.max()) &
                        (lastdf.high >= kdh_mode.min()))]
    else:
        keydf = lastdf[((lastdf.close >= kdh_mode.max()) &
                        (lastdf.high >= kdh_mode.min())) |
                       ((lastdf.close <= kdl_mode.min()) &
                        (lastdf.low <= kdl_mode.min()))]
    print("BiType_s:%s keydf:%s key:%s" %
          (BiType_s, None if len(keydf) == 0 else str(
              keydf.index.values[0])[:10], len(keydf)))

    # return BiType_s,None if len(keydf) == 0 else str(keydf.index.values[0])[:10],len(keydf)
    # import ipdb;ipdb.set_trace()

    log.debug("Fentype:%s " % (fenTypes))
    log.debug("fenIdx:%s " % (fenIdx))
    # print ("fen_duration:%s "%(fen_duration))
    # print ("fen_price:%s "%(fen_price))
    # print ("fendt:%s "%(fen_dt))

    print("BiType :%s frsBiType:%s" % (j_BiType, frsBiType))

    if len(j_BiType) > 0:
        if j_BiType[0] == -1:
            tb_price = [
                str(quotes.low[idx]) if i % 2 == 0 else str(quotes.high[idx])
                for i, idx in enumerate(x_fenbi_seq)
            ]
        else:
            tb_price = [
                str(quotes.high[idx]) if i % 2 == 0 else str(quotes.low[idx])
                for i, idx in enumerate(x_fenbi_seq)
            ]
        tb_duration = [
            x_fenbi_seq[i] - x_fenbi_seq[i - 1] if i > 0 else 0
            for i, idx in enumerate(x_fenbi_seq)
        ]

    else:
        tb_price = j_BiType
        tb_duration = j_BiType
    print "图笔 :", x_fenbi_seq, tb_price
    print "图笔dura :", tb_duration

    # 线段画到笔上
    xdIdxs, xfenTypes = chan.parse2ChanXD(frsBiType, biIdx, chanK)
    print '线段', xdIdxs, xfenTypes
    x_xd_seq = []
    y_xd_seq = []
    for i in range(len(xdIdxs)):
        if xdIdxs[i] is not None:
            fenType = xfenTypes[i]
            #         dt = chanK['enddate'][biIdx[i]]
            # 缠论k线
            dt = chanK.index[xdIdxs[i]] if chanK_flag else chanK['enddate'][
                xdIdxs[i]]
            #         print k_data['high'][dt], k_data['low'][dt]
            time_long = long(
                time.mktime((dt + datetime.timedelta(hours=8)).timetuple()) *
                1000000000)
            #         print x_date_list.index(time_long) if time_long in x_date_list else 0
            if fenType == 1:
                x_xd_seq.append(x_date_list.index(time_long))
                y_xd_seq.append(k_data['high'][dt])
            if fenType == -1:
                x_xd_seq.append(x_date_list.index(time_long))
                y_xd_seq.append(k_data['low'][dt])
    #             bottom_time = None
    #             for k_line_dto in m_line_dto.member_list[::-1]:
    #                 if k_line_dto.low == m_line_dto.low:
    #                     # get_price返回的日期,默认时间是08:00:00
    #                     bottom_time = k_line_dto.begin_time.strftime('%Y-%m-%d') +' 08:00:00'
    #                     break
    #             x_fenbi_seq.append(x_date_list.index(long(time.mktime(datetime.strptime(bottom_time, "%Y-%m-%d %H:%M:%S").timetuple())*1000000000)))
    #             y_fenbi_seq.append(m_line_dto.low)

    #  在原图基础上添加分笔蓝线
    print("线段   :%s" % (x_xd_seq))
    print("笔值  :%s" % ([str(x) for x in (y_xd_seq)]))
    # Y_hat = X * b + a

    if show_mpl:
        plt.plot(x_fenbi_seq, y_fenbi_seq)
        plt.legend([stock_code, cname], loc=0)
        plt.title(stock_code + " | " + cname + " | " +
                  str(quotes.index[-1])[:10],
                  fontsize=14)

        plt.plot(x_xd_seq, y_xd_seq)
        if len(quotes) > windows:
            roll_mean = pd.rolling_mean(quotes.close, window=windows)
            plt.plot(roll_mean, 'r')
        zp = zoompan.ZoomPan()
        figZoom = zp.zoom_factory(ax1, base_scale=1.1)
        figPan = zp.pan_factory(ax1)
        '''#subplot2 bar
        ax2 = plt.subplot2grid((10, 1), (8, 0), rowspan=2, colspan=1)
        # ax2.plot(quotes.vol)
        # ax2.set_xticks(np.linspace(-2, len(quotes) + 2, len(Ti)))
        ll = min(quotes.vol.values.tolist()) * 0.97
        hh = max(quotes.vol.values.tolist()) * 1.03
        ax2.set_ylim(ll, hh)
        # ax2.set_xticklabels(Ti)
        # plt.hist(quotes.vol, histtype='bar', rwidth=0.8)
        plt.bar(x_date_list,quotes.vol, label="Volume", color='b')
        '''

        #画Volume no tight_layout()
        '''
        pad = 0.25
        yl = ax1.get_ylim()
        ax1.set_ylim(yl[0]-(yl[1]-yl[0])*pad,yl[1])
        ax2 = ax1.twinx()
        ax2.set_position(mat.transforms.Bbox([[0.125,0.1],[0.9,0.32]]))
        volume = np.asarray(quotes.amount)
        pos = quotes['open']-quotes['close']<0
        neg = quotes['open']-quotes['close']>=0
        idx = quotes.reset_index().index
        ax2.bar(idx[pos],volume[pos],color='red',width=1,align='center')
        ax2.bar(idx[neg],volume[neg],color='green',width=1,align='center')
        yticks = ax2.get_yticks()
        ax2.set_yticks(yticks[::3])        
        '''

        # same sharex
        plt.subplots_adjust(left=0.05,
                            bottom=0.08,
                            right=0.95,
                            top=0.95,
                            wspace=0.15,
                            hspace=0.00)
        plt.setp(ax1.get_xticklabels(), visible=False)
        yl = ax1.get_ylim()
        # ax2 = plt.subplot(212, sharex=ax1)
        ax2 = plt.subplot2grid((10, 1), (8, 0),
                               rowspan=2,
                               colspan=1,
                               sharex=ax1)
        # ax2.set_position(mat.transforms.Bbox([[0.125,0.1],[0.9,0.32]]))
        volume = np.asarray(quotes.amount)
        pos = quotes['open'] - quotes['close'] < 0
        neg = quotes['open'] - quotes['close'] >= 0
        idx = quotes.reset_index().index
        ax2.bar(idx[pos], volume[pos], color='red', width=1, align='center')
        ax2.bar(idx[neg], volume[neg], color='green', width=1, align='center')
        yticks = ax2.get_yticks()
        ax2.set_yticks(yticks[::3])
        # plt.tight_layout()
        # plt.subplots_adjust(hspace=0.00, bottom=0.08)
        plt.xticks(rotation=15, horizontalalignment='center')
        # plt.bar(x_date_list,quotes.vol, label="Volume", color='b')

        # quotes['vol'].plot(kind='bar', ax=ax2, color='g', alpha=0.1)
        # ax2.set_ylim([0, ax2.get_ylim()[1] * 2])
        # plt.gcf().subplots_adjust(bottom=0.15)
        # fig.subplots_adjust(left=0.05, bottom=0.08, right=0.95, top=0.95, wspace=0.15, hspace=0.25)
        #scale the x-axis tight
        # ax2.set_xlim(min(x_date_list),max(x_date_list))
        # the y-ticks for the bar were too dense, keep only every third one
        # plt.grid(True)
        # plt.xticks(rotation=30, horizontalalignment='center')
        # plt.setp( axs[1].xaxis.get_majorticklabels(), rotation=70 )
        # plt.legend()
        # plt.tight_layout()
        # plt.draw()
        # plt.show()
        plt.show(block=False)
Esempio n. 37
0
def bars(scheme, verbose=None, norm='load'):
    """
    Figure to compare link proportional and usage proportional for a single
    scheme and put them in ./sensitivity/figures/scheme/
    """
    # Load data and results
    F = abs(np.load('./results/' + scheme + '-flows.npy'))
    quantiles = np.load('./results/quantiles_' + scheme + '_' + str(lapse) + '.npy')
    nNodes = 30

    names = node_namer(N)  # array of node labels
    links = range(len(F))
    nodes = np.linspace(0.5, 2 * nNodes - 1.5, nNodes)
    nodes_shift = nodes + .5

    for direction in directions:
        N_usages = np.load('./results/Node_contrib_' + scheme + '_' + direction + '_' + str(lapse) + '.npy')

        # Compare node transmission to mean load
        if verbose:
            print('Plotting node comparison - ' + scheme + ' - ' + direction)
        # sort node names for x-axis
        Total_usage = np.sum(N_usages, 1)
        node_ids = np.array(range(len(N))).reshape((len(N), 1))
        node_mean_load = [n.mean for n in N]

        # Vector for normalisation
        if norm == 'cap':
            normVec = np.ones(nNodes) * sum(quantiles)
        else:
            normVec = node_mean_load

        # Calculate node proportional
        EU_load = np.sum(node_mean_load)
        Total_caps = sum(quantiles)
        Node_proportional = node_mean_load / EU_load * Total_caps / normVec
        Node_proportional = np.reshape(Node_proportional, (len(Node_proportional), 1))

        # Calculate link proportional
        link_proportional = linkProportional(N, link_dic, quantiles)
        link_proportional = [link_proportional[i] / normVec[i] for i in range(nNodes)]

        # Calculate old usage proportional
        if direction == 'combined':
            old_usages = np.load('./linkcolouring/old_' + scheme + '_copper_link_mix_import_all_alpha=same.npy')
            old_usages += np.load('./linkcolouring/old_' + scheme + '_copper_link_mix_export_all_alpha=same.npy')
        else:
            old_usages = np.load('./linkcolouring/old_' + scheme + '_copper_link_mix_' + direction + '_all_alpha=same.npy')
        avg_node_usage = np.sum(np.sum(old_usages, axis=2), axis=0) / 70128.
        avg_EU_usage = np.sum(np.sum(np.sum(old_usages, axis=2), axis=0)) / 70128.
        avg_node_usage /= avg_EU_usage
        avg_node_usage /= normVec
        avg_node_usage *= 500000

        # Calculate usage and sort countries by mean load
        normed_usage = Total_usage / normVec
        normed_usage = np.reshape(normed_usage, (len(normed_usage), 1))
        node_mean_load = np.reshape(node_mean_load, (len(node_mean_load), 1))
        data = np.hstack([normed_usage, node_ids, node_mean_load, link_proportional, Node_proportional])
        data_sort = data[data[:, 2].argsort()]
        names_sort = [names[int(i)] for i in data_sort[:, 1]]
        # flip order so largest is first
        names_sort = names_sort[::-1]
        link_proportional = data_sort[:, 3][::-1]
        Node_proportional = data_sort[:, 4][::-1]
        data_sort = data_sort[:, 0][::-1]

        plt.figure(figsize=(10, 4), facecolor='w', edgecolor='k')
        ax = plt.subplot(111)
        green = '#009900'
        blue = '#000099'

        # Plot node proportional
        plt.rc('lines', lw=2)
        plt.rc('lines', dash_capstyle='round')
        plt.plot(np.linspace(0, len(N) * 2 + 2, len(N)), Node_proportional, '--k')
        # Plot link proportional
        #plt.bar(nodes, link_proportional, width=1, color=green, edgecolor='none')
        # Plot old usage proportional
        plt.bar(nodes, avg_node_usage[loadOrder], width=1, color=green, edgecolor='none')
        # Plot usage proportional
        plt.bar(nodes_shift, data_sort, width=1, color=blue, edgecolor='none')

        # Magic with ticks and labels
        ax.set_xticks(np.linspace(2, len(N) * 2 + 2, len(N) + 1))
        ax.set_xticklabels(names_sort, rotation=60, ha="right", va="top", fontsize=10.5)

        ax.xaxis.grid(False)
        ax.xaxis.set_tick_params(width=0)
        if norm == 'cap':
            ax.set_ylabel(r'$M_n/ \mathcal{K}^T$')
        else:
            # ax.set_ylabel(r'Network usage [MW$_T$/MW$_L$]')
            ax.set_ylabel(r'$M_n/\left\langle L_n \right\rangle$')
        maxes = [max(avg_node_usage), max(data_sort)]
        plt.axis([0, nNodes * 2 + .5, 0, 1.15 * max(maxes)])

        # Legend
        artists = [plt.Line2D([0, 0], [0, 0], ls='dashed', lw=2.0, c='k'), plt.Rectangle((0, 0), 0, 0, ec=green, fc=green), plt.Rectangle((0, 0), 0, 0, ec=blue, fc=blue)]
        LABS = ['$M^1$', '$M^{3}_{old}$', '$M^{3}_{new}$']
        leg = plt.legend(artists, LABS, loc='upper left', ncol=len(artists), columnspacing=0.6, borderpad=0.4, borderaxespad=0.0, handletextpad=0.2, handleheight=1.2)
        leg.get_frame().set_alpha(0)
        leg.get_frame().set_edgecolor('white')
        ltext = leg.get_texts()
        plt.setp(ltext, fontsize=12)    # the legend text fontsize

        plt.savefig(figPath + scheme + '/network-usage-' + direction + '-' + norm + '.png', bbox_inches='tight')
        if verbose:
            print('Saved figures to ./figures/compareUsage/' + scheme + '/network-usage-' + direction + '-' + norm + '.png')
Esempio n. 38
0
        yy = yy.astype(np.float)
       
        dimx = float(dimx)
        dimy=float(dimy)        
        nTimesInX = np.floor(xx / M).max() + 1
 
        seg_cpu = np.floor(yy / M)  * nTimesInX + np.floor(xx / M)
        seg_cpu = seg_cpu.astype(np.int32)
        return seg_cpu


def random_permute_seg(seg):
    p=np.random.permutation(seg.max()+1)   
    seg2 = np.zeros_like(seg)
    for c in range(seg.max()+1):             
        seg2[seg==c]=p[c]
    return seg2.astype(np.int32)


if __name__ == "__main__":  
    tic = time.clock()
    seg= get_init_seg(500, 500,17,True)      
#    seg= get_init_seg(512, 512,50,False)  
    toc = time.clock()
    print toc-tic 
    print 'k = ', seg.max()+1
    plt.figure(1)
    plt.clf()  
    plt.imshow(seg,interpolation="Nearest")
    plt.axis('scaled') 
Esempio n. 39
0
def plot_variable(u, name, direc, cmap=cmaps.parula, scale='lin', numLvls=100,
                  umin=None, umax=None, \
                  tp=False, \
                  tpAlpha=1.0, show=False,
                  hide_ax_tick_labels=False, label_axes=True, title='',
                  use_colorbar=True, hide_axis=False, colorbar_loc='right'):
  """
    show -- whether to show the plot on the screen 
    tp -- show triangle
    cmap -- colors:
      gist_yarg - grey 
      gnuplot, hsv, gist_ncar
      jet - typical colors
  """
  mesh = u.function_space().mesh()
  v    = u.compute_vertex_values(mesh)
  x    = mesh.coordinates()[:,0]
  y    = mesh.coordinates()[:,1]
  t    = mesh.cells()
  

  if not os.path.isdir( direc ): 
      os.makedirs(direc)
 
  full_path = os.path.join(direc, name)

  if umin != None:
    vmin = umin
  else:
    vmin = v.min()
  if umax != None:
    vmax = umax
  else:
    vmax = v.max()

  # countour levels :
  if scale == 'log':
    v[v < vmin] = vmin + 1e-12
    v[v > vmax] = vmax - 1e-12
    from matplotlib.ticker import LogFormatter
    levels      = np.logspace(np.log10(vmin), np.log10(vmax), numLvls)
    
    tick_numLvls = min( numLvls, 8 )
    tick_levels = np.logspace(np.log10(vmin), np.log10(vmax), tick_numLvls)
    
    formatter   = LogFormatter(10, labelOnlyBase=False)
    norm        = colors.LogNorm()

  elif scale == 'lin':
    v[v < vmin] = vmin + 1e-12
    v[v > vmax] = vmax - 1e-12
    from matplotlib.ticker import ScalarFormatter
    levels    = np.linspace(vmin, vmax, numLvls)
    
    tick_numLvls = min( numLvls, 8 )
    tick_levels = np.linspace(vmin, vmax, tick_numLvls)
    
    formatter = ScalarFormatter()
    norm      = None

  elif scale == 'bool':
    from matplotlib.ticker import ScalarFormatter
    levels    = [0, 1, 2]
    formatter = ScalarFormatter()
    norm      = None

  fig = plt.figure(figsize=(5,5))
  ax  = fig.add_subplot(111)

  c = ax.tricontourf(x, y, t, v, levels=levels, norm=norm,
                     cmap=plt.get_cmap(cmap))
  plt.axis('equal')

  if tp == True:
    p = ax.triplot(x, y, t, '-', lw=0.2, alpha=tpAlpha)
  ax.set_xlim([x.min(), x.max()])
  ax.set_ylim([y.min(), y.max()])
  if label_axes:
    ax.set_xlabel(r'$x$')
    ax.set_ylabel(r'$y$')
  if hide_ax_tick_labels:
    ax.set_xticklabels([])
    ax.set_yticklabels([])
  if hide_axis:
    plt.axis('off')

  # include colorbar :
  if scale != 'bool' and use_colorbar:
    divider = make_axes_locatable(plt.gca())
    cax  = divider.append_axes(colorbar_loc, "5%", pad="3%")
    cbar = plt.colorbar(c, cax=cax, format=formatter,
                        ticks=tick_levels)
    tit = plt.title(title)

  if use_colorbar:
    plt.tight_layout(rect=[.03,.03,0.97,0.97])
  else:
    plt.tight_layout()
  plt.savefig( full_path + '.eps', dpi=300)
  if show:
    plt.show()
  plt.close(fig)
Esempio n. 40
0
def freqz(ofb, length_sec=6, ffilt=False, plot=True):
    """Computes the IR and FRF of a digital filter.

    Parameters
    ----------
    ofb : FractionalOctaveFilterbank object
    length_sec : scalar
        Length of the impulse response test signal.
    ffilt : bool
        Backard forward filtering. Effectiv order is doubled then.
    plot : bool
        Create Plots or not.

    Returns
    -------
    x : ndarray
        Impulse test signal.
    y : ndarray
        Impules responses signal of the filters.
    f : ndarray
        Frequency vector for the FRF.
    Y : Frequency response (FRF) of the summed filters.

    """
    from pylab import np, plt, fft, fftfreq
    x = np.zeros(length_sec*ofb.sample_rate)
    x[length_sec*ofb.sample_rate/2] = 0.9999
    if not ffilt:
        y, states = ofb.filter_mimo_c(x)
        y = y[:, :, 0]
    else:
        y, states = ofb.filter(x, ffilt=ffilt)
    s = np.zeros(len(x))
    for i in range(y.shape[1]):
        s += y[:, i]
        X = fft(y[:, i])  # sampled frequency response
        f = fftfreq(len(x), 1.0/ofb.sample_rate)
        if plot:
            fig = plt.figure('freqz filter bank')
            plt.grid(True)
            plt.axis([0, ofb.sample_rate / 2, -100, 5])
            L = 20*np.log10(np.abs(X[:len(x)/2]) + 1e-17)
            plt.semilogx(f[:len(x)/2], L, lw=0.5)
            plt.hold(True)

    Y = fft(s)
    if plot:
        plt.title('freqz() Filter Bank')
        plt.xlabel('Frequency / Hz')
        plt.ylabel('Damping /dB(FS)')
        plt.xlim((10, ofb.sample_rate/2))
        plt.hold(False)


        plt.figure('sum')
        L = 20*np.log10(np.abs(Y[:len(x)/2]) + 1e-17)
        plt.semilogx(f[:len(x)/2], L, lw=0.5)
        level_input = 10*np.log10(np.sum(x**2))
        level_output = 10*np.log10(np.sum(s**2))
        plt.axis([5, ofb.sample_rate/1.8, -50, 5])
        plt.grid(True)
        plt.title('Sum of filter bands')
        plt.xlabel('Frequency / Hz')
        plt.ylabel('Damping /dB(FS)')

        print('sum level', level_output, level_input)

    return x, y, f, Y
Esempio n. 41
0
            stds = np.std(error, axis=1)
            nodeMean = np.mean(means)
            weightedNodeMean = np.mean(weightedMeans)

            x = np.linspace(.5, 29.5, 30)
            if mode == 'linear': title = 'localised'
            if mode == 'square': title = 'synchronised'
            plt.figure()
            ax = plt.subplot()
            plt.errorbar(x, means[loadOrder], yerr=stds * 0, marker='s', lw=0, elinewidth=1)
            plt.plot([0, 30], [nodeMean, nodeMean], '--k', lw=2)
            plt.title(title + ' ' + direction + ', sum of colors vs. total network usage')
            plt.ylabel('Mean link deviation in %')
            ax.set_xticks(np.linspace(1, 30, 30))
            ax.set_xticklabels(loadNames, rotation=60, ha="right", va="top", fontsize=9)
            plt.axis([0, 30, min(means) - (.1 * min(means)), max(means) + (.1 * max(means))])
            plt.legend(('individual country', 'mean of countries'), loc=2, ncol=2)
            plt.savefig(figPath + 'error/' + title + '_' + direction + '.pdf', bbox_inches='tight')

            plt.figure()
            ax = plt.subplot()
            plt.errorbar(x, weightedMeans[loadOrder], yerr=stds * 0, marker='s', lw=0, elinewidth=1)
            plt.plot([0, 30], [weightedNodeMean, weightedNodeMean], '--k', lw=2)
            plt.title(title + ' ' + direction + ', sum of colors vs. total network usage')
            plt.ylabel(r'Weighed mean link deviation in % normalised to $\left\langle \mathcal{K}^T \right\rangle$')
            ax.set_xticks(np.linspace(1, 30, 30))
            ax.set_xticklabels(loadNames, rotation=60, ha="right", va="top", fontsize=9)
            plt.axis([0, 30, min(weightedMeans) - (.1 * min(weightedMeans)), max(weightedMeans) + (.1 * max(weightedMeans))])
            plt.legend(('individual country', 'mean of countries'), loc=2, ncol=2)
            plt.savefig(figPath + 'error/' + 'weighted_' + title + '_' + direction + '.pdf', bbox_inches='tight')
            plt.close()
Esempio n. 42
0
def example(tess='I',
            base=[2, 2, 2],
            nLevels=1,
            zero_v_across_bdry=[True] * 3,
            vol_preserve=False,
            nRows=100,
            nCols=100,
            nSlices=100,
            use_mayavi=False,
            eval_v=False,
            eval_cell_idx=False):

    tw = TransformWrapper(nRows=nRows,
                          nCols=nCols,
                          nSlices=nSlices,
                          nLevels=nLevels,
                          base=base,
                          zero_v_across_bdry=zero_v_across_bdry,
                          tess=tess,
                          valid_outside=False,
                          only_local=False,
                          vol_preserve=vol_preserve)

    print_iterable(tw.ms.L_cpa_space)
    print tw

    # create some fake 3D image.
    img = np.zeros((nCols, nRows, nSlices), dtype=np.float64)

    #    img[:]=np.random.random_integers(0,255,img.shape)

    # Fill the image with the x coordinates as fake values
    img[:] = tw.pts_src_dense.cpu[:, 0].reshape(img.shape)

    img0 = CpuGpuArray(img.copy().astype(np.float64))
    img_wrapped_fwd = CpuGpuArray.zeros_like(img0)
    img_wrapped_inv = CpuGpuArray.zeros_like(img0)

    seed = 0
    np.random.seed(seed)

    ms_Avees = tw.get_zeros_PA_all_levels()
    ms_theta = tw.get_zeros_theta_all_levels()

    if tess == 'II':
        for level in range(tw.ms.nLevels):
            cpa_space = tw.ms.L_cpa_space[level]
            Avees = ms_Avees[level]
            #            1/0
            if level == 0:
                tw.sample_gaussian(level,
                                   ms_Avees[level],
                                   ms_theta[level],
                                   mu=None)  # zero mean
                #                ms_theta[level].fill(0)
                #                ms_theta[level][-4]=10
                cpa_space.theta2Avees(theta=ms_theta[level], Avees=Avees)
            else:
                tw.sample_from_the_ms_prior_coarse2fine_one_level(
                    ms_Avees, ms_theta, level_fine=level)
    else:
        # For tess='I' in 3D, I have yet to implement the coarse-to-fine sampling.
        for level in range(tw.ms.nLevels):
            cpa_space = tw.ms.L_cpa_space[level]
            velTess = cpa_space.zeros_velTess()
            ms_Avees[level].fill(0)
            Avees = ms_Avees[level]
            tw.sample_gaussian_velTess(level, Avees, velTess, mu=None)

    print 'img shape:', img0.shape

    # You don't have use these. You can use any 2d array
    # that has 3 columns (regardless of the number of rows).
    pts_src = tw.pts_src_dense
    pts_src = CpuGpuArray(pts_src.cpu[::1].copy())

    # Create a buffer for the output
    pts_fwd = CpuGpuArray.zeros_like(pts_src)
    pts_inv = CpuGpuArray.zeros_like(pts_src)

    for level in range(tw.ms.nLevels):
        tw.update_pat_from_Avees(ms_Avees[level], level)

        if eval_v:
            # Evaluating the velocity field.
            # You don't have to do it in unless you want to visualize v.
            # (when evaluting the treansformation, v will be internally
            # evaluated anyway -- but its result won't be stored)
            tw.calc_v(level=level)

        print 'level', level
        print
        print 'number of points:', len(pts_src)
        print 'number of cells:', tw.ms.L_cpa_space[level].nC

        # optional, if you want to time it
        timer_gpu_T_fwd = GpuTimer()

        # Simply calling
        #   tic = time.clock()
        # and then
        #   tic = time.clock()
        # won't work.
        # In fact, most likely you will get that toc-tic is zero.
        # You need to use the GpuTimer object. When you do that,
        # one side effect is that suddenly the toc-tic from above will
        # give you a more realistic result.

        tic = time.clock()
        timer_gpu_T_fwd.tic()
        tw.calc_T_fwd(pts_src, pts_fwd, level=level)
        timer_gpu_T_fwd.toc()
        toc = time.clock()

        print 'Time, in sec, for computing T_fwd:'
        print timer_gpu_T_fwd.secs
        print toc - tic  # likely to be 0, unless you also used the GpuTimer.

        # You can also time the inv of course. Results will be similar.
        tw.calc_T_inv(pts_src, pts_inv, level=level)

        if eval_cell_idx:
            # cell_idx is computed here just for display.
            cell_idx = CpuGpuArray.zeros(len(pts_src), dtype=np.int32)
            tw.calc_cell_idx(pts_src, cell_idx, level)

        tw.remap_fwd(pts_inv, img0, img_wrapped_fwd)
        tw.remap_inv(pts_fwd, img0, img_wrapped_inv)

        # For display purposes, do gpu2cpu transfer
        print "For display purposes, do gpu2cpu transfer"

        if eval_cell_idx:
            cell_idx.gpu2cpu()
        if eval_v:
            tw.v_dense.gpu2cpu()
        pts_fwd.gpu2cpu()
        pts_inv.gpu2cpu()
        img_wrapped_fwd.gpu2cpu()
        img_wrapped_inv.gpu2cpu()

        if use_mayavi:
            ds = 1  # downsampling factor
            i = 17
            pts_src_grid = pts_src.cpu.reshape(tw.nRows, tw.nCols, -1, 3)
            pts_src_ds = pts_src_grid[::ds, ::ds, i].reshape(-1, 3)
            pts_fwd_grid = pts_fwd.cpu.reshape(tw.nRows, tw.nCols, -1, 3)
            pts_fwd_ds = pts_fwd_grid[::ds, ::ds, i].reshape(-1, 3)
            pts_inv_grid = pts_inv.cpu.reshape(tw.nRows, tw.nCols, -1, 3)
            pts_inv_ds = pts_inv_grid[::ds, ::ds, i].reshape(-1, 3)

            from of.my_mayavi import *
            mayavi_mlab_close_all()
            mayavi_mlab_figure_bgwhite('src')
            x, y, z = pts_src_ds.T
            mayavi_mlab_plot3d(x, y, z)
            mayavi_mlab_figure_bgwhite('fwd')
            x, y, z = pts_fwd_ds.T
            mayavi_mlab_plot3d(x, y, z)

        figsize = (12, 12)
        plt.figure(figsize=figsize)
        i = 17  # some slice
        plt.subplot(131)
        plt.imshow(img0.cpu[:, :, i].astype(np.uint8), interpolation="Nearest")
        plt.title('slice from img')
        plt.subplot(132)
        plt.imshow(img_wrapped_fwd.cpu[:, :, i].astype(np.uint8),
                   interpolation="Nearest")
        plt.axis('off')
        plt.title('slice from fwd(img)')
        plt.subplot(133)
        plt.imshow(img_wrapped_inv.cpu[:, :, i].astype(np.uint8),
                   interpolation="Nearest")
        plt.axis('off')
        plt.title('slice from inv(img)')

    if 0:  # debug

        cpa_space = tw.ms.L_cpa_space[level]
        if eval_v:
            vx = tw.v_dense.cpu[:, 0].reshape(
                cpa_space.x_dense_grid_img.shape[1:])
            vy = tw.v_dense.cpu[:, 1].reshape(
                cpa_space.x_dense_grid_img.shape[1:])
            vz = tw.v_dense.cpu[:, 2].reshape(
                cpa_space.x_dense_grid_img.shape[1:])

            plt.figure()
            plt.imshow(vz[:, :, 17], interpolation="Nearest")
            plt.colorbar()
            plt.title('vz in some slice')

    return tw
Esempio n. 43
0
def freqz(ofb, length_sec=6, ffilt=False, plot=True):
    """Computes the IR and FRF of a digital filter.

    Parameters
    ----------
    ofb : FractionalOctaveFilterbank object
    length_sec : scalar
        Length of the impulse response test signal.
    ffilt : bool
        Backard forward filtering. Effectiv order is doubled then.
    plot : bool
        Create Plots or not.

    Returns
    -------
    x : ndarray
        Impulse test signal.
    y : ndarray
        Impules responses signal of the filters.
    f : ndarray
        Frequency vector for the FRF.
    Y : Frequency response (FRF) of the summed filters.

    """
    from pylab import np, plt, fft, fftfreq
    x = np.zeros(length_sec * ofb.sample_rate)
    x[int(length_sec * ofb.sample_rate / 2)] = 0.9999

    if not ffilt:
        y, states = ofb.filter_mimo_c(x)
        y = y[:, :, 0]
    else:
        y, states = ofb.filter(x, ffilt=ffilt)
    s = np.zeros(len(x))
    len_x_2 = int(len(x) / 2)
    for i in range(y.shape[1]):
        s += y[:, i]
        X = fft(y[:, i])  # sampled frequency response
        f = fftfreq(len(x), 1.0 / ofb.sample_rate)
        if plot:
            fig = plt.figure('freqz filter bank')
            plt.grid(True)
            plt.axis([0, ofb.sample_rate / 2, -100, 5])

            L = 20 * np.log10(np.abs(X[:len_x_2]) + 1e-17)
            plt.semilogx(f[:len_x_2], L, lw=0.5)

    Y = fft(s)
    if plot:
        plt.title(u'freqz() Filter Bank')
        plt.xlabel('Frequency / Hz')
        plt.ylabel(u'Damping /dB(FS)')
        plt.xlim((10, ofb.sample_rate / 2))
        plt.figure('sum')
        L = 20 * np.log10(np.abs(Y[:len_x_2]) + 1e-17)
        plt.semilogx(f[:len_x_2], L, lw=0.5)

        level_input = 10 * np.log10(np.sum(x**2))
        level_output = 10 * np.log10(np.sum(s**2))
        plt.axis([5, ofb.sample_rate / 1.8, -50, 5])
        plt.grid(True)
        plt.title('Sum of filter bands')
        plt.xlabel('Frequency / Hz')
        plt.ylabel(u'Damping /dB(FS)')

        print('sum level', level_output, level_input)

    return x, y, f, Y
Esempio n. 44
0
def usagePlotter(direction):
    """
    Scatter plots of nodes' import/export usages of links saved to ./figures/.
    """
    legendNames = ['diagonal', r'$99\%$ quantile', 'avg. usage', 'usage']
    modes = ['linear', 'square']
    modeNames = ['localised', 'synchronised']
    names = ['usageS', 'usageW']
    colors = ['#ffa500', '#0000aa']
    for mode in modes:
        N = EU_Nodes_usage(mode + '.npz')
        F = np.load('./results/' + mode + '-flows.npy')
        Fmax = np.max(np.abs(F), 1)
        nodes = len(N)
        links = F.shape[0]

        usageS = np.load(outPath + mode + '_' + direction + '_' + 'usageS.npy')
        usageW = np.load(outPath + mode + '_' + direction + '_' + 'usageW.npy')
        if mode == 'square':
            usageB = np.load(outPath + mode + '_' + direction + '_' + 'usageB.npy')
            names.append('usageB')
            colors.append('#874a2b')

        for node in xrange(nodes):
            nodeLabel = N[node].label
            nodePath = figPath + 'usage/' + nodeLabel.tostring()
            if not os.path.exists(nodePath):
                os.makedirs(nodePath)
            for link in xrange(links):
                linkLabel = link_label(link, N)
                linkflow = abs(F[link, :])
                qq = get_q(abs(F[link]), .99)

                plt.figure()
                ax = plt.subplot()
                nBins = 90
                totUsage = np.zeros((nBins))
                for i, color in enumerate(names):
                    usages = eval(color)
                    usages = usages[link, node, :] / linkflow
                    F_vert = np.reshape(linkflow, (len(linkflow), 1))
                    exp_vert = np.reshape(usages, (len(usages), 1))
                    F_matrix = np.hstack([F_vert, exp_vert])
                    F_matrix[F_matrix[:, 0].argsort()]
                    H, bin_edges = binMaker(F_matrix, qq, lapse=70128, nbins=nBins)
                    plt.plot(bin_edges / qq, H[:, 1], '-', c=colors[i], lw=2)
                    totUsage += H[:, 1]
                plt.plot(bin_edges / qq, totUsage, '-', c="#aa0000", lw=2)

                plt.axis([0, 1, 0, 1])
                ax.set_xticks(np.linspace(0, 1, 11))
                plt.xlabel(r'$|F_l|/\mathcal{K}_l^T$')
                plt.ylabel(r'$\left\langle H_{ln} \right\rangle /|F_l|$')
                if mode == 'square':
                    modeName = modeNames[1]
                    plt.legend(('solar usage', 'wind usage', 'backup usage', 'total usage'), loc=1)
                else:
                    modeName = modeNames[0]
                    plt.legend(('solar usage', 'wind usage', 'total usage'), loc=1)
                plt.title(nodeLabel.tostring() + ' ' + modeName + ' ' + direction + ' flows on link ' + linkLabel)
                plt.savefig(nodePath + '/' + str(link) + '_' + modeName + '_' + direction + '.pdf', bbox_inches='tight')
                plt.close()
Esempio n. 45
0
def link_level_hour(levels, usages, quantiles, scheme, direction, color, nnames, lnames, admat=None):
    """
    Make a color mesh of a node's average hourly usage of links at different
    levels.
    """
    if not admat:
        admat = np.genfromtxt('./settings/eadmat.txt')
    if color == 'solar':
        cmap = Oranges_cmap
    elif color == 'wind':
        cmap = Blues_cmap
    elif color == 'backup':
        cmap = 'Greys'
    links, nodes, lapse = usages.shape
    usages = np.reshape(usages, (links, nodes, lapse / 24, 24))
    totalHour = np.zeros((levels, 24))
    totalNormed = np.zeros((levels, 24))
    for node in range(nodes):
        nl = neighbor_levels(node, levels, admat)
        hourSums = np.zeros((levels, 24))
        for lvl in range(levels):
            ll = link_level(nl, lvl, nnames, lnames)
            ll = np.array(ll, dtype='int')
            meanSum = np.sum(np.mean(usages[ll, node], axis=1), axis=0)
            linkSum = sum(quantiles[ll])
            hourSums[lvl] = meanSum / linkSum
        totalHour += hourSums

        plt.figure(figsize=(9, 3))
        ax = plt.subplot()
        plt.pcolormesh(hourSums, cmap=cmap)
        plt.colorbar().set_label(label=r'$U_n^{(l)}$', size=11)
        ax.set_yticks(np.linspace(.5, levels - .5, levels))
        ax.set_yticklabels(range(1, levels + 1))
        ax.yaxis.set_tick_params(width=0)
        ax.xaxis.set_tick_params(width=0)
        ax.set_xticks(np.linspace(.5, 23.5, 24))
        ax.set_xticklabels(np.array(np.linspace(1, 24, 24), dtype='int'), ha="center", va="top", fontsize=10)
        plt.ylabel('Link level')
        plt.axis([0, 24, 0, levels])
        plt.title(nnames[node] + ' ' + direction + ' ' + color)
        plt.savefig(figPath + '/hourly/' + str(scheme) + '/' + str(node) + '_' + color + '_' + direction + '.pdf', bbox_inches='tight')
        plt.close()

        hourSums = hourSums / np.sum(hourSums, axis=1)[:, None]
        totalNormed += hourSums
        plt.figure(figsize=(9, 3))
        ax = plt.subplot()
        plt.pcolormesh(hourSums, cmap=cmap)
        plt.colorbar().set_label(label=r'$U_n^{(l)}$', size=11)
        ax.set_yticks(np.linspace(.5, levels - .5, levels))
        ax.set_yticklabels(range(1, levels + 1))
        ax.yaxis.set_tick_params(width=0)
        ax.xaxis.set_tick_params(width=0)
        ax.set_xticks(np.linspace(.5, 23.5, 24))
        ax.set_xticklabels(np.array(np.linspace(1, 24, 24), dtype='int'), ha="center", va="top", fontsize=10)
        plt.ylabel('Link level')
        plt.axis([0, 24, 0, levels])
        plt.title(nnames[node] + ' ' + direction + ' ' + color)
        plt.savefig(figPath + '/hourly/' + str(scheme) + '/normed/' + str(node) + '_' + color + '_' + direction + '.pdf', bbox_inches='tight')
        plt.close()

    # Plot average hourly usage
    totalHour /= nodes
    plt.figure(figsize=(9, 3))
    ax = plt.subplot()
    plt.pcolormesh(totalHour, cmap=cmap)
    plt.colorbar().set_label(label=r'$U_n^{(l)}$', size=11)
    ax.set_yticks(np.linspace(.5, levels - .5, levels))
    ax.set_yticklabels(range(1, levels + 1))
    ax.yaxis.set_tick_params(width=0)
    ax.xaxis.set_tick_params(width=0)
    ax.set_xticks(np.linspace(.5, 23.5, 24))
    ax.set_xticklabels(np.array(np.linspace(1, 24, 24), dtype='int'), ha="center", va="top", fontsize=10)
    plt.ylabel('Link level')
    plt.axis([0, 24, 0, levels])
    plt.savefig(figPath + '/hourly/' + str(scheme) + '/total_' + color + '_' + direction + '.pdf', bbox_inches='tight')
    plt.close()

    totalNormed /= nodes
    plt.figure(figsize=(9, 3))
    ax = plt.subplot()
    plt.pcolormesh(totalNormed, cmap=cmap)
    plt.colorbar().set_label(label=r'$U_n^{(l)}$', size=11)
    ax.set_yticks(np.linspace(.5, levels - .5, levels))
    ax.set_yticklabels(range(1, levels + 1))
    ax.yaxis.set_tick_params(width=0)
    ax.xaxis.set_tick_params(width=0)
    ax.set_xticks(np.linspace(.5, 23.5, 24))
    ax.set_xticklabels(np.array(np.linspace(1, 24, 24), dtype='int'), ha="center", va="top", fontsize=10)
    plt.ylabel('Link level')
    plt.axis([0, 24, 0, levels])
    plt.savefig(figPath + '/hourly/' + str(scheme) + '/normed/total_' + color + '_' + direction + '.pdf', bbox_inches='tight')
    plt.close()
         linestyle='-',
         color='navy',
         label='Exp. - $\\phi_0 = 0.592$')

plt.plot(time_sim_dila_0,
         vel_sim_dila_0,
         marker='|',
         markersize=5,
         linestyle='-',
         linewidth=1.2,
         color='navy',
         label='SedFoam  - $\\phi_0 = 0.592$')

plt.ylabel('$\\frac{v^s}{\\sqrt{gd}}$ [$-$]', fontsize=18)
plt.xlabel('$\\frac{t}{\\sqrt{d/g}}$ [$-$]', fontsize=18)
plt.axis([-1000, 160000, -0.00005, 0.03001])
plt.grid()
plt.tight_layout()
plt.savefig('Figures/velocityPlot2D_phi0592' + '.png', dpi=200)

#time - pressure plot including the experimental data (Pailha et al 2008) and the numerical results

plt.figure()
plt.plot(time_p_562,
         pressure_562,
         marker='o',
         markersize=0,
         linestyle='--',
         color='lightpink',
         label='Exp. - $\\phi_0 = 0.562$')
plt.plot(time_p_568,
Esempio n. 47
0
# Build the meta
M = nx.Graph()
pos = {}
pos[1] = [0,0]
pos[2] = [0,-dy]
pos[3] = [-dx,-2*dy]
pos[4] = [dx,-2*dy]
pos[5] = [-dx,-3*dy]
pos[6] = [dx,-3*dy]
M.add_edges_from([ (1,2),(2,3),(2,4),(4,6),(3,6),(3,5) ])
nx.draw_networkx_edges(M,pos,color='r',style='--',width=3,zorder=-10,alpha=.5)

nx.draw_networkx_nodes(M,pos,width=6,node_color='white',
        with_labels=False,node_size=4500,alpha=.3,zorder=10)

###################

for g,pos in zip(G,POS):
    pos_map = dict(zip(range(1,5),pos))
    nx.draw_networkx_nodes(g,pos_map,zorder=20,**dargs)
    nx.draw_networkx_edges(g,pos_map,zorder=20,**dargs)

########

plt.axis('off')
plt.axis('equal')
plt.savefig("figures/example_4.png",bbox_inches='tight',bbox_inches=0)
plt.show()

#print k4
# Defines generator model
generator_model = tf.keras.Model([z_gen, label], valid)
generator_model.compile(loss=wasserstein_loss, optimizer=optimizer)
print('finished building networks')

# plot some real samples
# plot a couple of samples
plt.figure(figsize=(25, 25))
n_plot = 30
[X_real, cond_real] = next(generate_real_samples(n_plot))
for i in range(n_plot):
    plt.subplot(n_plot, 25, i * 25 + 1)
    plt.imshow(cond_real[i, :, :].squeeze(),
               cmap=plt.cm.gist_earth_r,
               norm=LogNorm(vmin=0.01, vmax=1))
    plt.axis('off')
    for j in range(1, 24):
        plt.subplot(n_plot, 25, i * 25 + j + 1)
        plt.imshow(X_real[i, j, :, :].squeeze(),
                   vmin=0,
                   vmax=1,
                   cmap=plt.cm.hot_r)
        plt.axis('off')
plt.colorbar()
plt.savefig(f'{plotdir}/real_samples.{plot_format}')

hist = {'d_loss': [], 'g_loss': []}
print(f'start training on {n_samples} samples')


def train(n_epochs, _batch_size, start_epoch=0):
Esempio n. 49
0
 def showImage(self):
     self.imgObj = imshow(self.img)
     plt.axis('off')
     show()
Esempio n. 50
0
def plot_variable(u,
                  name,
                  direc,
                  cmap='gist_yarg',
                  scale='lin',
                  numLvls=12,
                  umin=None,
                  umax=None,
                  tp=False,
                  tpAlpha=0.5,
                  show=True,
                  hide_ax_tick_labels=False,
                  label_axes=True,
                  title='',
                  use_colorbar=True,
                  hide_axis=False,
                  colorbar_loc='right'):
    """
  """
    mesh = u.function_space().mesh()
    v = u.compute_vertex_values(mesh)
    x = mesh.coordinates()[:, 0]
    y = mesh.coordinates()[:, 1]
    t = mesh.cells()

    d = os.path.dirname(direc)
    if not os.path.exists(d):
        os.makedirs(d)

    if umin != None:
        vmin = umin
    else:
        vmin = v.min()
    if umax != None:
        vmax = umax
    else:
        vmax = v.max()

    # countour levels :
    if scale == 'log':
        v[v < vmin] = vmin + 1e-12
        v[v > vmax] = vmax - 1e-12
        from matplotlib.ticker import LogFormatter
        levels = np.logspace(np.log10(vmin), np.log10(vmax), numLvls)
        formatter = LogFormatter(10, labelOnlyBase=False)
        norm = colors.LogNorm()

    elif scale == 'lin':
        v[v < vmin] = vmin + 1e-12
        v[v > vmax] = vmax - 1e-12
        from matplotlib.ticker import ScalarFormatter
        levels = np.linspace(vmin, vmax, numLvls)
        formatter = ScalarFormatter()
        norm = None

    elif scale == 'bool':
        from matplotlib.ticker import ScalarFormatter
        levels = [0, 1, 2]
        formatter = ScalarFormatter()
        norm = None

    fig = plt.figure(figsize=(8, 7))
    ax = fig.add_subplot(111)

    c = ax.tricontourf(x,
                       y,
                       t,
                       v,
                       levels=levels,
                       norm=norm,
                       cmap=pl.get_cmap(cmap))
    plt.axis('equal')

    if tp == True:
        p = ax.triplot(x, y, t, 'k-', lw=0.25, alpha=tpAlpha)
    ax.set_xlim([x.min(), x.max()])
    ax.set_ylim([y.min(), y.max()])
    if label_axes:
        ax.set_xlabel(r'$x$')
        ax.set_ylabel(r'$y$')
    if hide_ax_tick_labels:
        ax.set_xticklabels([])
        ax.set_yticklabels([])
    if hide_axis:
        plt.axis('off')

    # include colorbar :
    if scale != 'bool' and use_colorbar:
        divider = make_axes_locatable(plt.gca())
        cax = divider.append_axes(colorbar_loc, "5%", pad="3%")
        cbar = plt.colorbar(c, cax=cax, format=formatter, ticks=levels)
        pl.mpl.rcParams['axes.titlesize'] = 'small'
        tit = plt.title(title)

    plt.tight_layout()
    d = os.path.dirname(direc)
    if not os.path.exists(d):
        os.makedirs(d)
    plt.savefig(direc + name + '.pdf')
    if show:
        plt.show()
    plt.close(fig)
def train(n_epochs, _batch_size, start_epoch=0):
    """
        train with fixed batch_size for given epochs
        make some example plots and save model after each epoch
    """
    global batch_size
    batch_size = _batch_size
    # create a dataqueue with the keras facilities. this allows
    # to prepare the data in parallel to the training
    sample_dataqueue = GeneratorEnqueuer(generate_real_samples(batch_size),
                                         use_multiprocessing=True)
    sample_dataqueue.start(workers=2, max_queue_size=10)
    sample_gen = sample_dataqueue.get()

    # targets for loss function
    gan_sample_dataqueue = GeneratorEnqueuer(
        generate_latent_points_as_generator(batch_size),
        use_multiprocessing=True)
    gan_sample_dataqueue.start(workers=2, max_queue_size=10)
    gan_sample_gen = gan_sample_dataqueue.get()

    # targets for loss function
    valid = -np.ones((batch_size, 1))
    fake = np.ones((batch_size, 1))
    dummy = np.zeros((batch_size, 1))  # Dummy gt for gradient penalty

    bat_per_epo = int(n_samples / batch_size)

    # we need to call the discriminator once in order
    # to initialize the input shapes
    [X_real, cond_real] = next(sample_gen)
    latent = np.random.normal(size=(batch_size, latent_dim))
    critic_model.predict([X_real, cond_real, latent])
    for i in trange(n_epochs):
        epoch = 1 + i + start_epoch
        # enumerate batches over the training set
        for j in trange(bat_per_epo):

            for _ in range(n_disc):
                # fetch a batch from the queue
                [X_real, cond_real] = next(sample_gen)
                latent = np.random.normal(size=(batch_size, latent_dim))
                d_loss = critic_model.train_on_batch(
                    [X_real, cond_real, latent], [valid, fake, dummy])
                # we get for losses back here. average, valid, fake, and gradient_penalty
                # we want the average of valid and fake
                d_loss = np.mean([d_loss[1], d_loss[2]])

            # train generator
            # prepare points in latent space as input for the generator
            [latent, cond] = next(gan_sample_gen)
            # update the generator via the discriminator's error
            g_loss = generator_model.train_on_batch([latent, cond], valid)
            # summarize loss on this batch
            print(f'{epoch}, {j + 1}/{bat_per_epo}, d_loss {d_loss}' + \
                  f' g:{g_loss} ')  # , d_fake:{d_loss_fake} d_real:{d_loss_real}')

            if np.isnan(g_loss) or np.isnan(d_loss):
                raise ValueError('encountered nan in g_loss and/or d_loss')

            hist['d_loss'].append(d_loss)
            hist['g_loss'].append(g_loss)

        # plot generated examples
        plt.figure(figsize=(25, 25))
        n_plot = 30
        X_fake, cond_fake = generate_fake_samples(n_plot)
        for iplot in range(n_plot):
            plt.subplot(n_plot, 25, iplot * 25 + 1)
            plt.imshow(cond_fake[iplot, :, :].squeeze(),
                       cmap=plt.cm.gist_earth_r,
                       norm=LogNorm(vmin=0.01, vmax=1))
            plt.axis('off')
            for jplot in range(1, 24):
                plt.subplot(n_plot, 25, iplot * 25 + jplot + 1)
                plt.imshow(X_fake[iplot, jplot, :, :].squeeze(),
                           vmin=0,
                           vmax=1,
                           cmap=plt.cm.hot_r)
                plt.axis('off')
        plt.colorbar()
        plt.suptitle(f'epoch {epoch:04d}')
        plt.savefig(
            f'{plotdir}/fake_samples_{params}_{epoch:04d}_{j:06d}.{plot_format}'
        )

        # plot loss
        plt.figure()
        plt.plot(hist['d_loss'], label='d_loss')
        plt.plot(hist['g_loss'], label='g_loss')
        plt.ylabel('batch')
        plt.legend()
        plt.savefig(f'{plotdir}/training_loss_{params}.{plot_format}')
        pd.DataFrame(hist).to_csv('hist.csv')
        plt.close('all')

        generator.save(f'{outdir}/gen_{params}_{epoch:04d}.h5')
        critic.save(f'{outdir}/disc_{params}_{epoch:04d}.h5')
Esempio n. 52
0
            hx, hy = my_dict['history_x'], my_dict['history_y']

            lines_shape = (18, 512)
            # The initial points
            lines_old_x = hx[0].reshape(lines_shape).copy()
            lines_old_y = hy[0].reshape(lines_shape).copy()
            # The final points
            lines_new_x = hx[-1].reshape(lines_shape).copy()
            lines_new_y = hy[-1].reshape(lines_shape).copy()

            c = 'r'
            fig = plt.figure()
            plt.subplot(121)
            for line_x, line_y in zip(lines_old_x, lines_old_y):
                plt.plot(line_x, line_y, c)
                plt.axis('scaled')
                q = 100
                plt.xlim(0 - q, 512 + q)
                plt.ylim(0 - q, 512 + q)
                plt.gca().invert_yaxis()
            c = 'b'
            plt.subplot(122)
            for line_x, line_y in zip(lines_new_x, lines_new_y):
                plt.plot(line_x, line_y, c)
                plt.axis('scaled')
                q = 500
                plt.xlim(0 - q, 512 + q)
                plt.ylim(0 - q, 512 + q)
                plt.gca().invert_yaxis()

            pylab.show()
def example(tess='I',base=[2,2,2],nLevels=1,
            zero_v_across_bdry=[True]*3,
            vol_preserve=False,
           nRows=100, nCols=100,nSlices=100,
           use_mayavi=False,
           eval_v=False,
           eval_cell_idx=False):  
     
    tw = TransformWrapper(nRows=nRows,
                          nCols=nCols,
                          nSlices=nSlices,
                          nLevels=nLevels,  
                          base=base,
                          zero_v_across_bdry=zero_v_across_bdry,
                          tess=tess,
                          valid_outside=False,
                          only_local=False,
                          vol_preserve=vol_preserve)
     
     
    print_iterable(tw.ms.L_cpa_space)
    print tw
    
    # create some fake 3D image.
    img = np.zeros((nCols,nRows,nSlices),dtype=np.float64)
    
#    img[:]=np.random.random_integers(0,255,img.shape)
    
    # Fill the image with the x coordinates as fake values
    img[:]=tw.pts_src_dense.cpu[:,0].reshape(img.shape)
    
    img0 = CpuGpuArray(img.copy().astype(np.float64))
    img_wrapped_fwd= CpuGpuArray.zeros_like(img0)
    img_wrapped_inv= CpuGpuArray.zeros_like(img0)
    
     
    seed=0
    np.random.seed(seed)    
    
                  
    ms_Avees=tw.get_zeros_PA_all_levels()
    ms_theta=tw.get_zeros_theta_all_levels() 
    
    
    if tess == 'II' :        
        for level in range(tw.ms.nLevels): 
            cpa_space = tw.ms.L_cpa_space[level]  
            Avees = ms_Avees[level]    
#            1/0
            if level==0:
                tw.sample_gaussian(level,ms_Avees[level],ms_theta[level],mu=None)# zero mean
#                ms_theta[level].fill(0)
#                ms_theta[level][-4]=10
                cpa_space.theta2Avees(theta=ms_theta[level],Avees=Avees)
            else:
                tw.sample_from_the_ms_prior_coarse2fine_one_level(ms_Avees,ms_theta,
                                                                    level_fine=level)
    else:
        # For tess='I' in 3D, I have yet to implement the coarse-to-fine sampling.
        for level in range(tw.ms.nLevels): 
            cpa_space = tw.ms.L_cpa_space[level]
            velTess = cpa_space.zeros_velTess()
            ms_Avees[level].fill(0)
            Avees = ms_Avees[level]
            tw.sample_gaussian_velTess(level,Avees,velTess,mu=None)
    
       
    
    
    print 'img shape:',img0.shape
   
   
    # You don't have use these. You can use any 2d array
    # that has 3 columns (regardless of the number of rows).   
    pts_src = tw.pts_src_dense       
    pts_src=CpuGpuArray(pts_src.cpu[::1].copy())
	
    # Create a buffer for the output
    pts_fwd = CpuGpuArray.zeros_like(pts_src) 
    pts_inv = CpuGpuArray.zeros_like(pts_src)  
   
   
    for level in range(tw.ms.nLevels):              
        tw.update_pat_from_Avees(ms_Avees[level],level) 
        
         
        if eval_v:
            # Evaluating the velocity field. 
            # You don't have to do it in unless you want to visualize v.
            # (when evaluting the treansformation, v will be internally 
            # evaluated anyway -- but its result won't be stored)
            tw.calc_v(level=level) 
        
        
        print 'level',level
        print
        print 'number of points:',len(pts_src)   
        print 'number of cells:',tw.ms.L_cpa_space[level].nC    
        
        
        
        # optional, if you want to time it
        timer_gpu_T_fwd = GpuTimer()           
        
        # Simply calling 
        #   tic = time.clock()
        # and then 
        #   tic = time.clock()
        # won't work.
        # In fact, most likely you will get that toc-tic is zero.
        # You need to use the GpuTimer object. When you do that, 
        # one side effect is that suddenly the toc-tic from above will
        # give you a more realistic result.
        
        
        tic = time.clock() 
        timer_gpu_T_fwd.tic()
        tw.calc_T_fwd(pts_src,pts_fwd,level=level)
        timer_gpu_T_fwd.toc()   
        toc = time.clock()
        

        print 'Time, in sec, for computing T_fwd:'           
        print timer_gpu_T_fwd.secs
        print toc-tic  # likely to be 0, unless you also used the GpuTimer.
        
        # You can also time the inv of course. Results will be similar.
        tw.calc_T_inv(pts_src,pts_inv,level=level)   
 
        
       
        if eval_cell_idx:   
            # cell_idx is computed here just for display. 
            cell_idx = CpuGpuArray.zeros(len(pts_src),dtype=np.int32)
            tw.calc_cell_idx(pts_src,cell_idx,level)
    
        tw.remap_fwd(pts_inv,img0,img_wrapped_fwd)
        tw.remap_inv(pts_fwd,img0,img_wrapped_inv)
        
         
    
        # For display purposes, do gpu2cpu transfer
        print "For display purposes, do gpu2cpu transfer"

        if eval_cell_idx:
            cell_idx.gpu2cpu()
        if eval_v:
            tw.v_dense.gpu2cpu() 
        pts_fwd.gpu2cpu()
        pts_inv.gpu2cpu()
        img_wrapped_fwd.gpu2cpu()
        img_wrapped_inv.gpu2cpu()
        
         
    
       
       
    
    
        if use_mayavi:
            ds=1 # downsampling factor
            i= 17
            pts_src_grid = pts_src.cpu.reshape(tw.nRows,tw.nCols,-1,3)
            pts_src_ds=pts_src_grid[::ds,::ds,i].reshape(-1,3)
            pts_fwd_grid = pts_fwd.cpu.reshape(tw.nRows,tw.nCols,-1,3)
            pts_fwd_ds=pts_fwd_grid[::ds,::ds,i].reshape(-1,3)
            pts_inv_grid = pts_inv.cpu.reshape(tw.nRows,tw.nCols,-1,3)
            pts_inv_ds=pts_inv_grid[::ds,::ds,i].reshape(-1,3)
        
        
            from of.my_mayavi import *
            mayavi_mlab_close_all()
            mayavi_mlab_figure_bgwhite('src')
            x,y,z=pts_src_ds.T
            mayavi_mlab_plot3d(x,y,z)
            mayavi_mlab_figure_bgwhite('fwd')
            x,y,z=pts_fwd_ds.T
            mayavi_mlab_plot3d(x,y,z)    
         
        figsize = (12,12)
        plt.figure(figsize=figsize)               
        i= 17 # some slice
        plt.subplot(131)
        plt.imshow(img0.cpu[:,:,i].astype(np.uint8),interpolation="Nearest")  
        plt.title('slice from img')
        plt.subplot(132)
        plt.imshow(img_wrapped_fwd.cpu[:,:,i].astype(np.uint8),interpolation="Nearest")  
        plt.axis('off') 
        plt.title('slice from fwd(img)')
        plt.subplot(133)
        plt.imshow(img_wrapped_inv.cpu[:,:,i].astype(np.uint8),interpolation="Nearest")    
        plt.axis('off') 
        plt.title('slice from inv(img)')
        
    
    if 0: # debug    
        
        cpa_space=tw.ms.L_cpa_space[level]
        if eval_v:
            vx=tw.v_dense.cpu[:,0].reshape(cpa_space.x_dense_grid_img.shape[1:])
            vy=tw.v_dense.cpu[:,1].reshape(cpa_space.x_dense_grid_img.shape[1:])
            vz=tw.v_dense.cpu[:,2].reshape(cpa_space.x_dense_grid_img.shape[1:])
        
        
            plt.figure()
            plt.imshow(vz[:,:,17],interpolation="Nearest");plt.colorbar()
            plt.title('vz in some slice')
     
    return tw
# In[16]:

log_returns.std() * math.sqrt(M)

# In[17]:

plt.figure(figsize=(10, 6))
plt.hist(log_returns.flatten(),
         bins=70,
         normed=True,
         label='frequency',
         color='b')
plt.xlabel('log_return')
plt.ylabel('frequency')
x = np.linspace(plt.axis()[0], plt.axis()[1])
plt.plot(x,
         scs.norm.pdf(x, loc=r / M, scale=sigma / np.sqrt(M)),
         'r',
         lw=2.0,
         label='pdf')
plt.legend()

# In[18]:

sm.qqplot(log_returns.flatten()[::500], line='s')
plt.xlabel('Theoretical Quantiles')
plt.ylabel('Sample Quantiles')

# In[19]:
Esempio n. 55
0
plt.title('Easy as 1,2,3')  # 添加subplot 211 的标题

'==========================================='
mu, sigma = 100, 15
x = mu + sigma * np.random.randn(10000)

# 数据的直方图
n, bins, patches = plt.hist(x, 50, normed=1, facecolor='g', alpha=0.75)

plt.xlabel('Smarts')
plt.ylabel('Probability')
# 添加标题
plt.title('Histogram of IQ')
# 添加文字
plt.text(60, .025, r'$\mu=100,\ \sigma=15$')
plt.axis([40, 160, 0, 0.03])
plt.grid(True)
plt.show()

'==========================================='

ax = plt.subplot(111)

t = np.arange(0.0, 5.0, 0.01)
s = np.cos(2 * np.pi * t)
line, = plt.plot(t, s, lw=2)

plt.annotate(
    'local max',
    xy=(2, 1),
    xytext=(3, 1.5),