def setUvFormat(self):
     self.subplot.xaxis.set_major_formatter(PL.FuncFormatter(self.uv_format))
     self.subplot.xaxis.set_major_locator(PL.MultipleLocator(self.parent.M/6))
     self.subplot.yaxis.set_major_formatter(PL.FuncFormatter(self.uv_format))
     self.subplot.yaxis.set_major_locator(PL.MultipleLocator(self.parent.M/6))
     self.subplot.set_xlim(100., 500.)
     self.subplot.set_ylim(100., 500.)
def Pace_vs_Time(data):
    fig = pl.figure()
    ax4 = fig.add_subplot(111)
    ax4.plot(data['MovingTime'], data['Pace'], color='b')
    ax4 = pl.gca()
    ax4.xaxis.set_major_formatter(pl.FuncFormatter(HMS))
    ax4.yaxis.set_major_formatter(pl.FuncFormatter(HMS))
    pl.xlabel("Time")
    pl.ylabel("Pace")
    pl.xlim([0, data['MovingTime'][-1]])
    pl.ylim([240, 720])

    ### GRAPH ORIGINAL/SMOOTHED DATA ###
    #    fig = pl.figure()
    #    pl.title("Moving Triangle Smoothing")
    #    ax5 = fig.add_subplot(111)
    pl.plot(data['MovingTime'],
            smoothTriangle(data['Pace'], 10),
            label="smoothed d=10",
            color='r')
    #    ax5 = pl.gca()
    #    ax5.xaxis.set_major_formatter(pl.FuncFormatter(HMS))
    #    ax5.yaxis.set_major_formatter(pl.FuncFormatter(HMS))
    #    pl.xlabel("Time")
    #    pl.ylabel("Pace")
    #    pl.xlim([0,data['ElapsedTime'][-1]])
    #    pl.ylim([240,720])
    pl.legend()
 def setArcFormat(self):
     self.subplot.xaxis.set_major_formatter(PL.FuncFormatter(self.arcsec_format))
     self.subplot.xaxis.set_major_locator(PL.MultipleLocator(self.parent.M/10))
     self.subplot.yaxis.set_major_formatter(PL.FuncFormatter(self.arcsec_format))
     self.subplot.yaxis.set_major_locator(PL.MultipleLocator(self.parent.M/10))
     self.subplot.set_xlim(200., 400.)
     self.subplot.set_ylim(200., 400.)
Esempio n. 4
0
def set_minor_ticks(ax, x=True, y=True):
    """
    Labels first minor tick in the case that there is only a single major
    tick label visible.
    """
    def even(x, pos):
        if int(str(int(x * 10**8))[0]) % 2:
            return ""
        elif pylab.rcParams["text.usetex"]:
            return "$%s$" % float_to_latex(x)
        else:
            return str(int(x))

    # xticks
    if x:
        ticks = list(ax.get_xticks())
        xlim = ax.get_xlim()
        for i, tick in enumerate(ticks[::-1]):
            if not xlim[0] <= tick <= xlim[1]:
                ticks.pop(-1)
        if len(ticks) <= 1:
            ax.xaxis.set_minor_formatter(pylab.FuncFormatter(even))

    # yticks
    if y:
        ticks = list(ax.get_yticks())
        ylim = ax.get_ylim()
        for i, tick in enumerate(ticks[::-1]):
            if not ylim[0] <= tick <= ylim[1]:
                ticks.pop(-1)
        if len(ticks) <= 1:
            ax.yaxis.set_minor_formatter(pylab.FuncFormatter(even))

    return
Esempio n. 5
0
    def drawhist(self):
        from matplotlib import pyplot as plt
        import pandas as pd
        df = pd.read_csv(r'fishMorganMACCS.csv')
        log = df['logTox']
        val = df['toxValue']

        plt.rcParams['font.family'] = 'Times New Roman'
        plt.rcParams['axes.xmargin'] = 0
        plt.rcParams['axes.ymargin'] = 0

        #inch settings

        dpi = 300
        w = 1063 / dpi
        h = 532 / dpi
        fig = plt.figure(figsize=(w, h), dpi=dpi)
        #fig = plt.figure(figsize=(5, 2.5))
        #ax = fig.add_subplot(111)
        ax1 = fig.add_subplot(1, 2, 1)
        ax2 = fig.add_subplot(1, 2, 2)
        ax1.xaxis.set_major_formatter(
            plt.FuncFormatter(lambda x, loc: "{:,}".format(int(x))))
        ax1.yaxis.set_major_formatter(
            plt.FuncFormatter(lambda x, loc: "{:,}".format(int(x))))
        ax2.xaxis.set_major_formatter(
            plt.FuncFormatter(lambda x, loc: "{:,}".format(int(x))))

        #normal
        ax1.hist(val, bins=200, range=(-20, 120))
        ax1.set_ylim([0, 500])
        ax1.set_xlabel("Ecotoxicity [mg/L]", fontsize=5)

        #log
        ax2.hist(log, bins=200, range=(-6, 6))
        ax2.set_ylim([0, 60])
        ax2.set_xlabel("Log Ecotoxicity [mg/L]", fontsize=5)

        #common label
        ax1.set_ylabel("Count", fontsize=5)
        ax1.tick_params(labelsize=4, width=0.3)
        ax2.tick_params(labelsize=4, width=0.3)
        #axis width
        axis = ['top', 'bottom', 'left', 'right']
        line_width = [0.3, 0.3, 0.3, 0.3]
        for a, w in zip(axis, line_width):  # change axis width
            ax1.spines[a].set_linewidth(w)
            ax2.spines[a].set_linewidth(w)
        #plt.subplots_adjust(left=0.045, bottom=0.03, right=0.75, top=0.55, wspace=0.1, hspace=0.15)
        plt.savefig('log.jpg', bbox_inches='tight', dpi=dpi)
        #plt.savefig('log.jpg', bbox_inches='tight',dpi=dpi)

        plt.show()
def tempo_analyzer(data, wanted, pace):
    fig = pl.figure()
    ax = fig.add_subplot(111)
    ax.xaxis.set_major_formatter(pl.FuncFormatter(HMS))
    ax.yaxis.set_major_formatter(pl.FuncFormatter(HMS))
    pl.title("Tempo Analyzer")
    pl.xlabel("Time")
    pl.ylabel("Pace")
    indices = np.where(data['Lap'] == int(wanted))
    x = data['MovingTime'][indices]
    y = data['Pace'][indices]
    pl.xlim([x[0], x[-1]])
    ax.plot(x, y, color='r')
    pl.axhline(y=pace, linewidth=2, color='k')
Esempio n. 7
0
def barGraph(data, **kw):
    """Draws a bar graph for the given data"""
    from pylab import bar
    kw.setdefault('barw', 0.5)
    kw.setdefault('log', 0)
    kw.setdefault('color', 'blue')
    xs = [i + 1 for i, row in enumerate(data)]
    names, ys = zip(*data)
    names = [n.replace('_', '\n') for n in names]
    #print 'got xs %s, ys %s, names %s' % (xs, ys, names)
    bar(xs,
        ys,
        width=kw['barw'],
        color=kw['color'],
        align='center',
        log=kw['log'])
    ax = pylab.gca()

    def f(x, pos=None):
        n = int(x) - 1
        if n + 1 != x: return ''
        if n < 0: return ''
        try:
            return names[n]
        except IndexError:
            return ''

    ax.xaxis.set_major_formatter(pylab.FuncFormatter(f))
    ax.xaxis.set_major_locator(pylab.MultipleLocator(1))
    ax.set_xlim(0.5, len(names) + 0.5)
    for l in ax.get_xticklabels():
        pylab.setp(l, rotation=90)
    start = 0.08, 0.18
    pos = (start[0], start[1], 0.99 - start[0], 0.95 - start[1])
    ax.set_position(pos)
def Pace_Dist(data):
    fig = pl.figure()
    ax9 = fig.add_subplot(111)
    num_bins = 50
    ax9.hist(data['Pace'], num_bins)
    ax9.xaxis.set_major_formatter(pl.FuncFormatter(HMS))
    pl.xlabel("Pace")
Esempio n. 9
0
def draw_heat_graph(getgraph, opts):
    # from pyevolve_graph script

    stage_points = getgraph()

    fg = pl.figure()
    ax = fg.add_subplot(111)

    pl.imshow(stage_points,
              aspect="auto",
              interpolation="gaussian",
              cmap=matplotlib.cm.__dict__["jet"])
    pl.title("Population scores along the generations")

    def labelfmt(x, pos=0):
        # there is surely a better way to do that
        return (float(x) == int(x)) and '%d' % (x) or ''

    ax.xaxis.set_major_formatter(pl.FuncFormatter(labelfmt))

    pl.xlabel('Generations -->')
    pl.ylabel('Sorted Population Results')
    pl.grid(True)
    pl.colorbar()

    if opts.outfile:
        fg.savefig(opts.outfile)

    if opts.show:
        pl.show()
Esempio n. 10
0
def draw_correl_graph(getgraph, opts):
    # http://matplotlib.sourceforge.net/index.html
    fg = pl.figure()
    ax = fg.add_subplot(111)

    bars = getgraph()

    for (values, attrs) in bars:
        indexes, width = pl.arange(len(values)), 1.0 / len(bars)

        yvalues = [x.speedup for x in values]
        xoffset = width * bars.index((values, attrs))
        ax.bar(indexes + xoffset, yvalues, width, picker=4000, **attrs)

        ax.legend(loc='lower left')
        fg.canvas.draw()

    # dynamic annotations
    def on_pick(event):
        ind = int(event.mouseevent.xdata)
        point = bars[0][0][ind]
        tooltip.set_position((event.mouseevent.xdata, event.mouseevent.ydata))
        tooltip.set_text(point_descr(point))
        tooltip.set_visible(True)
        fg.canvas.draw()

    tooltip = ax.text(0,
                      0,
                      "undef",
                      bbox=dict(facecolor='white', alpha=0.8),
                      verticalalignment='bottom',
                      visible=False)

    # graph title
    try:
        title = 'Correlation Graph for %s' % (opts.id or opts.targets
                                              or bars[0][0][0].target)
    except:
        title = 'Correlation Graph'

    # redraw axis, set labels, legend, grid, ...
    def labelfmt(x, pos=0):
        return '%.2f%%' % (100.0 * x)

    ax.yaxis.set_major_formatter(pl.FuncFormatter(labelfmt))
    pl.ylabel('speedup (higher is better) -->')

    pl.xlabel('Configurations (ordered by decreasing speedup of ' +
              bars[0][1]['label'] + ') -->')
    pl.title(title)
    pl.axhspan(0.0, 0.0)
    pl.axvspan(0.0, 0.0)
    pl.grid(True)

    if opts.outfile:
        fg.savefig(opts.outfile)

    if opts.show:
        fg.canvas.mpl_connect('pick_event', on_pick)
        pl.show()
Esempio n. 11
0
def draw_search_graph(plots):
    import pylab as pl

    fg = pl.figure()
    ax = fg.add_subplot(111)

    ax.yaxis.set_major_formatter(pl.FuncFormatter(labelfmt))

    for (values, attrs) in plots:
        indexes, width = pl.arange(len(values)), 1.0 / len(plots)

        yvalues = [x.result for x in values]
        xoffset = width * plots.index((values, attrs))
        ax.plot(indexes + xoffset, yvalues, **attrs)

        legend = ax.legend(loc='best')
        legend.get_frame().set_alpha(0.6)
        fg.canvas.draw()

    pl.ylabel('tradeoff improvement -->')
    pl.xlabel('number of tested configurations -->')
    pl.title('Search Graph')
    pl.axhspan(0.0, 0.0)
    pl.axvspan(0.0, 0.0)
    pl.grid(True)
    pl.show()
Esempio n. 12
0
def Distance_vs_Time(data):
    fig = pl.figure()
    ax3 = fig.add_subplot(111)
    ax3.plot(data['MovingTime'], data['Distance'], color='r')
    ax3 = pl.gca()
    ax3.xaxis.set_major_formatter(pl.FuncFormatter(HMS))
    pl.xlabel("Time")
    pl.ylabel("Distance (mi)")
    pl.xlim([0, data['MovingTime'][-1]])
Esempio n. 13
0
def Elevation_vs_Time(data):
    fig = pl.figure()
    ax2 = fig.add_subplot(111)
    ax2.plot(data['MovingTime'], data['Altitude'], color='r')
    ax2 = pl.gca()
    ax2.xaxis.set_major_formatter(pl.FuncFormatter(HMS))
    pl.xlabel("Time")
    pl.ylabel("Elevation (ft.)")
    pl.xlim([0, data['MovingTime'][-1]])
    pl.ylim([0, 1500])
Esempio n. 14
0
def HR_vs_Time(data):
    fig = pl.figure()
    ax6 = fig.add_subplot(111)
    ax6.plot(data['MovingTime'], data['Pulse'], color='r')
    ax6 = pl.gca()
    ax6.xaxis.set_major_formatter(pl.FuncFormatter(HMS))
    pl.xlabel("Time")
    pl.ylabel("Heart Rate")
    pl.xlim([0, data['MovingTime'][-1]])
    pl.ylim([40, 190])
Esempio n. 15
0
def HR_Pace(data):
    fig = pl.figure()
    ax7 = fig.add_subplot(111)
    ax7.scatter(data['Pace'],
                data['Pulse'],
                color='blue',
                s=5,
                edgecolor='none')
    ax7.xaxis.set_major_formatter(pl.FuncFormatter(HMS))
    #ax7.set_aspect(1./ax7.get_data_ratio()) # make axes square
    pl.xlabel("Pace")
    pl.ylabel("Heart Rate")
    pl.ylim([40, 190])
Esempio n. 16
0
    def set_y_axis(self, plot):
        import pylab

        def arcmin_formatter(x, pos):
            return "{0}'".format(int(x / 60))

        ymin, ymax = plot.get_ylim()
        numticks = len(plot.get_yticks())
        mtscale = max(60, 60 * int(abs(ymax - ymin) / numticks / 60))
        plot.set_yticks(np.arange(ymin - ymin % 60, ymax - ymax % 60, mtscale))
        plot.set_yticks(np.arange(ymin - ymin % 60, ymax - ymax % 60,
                                  mtscale / 6.0),
                        minor=True)
        plot.yaxis.set_major_formatter(pylab.FuncFormatter(arcmin_formatter))
        return plot
Esempio n. 17
0
def plotScatter(distDict, walkType, numHops, N):
    def log_10_product(x, pos):
        return '%1i' % (x)

    ax = pylab.subplot(111)
    ax.set_xscale('log')
    ax.set_yscale('log')
    formatter = pylab.FuncFormatter(log_10_product)
    ax.xaxis.set_major_formatter(formatter)
    ax.yaxis.set_major_formatter(formatter)
    xVals = distDict.keys()
    yVals = distDict.values()
    ax.scatter(xVals, yVals, s=40, c='b', marker='s', faceted=False)
    ax.set_xlim(1e-1, 1e4)
    ax.set_ylim(1e-1, 1e4)
    pylab.grid(True)
    pylab.xlabel(r"Degree", fontsize=12)
    pylab.ylabel(r"Frequency", fontsize=12)
Esempio n. 18
0
def set_axis(axis, linlog, ax=None):
    """Axis setting to linear or logarithmic.
       Seems not to work any more (python 3 problem?).
       See also make_log_ticks.
    """

    if ax is None:
        ax = plt.subplot(111, axes='equal')

    formatter = plt.FuncFormatter(lin_product)

    if axis == 'x':
        print(ax)
        if linlog == 'log': ax.set_xscale(linlog, nonposx='clip')
        ax.xaxis.set_major_formatter(formatter)
    if axis == 'y':
        if linlog == 'log': ax.set_yscale(linlog, nonposy='clip')
        ax.yaxis.set_major_formatter(formatter)

    return ax
Esempio n. 19
0
def plot_classifier(classifier, dataset, target, first_feat, second_feat):
    """
    Visualizes the result for two features. Added feature that stores the image
    :param classifier: which classifier you wish to use
    :param dataset: the complete dataset
    :param target: target values. (in our case its the diabetes column)
    :param first_feat: the first feature
    :param second_feat: the second feature
    :return: no return value
    """
    cmap_light = ListedColormap(['#FFAAAA', '#AAFFAA'])
    cmap_bold = ListedColormap(['#FF0000', '#00FF00'])

    X = dataset[[first_feat, second_feat]]
    y = target.replace(['pos', 'neg'], [1, 0])
    lable = ["neg", "pos"]
    classifier.fit(X, y)

    x_min, x_max = X.iloc[:, 0].min() - .1, X.iloc[:, 0].max() + .1
    y_min, y_max = X.iloc[:, 1].min() - .1, X.iloc[:, 1].max() + .1
    xx, yy = np.meshgrid(np.linspace(x_min, x_max, 100),
                         np.linspace(y_min, y_max, 100))
    Z = classifier.predict(np.c_[xx.ravel(), yy.ravel()])

    Z = Z.reshape(xx.shape)
    pl.figure()
    pl.pcolormesh(xx, yy, Z, cmap=cmap_light)

    pl.scatter(X.iloc[:, 0], X.iloc[:, 1], c=y, cmap=cmap_bold)
    formatter = pl.FuncFormatter(lambda i, *args: lable[int(i)])
    pl.colorbar(ticks=[0, 1], format=formatter)

    pl.xlabel(first_feat)
    pl.ylabel(second_feat)
    pl.axis('tight')
    fig = pl.gcf()
    pl.show()
    fig.savefig(
        f"../visualization_through_web_app/static/{first_feat}X{second_feat}.png"
    )
Esempio n. 20
0
def plot_dmags(gi,
               dmags,
               sedcolorkey,
               sedtype,
               plotfilterlist=filterlist,
               titletext=None,
               ylims=None,
               xlims=None,
               newfig=True,
               figname=None):
    # ylims = dictionary (ylim['u'] = [0, 0])
    sedtypes = ['kurucz', 'mlt', 'quasar', 'white_dwarf', 'sn']
    # make figure of change in magnitude
    if newfig:
        pylab.figure()
    yplots = 3
    xplots = 2
    if len(plotfilterlist) == 1:
        yplots = 1
        xplots = 1
    pylab.subplots_adjust(top=0.93,
                          wspace=0.32,
                          hspace=0.32,
                          bottom=0.09,
                          left=0.12,
                          right=0.96)
    # For Kurucz models
    if sedtype == 'kurucz':
        print "# looking at kurucz"
        # set colors of data points based on their metallicity
        metallicity = numpy.array(sedcolorkey[0])
        logg = numpy.array(sedcolorkey[1])
        metcolors = ['c', 'c', 'b', 'g', 'y', 'r', 'm']
        metbinsize = abs(metallicity.min() - metallicity.max()) / 6.0
        metbins = numpy.arange(metallicity.min(),
                               metallicity.max() + metbinsize, metbinsize)
        print metbinsize, metbins
        i = 1
        # for each filter, use a different subplot
        plot_logg2 = False
        for f in plotfilterlist:
            ax = pylab.subplot(yplots, xplots, i)
            for metidx in range(len(metbins)):
                condition =((metallicity>=metbins[metidx]) & (metallicity<=metbins[metidx]+metbinsize) \
                            & (logg>3.5))
                mcolor = metcolors[metidx]
                pylab.plot(gi[condition], dmags[f][condition], mcolor + '.')
                if plot_logg2:
                    condition =((metallicity>=metbins[metidx]) & (metallicity<=metbins[metidx]+metbinsize) \
                        & (logg<2.5))
                    mcolor = metcolors[metidx]
                    pylab.plot(gi[condition], dmags[f][condition],
                               mcolor + 'x')
            i = i + 1
    elif sedtype == 'quasar':
        print "# looking at quasars"
        # set the colors of data points based on their redshift
        redshift = sedcolorkey
        redcolors = ['b', 'b', 'g', 'g', 'r', 'r', 'm', 'm']
        redbinsize = 0.5
        redbins = numpy.arange(0.0, 3.0 + redbinsize, redbinsize)
        print redbinsize, redbins, redcolors
        i = 1
        # for each filter, use a different subplot
        for f in plotfilterlist:
            ax = pylab.subplot(yplots, xplots, i)
            for redidx in range(len(redbins)):
                condition = ((redshift >= redbins[redidx]) &
                             (redshift <= redbins[redidx] + redbinsize))
                rcolor = redcolors[redidx]
                pylab.plot(gi[condition], dmags[f][condition], rcolor + 'o')
            i = i + 1
    elif sedtype == 'galaxy':
        print "# looking at galaxies"
        # set the colors of data points based on their redshift
        gallist = sedcolorkey
        redcolors = ['b', 'b', 'g', 'g', 'r', 'r', 'm', 'm']
        redbinsize = 0.3
        redbins = numpy.arange(0.0, 1.7 + redbinsize, redbinsize)
        print redbinsize, redbins, redcolors
        i = 1
        for f in plotfilterlist:
            ax = pylab.subplot(yplots, xplots, i)
            j = 0
            for g in gallist:
                galbase, redshift = g.split('_')
                redshift = float(redshift)
                redidx = int(redshift / redbinsize)
                pylab.plot(gi[j], dmags[f][j], redcolors[redidx] + '.')
                j = j + 1
            i = i + 1
    elif sedtype == 'mlt':
        print "# looking at MLT"
        # set the colors of data points based on their type
        mltlist = sedcolorkey[0]
        mlist = sedcolorkey[1]
        llist = sedcolorkey[2]
        tlist = sedcolorkey[3]
        i = 1
        for f in plotfilterlist:
            ax = pylab.subplot(yplots, xplots, i)
            for j in range(len(mltlist)):
                if (mltlist[j] in mlist):
                    pylab.plot(gi[j], dmags[f][j], 'bx')
                elif (mltlist[j] in llist):
                    pylab.plot(gi[j], dmags[f][j], 'gx')
                elif (mltlist[j] in tlist):
                    pylab.plot(gi[j], dmags[f][j], 'mx')
            i = i + 1
    elif sedtype == 'white_dwarf':
        print "# looking at White Dwarf"
        # set the colors of data points based on their type
        wdlist = sedcolorkey[0]
        hlist = sedcolorkey[1]
        helist = sedcolorkey[2]
        i = 1
        for f in plotfilterlist:
            ax = pylab.subplot(yplots, xplots, i)
            for j in range(len(wdlist)):
                if (wdlist[j] in hlist):
                    pylab.plot(gi[j], dmags[f][j], 'y+')
                elif (wdlist[j] in helist):
                    pylab.plot(gi[j], dmags[f][j], 'y+')
            i = i + 1
    elif sedtype == 'sn':
        print "# looking at SN"
        # set the color of data points based on their redshift and day
        snlist = sedcolorkey[0]
        redcolors = ['b', 'b', 'g', 'g', 'r', 'r', 'm', 'm']
        redbinsize = 0.18
        redbins = numpy.arange(0.0, 1.0 + redbinsize, redbinsize)
        print redbinsize, redbins, redcolors
        day_symbol = {'0': 's', '20': 's', '40': 's'}
        i = 1
        for f in plotfilterlist:
            ax = pylab.subplot(yplots, xplots, i)
            j = 0
            for s in snlist:
                day, redshift = s.split('_')
                redshift = float(redshift)
                redidx = int(redshift / redbinsize)
                pylab.plot(gi[j], dmags[f][j],
                           redcolors[redidx] + day_symbol[day])
                j = j + 1
            i = i + 1
    # set up generic items
    for i in range(0, len(plotfilterlist)):
        f = plotfilterlist[i - 1]
        ax = pylab.subplot(yplots, xplots, i + 1)
        pylab.xlabel("g-i")
        pylab.ylabel(r"$\Delta$ %s (mmag)" % (f))

        def axis_formatter(x, pos):
            return "%.1f" % (x)

        formatter = pylab.FuncFormatter(axis_formatter)
        ax.yaxis.set_major_formatter(formatter)
        # set axes limits
        if ylims == None:
            pass
        else:
            try:
                pylab.ylim(ylims[f][0], ylims[f][1])
            except KeyError:
                pass
        if xlims == None:
            pass
        else:
            try:
                pylab.xlim(xlims[f][0], xlims[f][1])
            except KeyError:
                pass
    # put a grid in the background
    if newfig:
        for i in range(0, len(plotfilterlist)):
            ax = pylab.subplot(yplots, xplots, i + 1)
            pylab.grid(True)
            if titletext != None:
                pylab.suptitle(titletext)
    if figname != None:
        pylab.savefig(figname + '.png', format='png')
    return
Esempio n. 21
0
            edgecolor='b',
            label="Best Vis")
ax1.set_xscale('log')
ax1.legend()

ax2.scatter(abs_vsby,
            numpy.array(abs_sknt) * 1.15,
            marker='+',
            color='r',
            label='Best Wind')
ax2.scatter(abv_vsby,
            numpy.array(abv_sknt) * 1.15,
            marker='o',
            facecolor='w',
            edgecolor='b',
            label='Best Vis')
ax2.set_xscale('log')
ax2.legend()

formatter = pylab.FuncFormatter(log_10_product)
ax1.xaxis.set_major_formatter(formatter)
ax2.xaxis.set_major_formatter(formatter)

ax1.set_title(" \nMax/Min Method: %s/%s Sites Hit" % (len(hits), len(bs_vsby)))
ax2.set_title(" \nAverage Method: %s/%s Sites Hit" %
              (len(ahits), len(abs_vsby)))

fig.savefig('test.png')
#import iemplot
#iemplot.makefeature('test')
Esempio n. 22
0
def draw_graph(getgraph, opts):
    # http://matplotlib.sourceforge.net/index.html
    fg = pl.figure()
    ax = fg.add_subplot(111)

    global graph_plots, all_points
    graph_plots, all_points = [], []

    def draw_tradeoff_plots(ratio, points, attrs):
        # select tradeoff given ratio
        best = atos_lib.atos_client_results.select_tradeoff(points, ratio)
        # graph limits
        xmin = min([p.sizered for p in points])
        xmax = max([p.sizered for p in points])
        ymin = min([p.speedup for p in points])
        ymax = max([p.speedup for p in points])
        # number of points on ratio line
        nbtk = int((ratio >= 1 and 2 or 1 / ratio) * 32)
        # ratio line points coordinates
        xtk = [xmin + i * ((xmax - xmin) / nbtk) for i in range(nbtk + 1)]
        ytk = [best.speedup + (1.0 / ratio) * (best.sizered - x) for x in xtk]
        coords = filter(lambda (x, y): y >= ymin and y <= ymax, zip(xtk, ytk))
        # first plot: selected tradeoff point
        attrs.update({'label': '_nolegend_'})
        attrs.update({'markersize': 20, 'linewidth': 0, 'alpha': 0.4})
        plots = [(([best.sizered], [best.speedup]), dict(attrs))]
        # second plot: ratio line
        attrs.update({'marker': '', 'linewidth': 2, 'linestyle': 'solid'})
        plots += [((zip(*coords)[0], zip(*coords)[1]), dict(attrs))]
        return plots

    def draw_all():
        global graph_plots, all_points, selected_points, similar_points  # :(

        # remove old plots
        old_points = [(p.sizered, p.speedup, p.variant) for p in all_points]
        for x in list(graph_plots):
            graph_plots.remove(x)
            x.remove()

        # get graph values
        scatters, frontiers = getgraph()
        all_points = sum([x[0] for x in scatters + frontiers], [])

        # draw scatters
        for (points, attrs) in scatters:
            attrsmap = {
                's': 20,
                'label': '_nolegend_',
                'zorder': 2,
                'color': 'r',
                'edgecolor': 'k'
            }
            attrsmap.update(attrs)
            xy = zip(*[(p.sizered, p.speedup) for p in points])
            gr = ax.scatter(*xy, **attrsmap)
            graph_plots.append(gr)

        # draw frontiers (line plots)
        for (points, attrs) in frontiers:
            attrsmap = {
                'color': 'r',
                'marker': 'o',
                'label': '_nolegend_',
                'zorder': 2,
                'markersize': 7,
                'linestyle': 'dashed',
                'linewidth': 2
            }
            attrsmap.update(attrs)
            xy = zip(*sorted([(p.sizered, p.speedup) for p in points]))
            gr, = ax.plot(xy[0], xy[1], **attrsmap)
            graph_plots.append(gr)
            # show tradeoffs for each frontier
            for ratio in opts.tradeoffs or []:
                for ((xcrd, ycrd), attrs) in \
                        draw_tradeoff_plots(ratio, points, dict(attrsmap)):
                    graph_plots.append(ax.plot(xcrd, ycrd, **attrs)[0])

        # draw selected points (hidden)
        if opts.show and all_points:
            # workaround pb with pick_event event ind (4000)
            attrsmap = {
                'color': 'b',
                'marker': 'o',
                'markersize': 20,
                'linewidth': 0,
                'alpha': 0.4
            }
            xy = zip(*sorted([(p.sizered, p.speedup) for p in all_points]))
            selected_points, = \
                ax.plot(xy[0], xy[1], visible=False, picker=4000, **attrsmap)
            graph_plots.append(selected_points)
            # similar point plot
            attrsmap.update({'color': 'g'})
            similar_points, = ax.plot(None, None, visible=False, **attrsmap)
            graph_plots.append(similar_points)

        # highlight new points
        if opts.follow and old_points:
            new_points = [
                p for p in all_points
                if ((p.sizered, p.speedup, p.variant) not in old_points)
            ]
            attrsmap = {
                'color': 'r',
                'marker': 'o',
                'markersize': 20,
                'linewidth': 0,
                'alpha': 0.4,
                'zorder': 1
            }
            if new_points:
                xy = zip(*[(p.sizered, p.speedup) for p in new_points])
                new_points, = ax.plot(*xy, **attrsmap)
                graph_plots.append(new_points)

        # redraw legend and figure
        if opts.xlim: pl.xlim([float(l) for l in opts.xlim.split(",")])
        if opts.ylim: pl.ylim([float(l) for l in opts.ylim.split(",")])
        ax.legend(loc='lower left')
        fg.canvas.draw()

    # dynamic annotations
    def on_pick(event):
        def closest(x, y):
            dp = [(math.hypot(p.sizered - x, p.speedup - y), p)
                  for p in all_points]
            return sorted(dp)[0][1]

        def highlight(p):
            # print point on console
            print '-' * 40 + '\n' + point_str(p)
            # highlight point
            selected_points.set_visible(True)
            selected_points.set_data(p.sizered, p.speedup)
            # highlight similar points (same variant)
            sim = zip(*([(c.sizered, c.speedup) for c in all_points
                         if c.variant == p.variant and c != p]))
            similar_points.set_visible(True)
            similar_points.set_data(sim and sim[0], sim and sim[1])
            # selected point legend
            main_legend = ax.legend_
            lg = point_str(p, short=True, no_id=opts.anonymous)
            lp = pl.legend([selected_points], [lg],
                           loc='lower right',
                           numpoints=1)
            pl.setp(lp.get_texts(), fontsize='medium')
            lp.get_frame().set_alpha(0.5)
            pl.gca().add_artist(main_legend)
            fg.canvas.draw()
            ax.legend_ = main_legend

        highlight(closest(event.mouseevent.xdata, event.mouseevent.ydata))

    # live plotting
    def on_timer():
        draw_all()

    # draw graph for the first time
    draw_all()

    # graph title
    title = 'Optimization Space for %s' % (opts.id or opts.targets or
                                           (all_points
                                            and all_points[0].target))
    if opts.refid: title += ' [ref=%s]' % opts.refid
    if opts.filter: title += ' [filter=%s]' % opts.filter

    # redraw axis, set labels, legend, grid, ...
    def labelfmt(x, pos=0):
        return '%.2f%%' % (100.0 * x)

    ax.xaxis.set_major_formatter(pl.FuncFormatter(labelfmt))
    ax.yaxis.set_major_formatter(pl.FuncFormatter(labelfmt))
    pl.axhspan(0.0, 0.0)
    pl.axvspan(0.0, 0.0)
    pl.title(title)
    pl.xlabel('size reduction (higher is better) -->')
    pl.ylabel('speedup (higher is better) -->')
    if opts.xlim: pl.xlim([float(l) for l in opts.xlim.split(",")])
    if opts.ylim: pl.ylim([float(l) for l in opts.ylim.split(",")])
    pl.grid(True)

    if opts.outfile:
        fg.savefig(opts.outfile)

    if opts.show:
        fg.canvas.mpl_connect('pick_event', on_pick)
        if opts.follow: timer = atos_lib.repeatalarm(on_timer, 5.0).start()
        pl.show()
        if opts.follow: timer.stop()
Esempio n. 23
0
def plot_colorcolor(mags,
                    sedkeylist,
                    sedcolorkey,
                    sedtype,
                    filterlist,
                    titletext=None,
                    newfig=True):
    if newfig:
        pylab.figure()
    gi = calc_stdcolors(mags)
    magcolors = {}
    colorlabels = []
    colorslabels[0] = None
    for i in range(1 - 7):
        colorlabels[i] = filterlist[i - 1] + '-' + filterlist[i]
        magscolors[colorlabels[i]] = mags[filterlist[i -
                                                     1]] - mags[filterlist[i]]
    # colors = ug, gr, ri, iz, zy
    if sedtype == 'kurucz':
        print "# plotting kurucz"
        # set colors of data points based on their metallicity
        metallicity = sedcolorkey
        metcolors = ['c', 'c', 'b', 'g', 'y', 'r', 'm']
        metbinsize = abs(sedcolorkey.min() - sedcolorkey.max()) / 6.0
        metbins = numpy.arange(sedcolorkey.min(),
                               sedcolorkey.max() + metbinsize, metbinsize)
        print metbinsize, metbins
        i = 1
        # use a different subplot for each color/color combo
        for i in range(len(colorlabels - 1)):
            ax = pylab.subplot(3, 2, i)
            for metidx in range(len(metbins)):
                condition = ((metallicity >= metbins[metidx]) &
                             (metallicity <= metbins[metidx] + metbinsize))
                mcolor = metcolors[metidx]
                pylab.plot(magscolors[colorlabels[i]][condition],
                           magscolors[colorlabels[i + 1]][f][condition],
                           mcolor + '.')
            i = i + 1
        ax = pylab.subplot(3, 2, 7)
        for metidx in range(len(metbins)):
            condition = ((metallicity >= metbins[metidx]) &
                         (metallicity <= metbins[metidx] + metbinsize))
            mcolor = metcolors[metidx]
            pylab.plot(gi[condition],
                       magscolors[colorlabels[i + 1]][f][condition],
                       mcolor + '.')
    elif sedtype == 'quasar':
        print "# looking at quasars"
        # set the colors of data points based on their redshift
        redshift = sedcolorkey
        redcolors = ['b', 'b', 'g', 'g', 'r', 'r', 'm', 'm']
        redbinsize = 0.5
        redbins = numpy.arange(0.0, 3.0 + redbinsize, redbinsize)
        print redbinsize, redbins, redcolors
        i = 1
        # for each filter, use a different subplot
        for f in filterlist:
            ax = pylab.subplot(3, 2, i)
            for redidx in range(len(redbins)):
                condition = ((redshift >= redbins[redidx]) &
                             (redshift <= redbins[redidx] + redbinsize))
                rcolor = redcolors[redidx]
                pylab.plot(magscolors[colorlabels[i]][condition],
                           magscolors[colorlabels[i + 1]][f][condition],
                           rcolor + 'o')
            i = i + 1
        ax = pylab.subplot(3, 2, 7)
        for redidx in range(len(redbins)):
            condition = ((redshift >= redbins[redidx]) &
                         (redshift <= redbins[redidx] + redbinsize))
            rcolor = redcolors[redidx]
            pylab.plot(gi[condition],
                       magscolors[colorlabels[i + 1]][f][condition],
                       rcolor + 'o')
    elif sedtype == 'galaxy':
        print "# looking at galaxies"
        # set the colors of data points based on their redshift
        gallist = sedcolorkey
        redcolors = ['b', 'b', 'g', 'g', 'r', 'r', 'm', 'm']
        redbinsize = 0.3
        redbins = numpy.arange(0.0, 1.7 + redbinsize, redbinsize)
        print redbinsize, redbins, redcolors
        i = 1
        # for each filter, use a different subplot
        for f in filterlist:
            ax = pylab.subplot(3, 2, i)
            j = 0
            for g in gallist:
                galbase, redshift = g.split('_')
                redshift = float(redshift)
                redidx = int(redshift / redbinsize)
                pylab.plot(gi[j], dmags[f][j], redcolors[redidx])
                j = j + 1
            i = i + 1
        ax = pylab.subplot(3, 2, 7)
        j = 0
        for g in gallist:
            galbase, redshift = g.split('_')
            redshift = float(redshift)
            redidx = int(redshift / redbinsize)
            pylab.plot(gi[j], dmags[f][j], redcolors[redidx])
            j = j + 1
    elif sedtype == 'mlt':
        print "# looking at MLT"
        # set the colors of data points based on their type
        mltlist = sedcolorkey[0]
        mlist = sedcolorkey[1]
        llist = sedcolorkey[2]
        tlist = sedcolorkey[3]
        i = 1
        for f in filterlist:
            ax = pylab.subplot(3, 2, i)
            for j in range(len(mltlist)):
                if (mltlist[j] in mlist):
                    pylab.plot(magscolors[colorlabels[i]][condition],
                               magscolors[colorlabels[i + 1]][f][condition],
                               'bx')
                elif (mltlist[j] in llist):
                    pylab.plot(magscolors[colorlabels[i]][condition],
                               magscolors[colorlabels[i + 1]][f][condition],
                               'gx')
                elif (mltlist[j] in tlist):
                    pylab.plot(magscolors[colorlabels[i]][condition],
                               magscolors[colorlabels[i + 1]][f][condition],
                               'mx')
            i = i + 1
        ax = pylab.subplot(3, 2, 7)
        for j in range(len(mltlist)):
            if (mltlist[j] in mlist):
                pylab.plot(gi[condition],
                           magscolors[colorlabels[i + 1]][f][condition], 'bx')
            elif (mltlist[j] in llist):
                pylab.plot(gi[condition],
                           magscolors[colorlabels[i + 1]][f][condition], 'gx')
            elif (mltlist[j] in tlist):
                pylab.plot(gi[condition],
                           magscolors[colorlabels[i + 1]][f][condition], 'mx')
    elif sedtype == 'white_dwarf':
        print "# looking at White Dwarf"
        # set the colors of data points based on their type
        wdlist = sedcolorkey[0]
        hlist = sedcolorkey[1]
        helist = sedcolorkey[2]
        i = 1
        for f in filterlist:
            ax = pylab.subplot(3, 2, i)
            for j in range(len(wdlist)):
                if (wdlist[j] in hlist):
                    pylab.plot(magscolors[colorlabels[i]][condition],
                               magscolors[colorlabels[i + 1]][f][condition],
                               'y+')
                elif (wdlist[j] in helist):
                    pylab.plot(magscolors[colorlabels[i]][condition],
                               magscolors[colorlabels[i + 1]][f][condition],
                               'y+')
            i = i + 1
        ax = pylab.subplot(3, 2, 7)
        for j in range(len(wdlist)):
            if (wdlist[j] in hlist):
                pylab.plot(gi[condition],
                           magscolors[colorlabels[i + 1]][f][condition], 'y+')
            elif (wdlist[j] in helist):
                pylab.plot(gi[condition],
                           magscolors[colorlabels[i + 1]][f][condition], 'y+')
    # set up generic items
    for i in range(1, 7):
        f = filterlist[i - 1]
        ax = pylab.subplot(3, 2, i)

        #pylab.xlabel("g-i")
        #pylab.ylabel(r"$\Delta$ %s (mmag)" %(f))
        def axis_formatter(x, pos):
            return "%.1f" % (x)

        formatter = pylab.FuncFormatter(axis_formatter)
        ax.yaxis.set_major_formatter(formatter)
        # set axes limits
        if ylims == None:
            pass
        else:
            try:
                pylab.ylim(ylims[f][0], ylims[f][1])
            except KeyError:
                pass
    # put a grid in the background
    if newfig:
        for i in range(1, 7):
            ax = pylab.subplot(3, 2, i)
            pylab.grid(True)
    #pylab.suptitle(titletext)
    #pylab.savefig("delta_mags2.eps", format='eps')
    return
Esempio n. 24
0
    def __init__(self,
                 in_file,
                 vg_files=[1],
                 data_type=1,
                 projection='cyl',
                 color_map='jet',
                 time_zone=0,
                 plot_contours=False,
                 plot_center='t',
                 plot_meridians=True,
                 plot_parallels=True,
                 plot_terminator=True,
                 resolution='c',
                 points_of_interest=[],
                 save_file='',
                 run_quietly=False,
                 dpi=150,
                 parent=None):

        self.run_quietly = run_quietly
        self.dpi = float(dpi)

        plot_parameters = VOAFile((in_file + '.voa'))
        plot_parameters.parse_file()

        if (plot_parameters.get_projection() != 'cyl'):
            print _("Error: Only lat/lon (type 1) input files are supported")
            sys.exit(1)

        grid = plot_parameters.get_gridsize()
        self.image_defs = VOAAreaPlot.IMG_TYPE_DICT[int(data_type)]

        # TODO This needs a little more work... what if the pcenter card is not specified

        if plot_center == 'p':
            plot_centre_location = plot_parameters.get_location(
                plot_parameters.P_CENTRE)
        else:
            plot_centre_location = plot_parameters.get_location(
                plot_parameters.TX_SITE)

        self.points_of_interest = [plot_centre_location]
        if len(points_of_interest) > 0:
            self.points_of_interest.extend(points_of_interest)

        imageBuf = P.zeros([grid, grid], float)

        area_rect = plot_parameters.get_area_rect()
        points = P.zeros([grid, grid], float)
        lons = P.zeros(grid * grid, float)
        lats = P.zeros(grid * grid, float)

        lons = P.arange(area_rect.get_sw_lon(),
                        area_rect.get_ne_lon() + 0.001,
                        (area_rect.get_ne_lon() - area_rect.get_sw_lon()) /
                        float(grid - 1))
        lats = P.arange(area_rect.get_sw_lat(),
                        area_rect.get_ne_lat() + 0.001,
                        (area_rect.get_ne_lat() - area_rect.get_sw_lat()) /
                        float(grid - 1))

        colString = 'P.cm.' + color_map
        colMap = eval(colString)

        self.subplots = []

        matplotlib.rcParams['axes.edgecolor'] = 'gray'
        matplotlib.rcParams['axes.facecolor'] = 'white'
        matplotlib.rcParams['figure.facecolor'] = 'white'
        #matplotlib.rcParams['figure.figsize'] = (6, 10)
        #        matplotlib.rcParams['figure.subplot.hspace'] = 0.45
        #        matplotlib.rcParams['figure.subplot.wspace'] = 0.35
        #        matplotlib.rcParams['figure.subplot.right'] = 0.85
        colorbar_fontsize = 8

        self.num_rows = 1
        self.main_title_fontsize = 18
        matplotlib.rcParams['legend.fontsize'] = 12
        matplotlib.rcParams['axes.labelsize'] = 10
        matplotlib.rcParams['axes.titlesize'] = 10
        matplotlib.rcParams['xtick.labelsize'] = 8
        matplotlib.rcParams['ytick.labelsize'] = 8
        #        matplotlib.rcParams['figure.subplot.top'] = 0.8 # single figure plots have a larger title so require more space at the top.

        self.fig = Figure(figsize=(9, 5))
        #        self.main_title_label = self.fig.suptitle(unicode(self.image_defs['title'],'utf-8'), fontsize=self.main_title_fontsize)

        ax = self.fig.add_subplot(111, axisbg='white')
        self.subplots.append(ax)

        ax.label_outer()
        #print "opening: ",(in_file+'.vg'+str(vg_files[plot_ctr]))
        plot_ctr = 0

        #        dir_name = os.path.dirname(in_file)
        #        if not os.path.exists(dir_name):
        #            os.makedirs(dir_name)

        vgFile = open(in_file + '.vg' + str(vg_files[plot_ctr]))
        pattern = re.compile(r"[a-z]+")

        for line in vgFile:
            match = pattern.search(line)
            if not match:
                value = float(line[int(self.image_defs['first_char']
                                       ):int(self.image_defs['last_char'])])
                # TODO Does this need to be normalised here if it's also being done in the plot?
                value = max(self.image_defs['min'], value)
                value = min(self.image_defs['max'], value)
                #if value < self.image_defs[2] : value = self.image_defs[2]
                #if value > self.image_defs[3] : value = self.image_defs[3]
                points[int(line[3:6]) - 1][int(line[0:3]) - 1] = value
        vgFile.close()

        map = Basemap(\
            llcrnrlon=area_rect.get_sw_lon(), llcrnrlat=area_rect.get_sw_lat(),\
            urcrnrlon=area_rect.get_ne_lon(), urcrnrlat=area_rect.get_ne_lat(),\
            projection=projection,\
            lat_0=plot_centre_location.get_latitude(),\
            lon_0=plot_centre_location.get_longitude(),\
            resolution=resolution,
            ax=ax)

        map.drawcoastlines(color='black')
        map.drawcountries(color='grey')
        map.drawmapboundary(color='black', linewidth=1.0)

        warped = ma.zeros((grid, grid), float)
        warped, warped_lon, warped_lat = map.transform_scalar(
            points,
            lons,
            lats,
            grid,
            grid,
            returnxy=True,
            checkbounds=False,
            masked=True)
        warped = warped.filled(self.image_defs['min'] - 1.0)

        colMap.set_under(color='k', alpha=0.0)

        im = map.imshow(warped,
                        cmap=colMap,
                        extent=(-180, 180, -90, 90),
                        origin='lower',
                        norm=P.Normalize(clip=False,
                                         vmin=self.image_defs['min'],
                                         vmax=self.image_defs['max']))

        #######################
        # Plot greyline
        #######################
        if plot_terminator:
            the_sun = Sun()
            the_month = plot_parameters.get_month(vg_files[plot_ctr] - 1)
            the_day = plot_parameters.get_day(vg_files[plot_ctr] - 1)
            the_hour = plot_parameters.get_utc(vg_files[plot_ctr] - 1)
            if (the_day == 0):
                the_day = 15
            the_year = datetime.date.today().year
            num_days_since_2k = the_sun.daysSince2000Jan0(
                the_year, the_month, the_day)

            res = the_sun.sunRADec(num_days_since_2k)
            declination = res[1]
            if (declination == 0.0):
                declination = -0.001

            tau = the_sun.computeGHA(the_day, the_month, the_year, the_hour)

            if declination > 0:
                terminator_end_lat = area_rect.get_sw_lat()
            else:
                terminator_end_lat = area_rect.get_ne_lat()

            terminator_lat = [terminator_end_lat]
            terminator_lon = [area_rect.get_sw_lon()]

            for i in range(int(area_rect.get_sw_lon()),
                           int(area_rect.get_ne_lon()),
                           1) + [int(area_rect.get_ne_lon())]:
                longitude = i + tau
                tan_lat = -the_sun.cosd(longitude) / the_sun.tand(declination)
                latitude = the_sun.atand(tan_lat)
                latitude = max(latitude, area_rect.get_sw_lat())
                latitude = min(latitude, area_rect.get_ne_lat())
                xpt, ypt = map(i, latitude)
                terminator_lon.append(xpt)
                terminator_lat.append(ypt)

            terminator_lon.append(area_rect.get_ne_lon())
            terminator_lat.append(terminator_end_lat)

            #This is a little simplistic and doesn't work for ortho plots....
            ax.plot(terminator_lon, terminator_lat, color='grey', alpha=0.75)
            ax.fill(terminator_lon,
                    terminator_lat,
                    facecolor='grey',
                    alpha=0.5)

            tau = -tau
            if (tau > 180.0):
                tau = tau - 360.0
            if (tau < -180.0):
                tau = tau + 360.0

            #Plot the position of the sun (if it's in the coverage area)
            if area_rect.contains(declination, tau):
                xpt, ypt = map(tau, declination)
                #sbplt_ax.plot([xpt],[ypt],'yh')
                ax.plot([xpt], [ypt], 'yh')

        ##########################
        # Points of interest
        ##########################
        for location in self.points_of_interest:
            if area_rect.contains(location.get_latitude(),
                                  location.get_longitude()):
                xpt, ypt = map(location.get_longitude(),
                               location.get_latitude())
                ax.plot([xpt], [ypt], 'ro')
                ax.text(xpt + 100000, ypt + 100000, location.get_name())

        if plot_meridians:
            if (area_rect.get_lon_delta() <= 90.0):
                meridians = P.arange(-180, 190.0, 10.0)
            elif (area_rect.get_lon_delta() <= 180.0):
                meridians = P.arange(-180.0, 210.0, 30.0)
            else:
                meridians = P.arange(-180, 240.0, 60.0)
            if ((projection == 'ortho') or (projection == 'vandg')):
                map.drawmeridians(meridians)
            else:
                map.drawmeridians(meridians, labels=[1, 1, 0, 1])

        if plot_parallels:
            if (area_rect.get_lat_delta() <= 90.0):
                parallels = P.arange(-90.0, 120.0, 60.0)
            else:
                parallels = P.arange(-90.0, 120.0, 30.0)
            if ((projection == 'ortho') or (projection == 'vandg')):
                map.drawparallels(parallels)
            else:
                map.drawparallels(parallels, labels=[1, 0, 0, 1])

        if plot_contours:
            map.contour(warped_lon,
                        warped_lat,
                        warped,
                        self.image_defs['y_labels'],
                        linewidths=1.0,
                        colors='k',
                        alpha=0.5)

        #add a title
        title_str = plot_parameters.get_plot_description_string(
            vg_files[plot_ctr] - 1, self.image_defs['plot_type'], time_zone)
        title_str = title_str + "\n" + plot_parameters.get_detailed_plot_description_string(
            vg_files[plot_ctr] - 1)
        self.subplot_title_label = ax.set_title(title_str)

        # Add a colorbar on the right hand side, aligned with the
        # top of the uppermost plot and the bottom of the lowest
        # plot.
        pos = [0.91, 0.19, 0.02, 0.62]
        self.cb_ax = self.fig.add_axes(pos)
        cb = self.fig.colorbar(im,
                               cax=self.cb_ax,
                               orientation='vertical',
                               ticks=self.image_defs['y_labels'],
                               format=P.FuncFormatter(
                                   eval('self.' +
                                        self.image_defs['formatter'])))
        cb.set_label(unicode(self.image_defs['title'], 'utf-8'))

        #print self.image_defs['y_labels']
        for t in self.cb_ax.get_yticklabels():
            t.set_fontsize(colorbar_fontsize)

        canvas = FigureCanvasAgg(self.fig)

        if save_file:
            self.save_plot(canvas, save_file)
Esempio n. 25
0
def main():
    if os.name == 'nt':
        dataDir = os.path.expanduser('~') + '\\Appdata\\Roaming\\Freeorion'
    elif os.name == 'posix':
        dataDir = os.environ.get(
            'XDG_DATA_HOME',
            os.environ.get('HOME', "") + "/.local/share") + "/freeorion"
    else:
        dataDir = os.environ.get('HOME', "") + "/.freeorion"

    graphDir = dataDir

    fileRoot = "game1"
    saveFile = True
    turnsP = None
    rankings = []

    doPlotTypes = ["PP + 2RP"] + ["PP"] + ["RP"] + ["RP_Ratio"
                                                    ]  # +[ "ShipCount"]

    allData = {}
    species = {}
    empireColors = {}
    playerName = "Player"

    logfiles = sorted(glob(dataDir + os.sep + "A*.log"))
    A1log = glob(dataDir + os.sep + "AI_1.log")

    if not os.path.exists(dataDir + os.sep + "freeorion.log"):
        print "can't find freeorion.log"
    elif A1log and (A1log[0] in logfiles) and (
            os.path.getmtime(dataDir + os.sep + "freeorion.log") <
            os.path.getmtime(A1log[0]) - 300):
        print "freeorion.log file is stale ( more than 5 minutes older than AI_1.log) and will be skipped"
    else:
        data, details = parse_file(dataDir + os.sep + "freeorion.log", False)
        if len(data.get('PP', [])) > 0:
            allData[playerName] = data
            empireColors[playerName] = details['color']

    logfiles = sorted(glob(dataDir + os.sep + "A*.log"))
    A1log = glob(dataDir + os.sep + "AI_1.log")
    if A1log and A1log[0] in logfiles:
        A1Time = os.path.getmtime(A1log[0])
        for path in logfiles[::-1]:
            logtime = os.path.getmtime(path)
            # print "path ", path, "logtime diff: %.1f"%(A1Time -logtime)
            if logtime < A1Time - 300:
                del logfiles[logfiles.index(path)]
                print "skipping stale logfile ", path
    for lfile in logfiles:
        try:
            data, details = parse_file(lfile, True)
            allData[details['name']] = data
            empireColors[details['name']] = details['color']
            species[details['name']] = details['species']
        except:
            print "error processing %s" % lfile
            print "Error: exception triggered and caught: ", traceback.format_exc(
            )

    print
    for plotType in doPlotTypes:

        print "--------------------"
        if plotType == "PP":
            caption = "Production"
        elif plotType == "RP":
            caption = "Research"
        elif plotType == "RP_Ratio":
            caption = "Res:Prod Ratio"
        elif plotType == "RP_Ratio":
            caption = "Res:Prod Ratio"
        else:
            caption = plotType
        pylab.figure(figsize=(10, 6))
        ax = pylab.gca()
        ymin = 9999
        ymax = 0
        rankings = []
        turns = []

        pdata = allData.get(playerName, {}).get(plotType, [])
        if pdata:
            ymin = min(ymin, min(pdata))
            ymax = max(ymax, max(pdata))
            turns = allData.get(playerName, {}).get('turnsP', [])

        for empireName, data in allData.items():
            if empireName == playerName:
                continue
            adata = data.get(plotType, [])
            if adata:
                rankings.append((adata[-1], empireName))
                thisMin = min(adata)
                if thisMin > 0:
                    ymin = min(ymin, thisMin)
                ymax = max(ymax, max(adata))
                if not turns:
                    turns = data.get('turnsP', [])

        if not turns:
            if len(allData) == 0:
                break
            turns = range(1, len(allData.values()[0].get(plotType, [])) + 1)
        rankings.sort()
        pylab.xlabel('Turn')
        pylab.ylabel(plotType)
        pylab.title(caption + ' Progression')
        if ymax >= 100:
            ax.set_yscale('log', basey=10)

        if playerName not in allData:
            print "\t\t\tcan't find playerData in allData\n"
        else:
            if playerName in empireColors:
                turnsP = allData[playerName].get("turnsP", [])
                thisData = allData.get(playerName, {}).get(plotType, [])
                print "plotting with color for player: ", playerName, "data min/max: ", min(
                    allData[playerName].get(plotType, [])), ' | ', max(
                        allData[playerName].get(plotType, []))
                pylab.plot(turnsP,
                           thisData,
                           'o-',
                           color=empireColors[playerName],
                           label="%s - %.1f" % (playerName, sum(thisData)),
                           linewidth=2.0)
            else:
                print "plotting withOUT color for player: ", playerName, "data min/max: ", min(
                    allData[playerName].get(plotType, [])), ' | ', max(
                        allData[playerName].get(plotType, []))
                pylab.plot(turnsP,
                           allData[playerName].get(plotType, []),
                           'bx-',
                           label=playerName,
                           linewidth=2.0)
        print "Ranked by ", plotType
        for rank, name in rankings[::-1]:
            print name
            if name in empireColors:
                adata = allData[name].get(plotType, [])
                pylab.plot(range(turns[0], turns[0] + len(adata)),
                           adata,
                           color=empireColors[name],
                           label="%s: %s - %.1f" %
                           (name, species[name], sum(adata)),
                           linewidth=2.0)
            else:
                print "can't find empire color for ", name
                # pylab.plot(range(turns[0], turns[0]+len(allData[name])), allData[name].get(plotType, []), label="(%d) "%(empires.index(name)+1)+name+" : "+species[name], linewidth=2.0)
        # legend(loc='upper left',prop={"size":'medium'})
        pylab.legend(loc='upper left', prop={"size": 9}, labelspacing=0.2)
        pylab.xlabel('Turn')
        pylab.ylabel(plotType)
        pylab.title(caption + ' Progression ')
        x1, x2, y1, y2 = pylab.axis()
        newY2 = y2
        if plotType in ["PP + 2RP", "PP", "RP", "ShipCount"]:
            for yi in range(1, 10):
                if 1.05 * ymax < yi * y2 / 10:
                    newY2 = yi * y2 / 10
                    break
            print "y1: %.1f ; ymin: %.1f ; newY2/100: %.1f" % (y1, ymin,
                                                               newY2 / 100)
            y1 = max(y1, 4, ymin, newY2 / 100)
        pylab.axis((x1, x2, y1, newY2))
        pylab.grid(b=True, which='major', color='0.25', linestyle='-')
        pylab.grid(b=True, which='minor', color='0.1', linestyle='--')
        ax.yaxis.set_minor_formatter(pylab.FuncFormatter(show_only_some))
        ax.yaxis.set_ticks_position('right')
        ax.yaxis.set_ticks_position('both')
        ax.tick_params(labelleft='on'
                       )  # for matplotlib versions where 'both' doesn't work
        # ax.tick_params(labelright='on')
        if saveFile:
            pylab.savefig(graphDir + os.sep + plotType + "_" + fileRoot +
                          ".png")
        pylab.show()
Esempio n. 26
0
def analyze_interactions(df):
    print("\n=== Interactions table, original shape={} ===\n".format(df.shape))
    df = df.copy()
    df['ITEM_ID'] = df['ITEM_ID'].astype(str)
    df['USER_ID'] = df['USER_ID'].astype(str)
    df.index = df["TIMESTAMP"].values.astype("datetime64[s]")

    na_rate = df[INTERACTIONS_REQUIRED_FIELDS].isnull().any(axis=1).mean()
    print("missing rate in fields", INTERACTIONS_REQUIRED_FIELDS, na_rate)
    if na_rate > NA_RATE_THRESHOLD:
        warnings.warn(
            "High data missing rate for required fields ({:.1%})!".format(
                na_rate))
    df = df.dropna(subset=INTERACTIONS_REQUIRED_FIELDS)
    print("dropna shape", df.shape)

    dup_rate = (df.groupby(INTERACTIONS_REQUIRED_FIELDS).size() -
                1.0).sum() / df.shape[0]
    print("duplication rate", dup_rate)
    if dup_rate > DUP_RATE_THRESHOLD:
        warnings.warn("""
        High duplication rate ({:.1%})!
        Only one event can be taken at the same (user,item,timestamp) index.
        """.format(dup_rate))
    df = df.drop_duplicates(subset=INTERACTIONS_REQUIRED_FIELDS)
    print("drop_duplicates shape", df.shape)

    repeat_rate = (df.groupby(["USER_ID", "ITEM_ID"]).size() -
                   1.0).sum() / df.shape[0]
    print("user item repeat rate", repeat_rate)
    if repeat_rate > REPEAT_RATE_THRESHOLD:
        warnings.warn("""
        High rate of repeated consumptions ({:.1%})!
        We would not do anything, but it may beneficial to
        (1) consider keeping only the last interaction between the same user-item pair,
        (2) consider if the ITEM_IDs have collisions, and/or
        (3) use high-order hierarchical models.
        """.format(repeat_rate))

    summary = describe_dataframe(df, 'interactions table')

    print("\n=== Hourly activity pattern ===")
    print(df.groupby(df.index.hour).size())

    print("\n=== Day of week activity pattern ===")
    print(df.groupby(df.index.dayofweek).size())

    plot_patterns = {
        "date": df.index.date,
        "hour": df.index.hour,
        "dayofweek": df.index.dayofweek
    }

    for k, v in plot_patterns.items():
        pl.plot(df.groupby(v).size(), '.-')
        pl.gcf().autofmt_xdate()
        pl.title("Activity pattern by %s" % k)
        pl.grid()
        pl.show()

    print("\n=== Temporal shift analysis ===\n")
    print(
        "Sorting and removing repeated user-items for temporal shift analysis..."
    )
    df.sort_index(inplace=True, kind='mergesort')
    df_dedup = df.drop_duplicates(['USER_ID', 'ITEM_ID'], keep='last')

    print("\n=== Temporal shift - retrain frequency ===\n")

    for method in TEMPORAL_LOSS_METHODS:
        bootstrap_avg = []
        past_fut_avg = []
        for freq in RETRAIN_FREQUENCY:
            _, _, _bs_avg, loss_fmt = compute_bootstrap_loss(
                df_dedup, freq, method)
            _, _, _ts_avg, loss_fmt = compute_temporal_loss(
                df_dedup, freq, method, 1)
            bootstrap_avg.append(_bs_avg)
            past_fut_avg.append(_ts_avg)
        pl.plot(RETRAIN_FREQUENCY,
                bootstrap_avg,
                '.--',
                label='same-period bootstrap')
        pl.plot(RETRAIN_FREQUENCY,
                past_fut_avg,
                '.-',
                label='lagged popularity')
        pl.legend()
        pl.xlabel('retrain frequency')
        pl.title(method + ' loss at different frequencies')
        pl.grid()
        pl.gca().yaxis.set_major_formatter(
            pl.FuncFormatter(lambda y, _: loss_fmt.format(y)))
        pl.show()

    print("\n=== Temporal shift - history cutoffs ===\n")

    for method in TEMPORAL_LOSS_METHODS:
        for freq in TEMPORAL_FREQUENCY:
            bootstrap_loss, _, avg_loss, loss_fmt = compute_bootstrap_loss(
                df_dedup, freq, method)
            pl.plot(bootstrap_loss.iloc[-TEMPORAL_PLOT_LIMIT:],
                    '.--',
                    label='boostrap baseline={}'.format(
                        loss_fmt.format(avg_loss)))

            for hist_len in ROLLING_HISTORY_LEN:
                temporal_loss, df_wgt, avg_loss, loss_fmt = compute_temporal_loss(
                    df_dedup, freq, method, hist_len)

                pl.plot(temporal_loss.iloc[-TEMPORAL_PLOT_LIMIT:],
                        '.-',
                        label='hist={} * {}, avg={}'.format(
                            hist_len, freq, loss_fmt.format(avg_loss)))

            pl.gca().yaxis.set_major_formatter(
                pl.FuncFormatter(lambda y, _: loss_fmt.format(y)))

            pl.title('{} {} from rolling history (lower is better)'.format(
                freq, method))
            pl.grid()
            pl.gcf().autofmt_xdate()
            pl.legend(loc='upper left')
            pl.twinx()
            pl.plot(df_wgt.iloc[-TEMPORAL_PLOT_LIMIT:],
                    color='grey',
                    lw=3,
                    ls='--',
                    alpha=0.5)
            pl.legend(['activity density'], loc='upper right')
            pl.show()

    print("\n=== session time delta describe ===")

    user_time_delta = df.groupby('USER_ID')["TIMESTAMP"].transform(
        pd.Series.diff).dropna()
    user_time_delta.sort_values(ascending=False, inplace=True)
    print(user_time_delta.describe())
    plot_loglog(user_time_delta, 'session time delta', show=False)
    for k, v in TIMEDELTA_REFERENCES:
        if pl.ylim()[0] < v < pl.ylim()[1]:
            pl.plot(pl.xlim(), [v, v], '--')
            pl.text(pl.xlim()[0], v, k)
    pl.show()

    user_time_span = df.groupby('USER_ID')["TIMESTAMP"].apply(
        lambda x: max(x) - min(x))
    user_time_span.sort_values(ascending=False, inplace=True)
    print("=== user time span describe ===")
    print(user_time_span.describe())
    plot_loglog(user_time_span, 'user time span', show=False)
    for k, v in TIMEDELTA_REFERENCES:
        if pl.ylim()[0] < v < pl.ylim()[1]:
            pl.plot(pl.xlim(), [v, v], '--')
            pl.text(pl.xlim()[0], v, k)
    pl.show()
Esempio n. 27
0
    def __init__(self,
                 data_file,
                 plot_groups=[1],
                 data_type=2,
                 color_map='jet',
                 plot_contours=False,
                 plot_label="",
                 plot_bands=None,
                 time_zone=0,
                 plot_max_freq=30.0,
                 run_quietly=False,
                 save_file='',
                 dpi=150,
                 parent=None):

        self.data_type = data_type
        self.run_quietly = run_quietly
        self.dpi = dpi

        self.df = VOAOutFile(data_file,
                             time_zone=time_zone,
                             data_type=self.data_type,
                             quiet=run_quietly)

        self.image_defs = self.IMG_TYPE_DICT[self.data_type]

        color_map = eval('P.cm.' + color_map)

        if plot_groups[0] == 'a':
            num_grp = self.df.get_number_of_groups()
            plot_groups = range(0, num_grp)

        self.subplots = []
        number_of_subplots = len(plot_groups)

        matplotlib.rcParams['axes.edgecolor'] = 'gray'
        matplotlib.rcParams['axes.facecolor'] = 'white'
        matplotlib.rcParams['axes.grid'] = True
        matplotlib.rcParams['figure.facecolor'] = 'white'
        matplotlib.rcParams['legend.fancybox'] = True
        matplotlib.rcParams['legend.shadow'] = True
        matplotlib.rcParams['figure.subplot.hspace'] = 0.45
        matplotlib.rcParams['figure.subplot.wspace'] = 0.35
        matplotlib.rcParams['figure.subplot.right'] = 0.85
        colorbar_fontsize = 12

        if number_of_subplots <= 1:
            self.num_rows = 1
            self.main_title_fontsize = 24
            matplotlib.rcParams['legend.fontsize'] = 12
            matplotlib.rcParams['axes.labelsize'] = 12
            matplotlib.rcParams['axes.titlesize'] = 8
            matplotlib.rcParams['xtick.labelsize'] = 10
            matplotlib.rcParams['ytick.labelsize'] = 10
            matplotlib.rcParams[
                'figure.subplot.top'] = 0.79  # single figure plots have a larger title so require more space at the top.
            self.x_axes_ticks = P.arange(0, 25, 2)
        elif ((number_of_subplots >= 2) and (number_of_subplots <= 6)):
            self.num_rows = 2
            self.main_title_fontsize = 18
            matplotlib.rcParams['legend.fontsize'] = 10
            matplotlib.rcParams['axes.labelsize'] = 10
            matplotlib.rcParams['axes.titlesize'] = 11
            matplotlib.rcParams['xtick.labelsize'] = 8
            matplotlib.rcParams['ytick.labelsize'] = 8
            self.x_axes_ticks = P.arange(0, 25, 4)
        else:
            self.num_rows = 3
            self.main_title_fontsize = 16
            matplotlib.rcParams['legend.fontsize'] = 8
            matplotlib.rcParams['axes.labelsize'] = 8
            matplotlib.rcParams['axes.titlesize'] = 10
            matplotlib.rcParams['xtick.labelsize'] = 6
            matplotlib.rcParams['ytick.labelsize'] = 6
            self.x_axes_ticks = P.arange(0, 25, 4)

        self.num_cols = int(
            math.ceil(float(number_of_subplots) / float(self.num_rows)))
        self.fig = Figure(figsize=(7, 6.5))
        self.main_title_label = self.fig.suptitle(
            plot_label + unicode(self.image_defs['title'], 'utf-8'),
            fontsize=self.main_title_fontsize)

        for chan_grp in plot_groups:
            (group_name, group_info, fot, muf, hpf,
             image_buffer) = self.df.get_group_data(chan_grp)

            ax = self.fig.add_subplot(self.num_rows, self.num_cols,
                                      plot_groups.index(chan_grp) + 1)

            self.subplots.append(ax)

            if number_of_subplots > 4:
                #save a little space by only labelling the outer edges of the plot
                ax.label_outer()

            _sign = '+' if (time_zone >= 0) else ''
            self.x_label = ax.set_xlabel(
                _('Time (UTC%(sig)s%(tz)s)') % {
                    'sig': _sign,
                    'tz': time_zone
                })
            self.y_label = ax.set_ylabel(_('Frequency (MHz)'))

            ## Autoscale y (frequency axis)
            if (plot_max_freq == self.AUTOSCALE):
                y_max = math.ceil(max(muf) / 5.0) * 5.0
                y_max = min(plot_max_freq, 30.0)
                y_max = max(plot_max_freq, 5.0)
            else:
                y_max = math.ceil(plot_max_freq / 5.0) * 5.0
            #resize the image
            image_buffer = image_buffer[0:y_max - 1, :]

            y_ticks = [2, 5]
            for y_tick_value in P.arange(10, y_max + 1, 5):
                y_ticks.append(y_tick_value)

            ax.plot(range(0, 25), muf, 'r-', range(0, 25), fot, 'g-')
            ax.set_ylim([2, y_max])

            ax.set_xticks(self.x_axes_ticks)
            ax.set_yticks(y_ticks)

            self.add_legend(ax)
            title_str = group_info.strip()
            if number_of_subplots > 1:
                title_str = self.get_small_title(title_str)
            self.subplot_title_label = ax.set_title(title_str,
                                                    multialignment='left',
                                                    **self.mono_font)

            if (self.data_type > 0):
                im = ax.imshow(image_buffer,
                               interpolation='bicubic',
                               extent=(0, 24, 2, y_max),
                               origin='lower',
                               cmap=color_map,
                               alpha=0.95,
                               norm=P.Normalize(clip=False,
                                                vmin=self.image_defs['min'],
                                                vmax=self.image_defs['max']))
                if plot_contours:
                    ax.contour(image_buffer,
                               self.image_defs['y_labels'],
                               extent=(0, 24, 2, y_max),
                               linewidths=1.0,
                               colors='k',
                               alpha=0.6)

            if plot_bands:
                for a, b in plot_bands:
                    ax.axhspan(a, b, alpha=0.5, ec='k', fc='k')

        if (self.data_type > 0):
            self.cb_ax = self.fig.add_axes(self.get_cb_axes())
            self.fig.colorbar(im,
                              cax=self.cb_ax,
                              orientation='vertical',
                              format=P.FuncFormatter(
                                  eval('self.' +
                                       self.image_defs['formatter'])))
            for t in self.cb_ax.get_yticklabels():
                t.set_fontsize(colorbar_fontsize)

        canvas = FigureCanvasGTKAgg(self.fig)
        self.fig.canvas.mpl_connect('draw_event', self.on_draw)
        canvas.show()

        if save_file:
            self.save_plot(canvas, save_file)

        if not self.run_quietly:
            # TODO consider using a scrolled pane here...
            dia = VOAPlotWindow('pythonProp - ' + self.image_defs['title'],
                                canvas,
                                parent,
                                dpi=self.dpi)
        return
Esempio n. 28
0
            condition = ((ur >= urbins[urbidx]) & (ur <= urbins[urbidx]+urbinsize))
            coloridx = urcolors[urbidx]
            pylab.plot(gi[condition], shifts[f][condition], coloridx+'.')
        """
        for metidx in range(len(metbins)):
            condition = ((metallicity >= metbins[metidx]) &
                         (metallicity <= metbins[metidx] + metbinsize))
            coloridx = urcolors[metidx]
            pylab.plot(gi[condition], shifts[f][condition], coloridx + '.')
        pylab.xlabel("g-i")
        pylab.ylabel(r"$\Delta$ %s (mmag)" % (f))

        def axis_formatter(x, pos):
            return "%.1f" % (x)

        formatter = pylab.FuncFormatter(axis_formatter)
        ax.yaxis.set_major_formatter(formatter)
        if f == 'u':
            pylab.ylim(-1, 1)
        #elif f=='g':
        #    pylab.ylim(-5, 3)
        #elif f=='i':
        #    pylab.ylim(-1, 1)
        elif f == 'y':
            pylab.ylim(-2, 1)
        else:
            pylab.ylim(-1, 1)
        pylab.grid(True)
        i = i + 1
    #pylab.figtext(0.2, 0.95, "Change in magnitude for %s atmosphere and filter shift of %s" %(atmo_choice, shift_perc, "%"))
    pylab.figtext(
Esempio n. 29
0
 def setYFormatter(self, formatter):
     """
     Set the y-axis formatter used by this plot to the given function.
     """
     self.yFormatter = pylab.FuncFormatter(formatter)
Esempio n. 30
0
 def setMeterFormat(self):
     self.subplot.xaxis.set_major_formatter(
         PL.FuncFormatter(self.meter_format))
     self.subplot.yaxis.set_major_formatter(
         PL.FuncFormatter(self.meter_format))