Esempio n. 1
0
 def finalize(self, sim, *args, **kwargs):
     self.results['cum_tested'].values = pl.cumsum(
         self.results['n_tested'].values)
     self.results['cum_diagnosed'].values = pl.cumsum(
         self.results['n_diagnosed'].values)
     sim.results.update(self.results)
     return
Esempio n. 2
0
def drawAngleDistribution(filename):
  try:
    f = open(filename,'r')
  except IOError:
    return
  data = json.load(f)
  bounds = data["bin_boundaries"]
  bounds90 = [b-90 for b in bounds]
  bin_widths = [y-x for x,y in zip(bounds[:-1],bounds[1:])]
  weights = data["bin_weights"]
  total = sum(weights)
  densities = [weight/width for weight,width in zip(weights,bin_widths)]
  fractions = [density/total for density in densities]
  cumul_densities = pl.cumsum(densities)
  cumul_fractions = pl.cumsum(fractions)
  new_filename = fp.replace_extension(fp.down_folder(filename,"plots"),".png")
  new_filename = fp.down_folder(new_filename,"angles")
                  
  drawAngleDistributionSub(fp.append_to_filename(new_filename,"_cf"),
                           bounds90,cumul_fractions,
                           "Cumulative angle distribution",
                           "Angle to plane","Cumulative probability density")
  drawAngleDistributionSub(fp.append_to_filename(new_filename,"_cd"),
                           bounds90,cumul_densities,
                           "Cumulative angle histogram",
                           "Angle to plane","Cumulative length per degree")
  drawAngleDistributionSub(fp.append_to_filename(new_filename,"_f"),
                           bounds90,fractions,
                           "Angle distribution",
                           "Angle to plane","Probability density")
  drawAngleDistributionSub(fp.append_to_filename(new_filename,"_d"),
                           bounds90,densities,
                           "Angle histogram",
                           "Angle to plane","Length per degree")
Esempio n. 3
0
    def finalize(self, verbose=None):
        self.results['cum_exposed'].values = pl.cumsum(
            self.results['new_infections'].values) + self[
                'n_infected']  # Include initially infected people
        self.results['cum_tested'].values = pl.cumsum(
            self.results['new_tests'].values)
        self.results['cum_diagnosed'].values = pl.cumsum(
            self.results['new_diagnoses'].values)
        self.results['cum_deaths'].values = pl.cumsum(
            self.results['new_deaths'].values)
        self.results['cum_recoveries'].values = pl.cumsum(
            self.results['new_recoveries'].values)

        # Add in the results from the interventions
        for intervention in self['interventions']:
            intervention.finalize(self)  # Execute any post-processing

        # Scale the results
        for reskey in self.reskeys:
            if self.results[reskey].scale:
                self.results[reskey].values *= self['scale']

        # Perform calculations on results
        self.compute_doubling()
        self.compute_r_eff()
        self.likelihood()

        # Convert to an odict to allow e.g. sim.people[25] later, and results to an objdict to allow e.g. sim.results.diagnoses
        self.people = sc.odict(self.people)
        self.results = sc.objdict(self.results)
        self.results_ready = True

        return
Esempio n. 4
0
 def finalize(self, sim, *args, **kwargs):
     self.results['cum_tested'] = cv.Result(
         'Cumulative number tested',
         values=pl.cumsum(self.results['n_tested'].values))
     self.results['cum_diagnosed'] = cv.Result(
         'Cumulative number diagnosed',
         values=pl.cumsum(self.results['n_diagnosed'].values))
     sim.results.update(self.results)
     return
Esempio n. 5
0
def simulate_age_group_data(N=50, delta_true=150, pi_true=true_rate_function):
    """ generate simulated data
    """
    # start with a simple model with N rows of data
    model = data_simulation.simple_model(N)

    # record the true age-specific rates
    model.ages = pl.arange(0, 101, 1)
    model.pi_age_true = pi_true(model.ages)

    # choose age groups randomly
    age_width = mc.runiform(1, 100, size=N)
    age_mid = mc.runiform(age_width / 2, 100 - age_width / 2, size=N)
    age_width[:10] = 10
    age_mid[:10] = pl.arange(5, 105, 10)
    #age_width[10:20] = 10
    #age_mid[10:20] = pl.arange(5, 105, 10)

    age_start = pl.array(age_mid - age_width / 2, dtype=int)
    age_end = pl.array(age_mid + age_width / 2, dtype=int)

    model.input_data['age_start'] = age_start
    model.input_data['age_end'] = age_end

    # choose effective sample size uniformly at random
    n = mc.runiform(100, 10000, size=N)
    model.input_data['effective_sample_size'] = n

    # integrate true age-specific rate across age groups to find true group rate
    model.input_data['true'] = pl.nan
    model.input_data['age_weights'] = ''

    for i in range(N):
        beta = mc.rnormal(0., .025**-2)

        # TODO: clean this up, it is computing more than is necessary
        age_weights = pl.exp(beta * model.ages)
        sum_pi_wt = pl.cumsum(model.pi_age_true * age_weights)
        sum_wt = pl.cumsum(age_weights)
        p = (sum_pi_wt[age_end] - sum_pi_wt[age_start]) / (sum_wt[age_end] -
                                                           sum_wt[age_start])

        model.input_data.ix[i, 'true'] = p[i]
        model.input_data.ix[i, 'age_weights'] = ';'.join(
            ['%.4f' % w for w in age_weights[age_start[i]:(age_end[i] + 1)]])

    # sample observed rate values from negative binomial distribution
    model.input_data['value'] = mc.rnegative_binomial(
        n * model.input_data['true'], delta_true) / n

    print model.input_data.drop(['standard_error', 'upper_ci', 'lower_ci'],
                                axis=1)
    return model
Esempio n. 6
0
def simulate_age_group_data(N=50, delta_true=150, pi_true=true_rate_function):
    """ generate simulated data
    """
    # start with a simple model with N rows of data
    model = data_simulation.simple_model(N)


    # record the true age-specific rates
    model.ages = pl.arange(0, 101, 1)
    model.pi_age_true = pi_true(model.ages)


    # choose age groups randomly
    age_width = mc.runiform(1, 100, size=N)
    age_mid = mc.runiform(age_width/2, 100-age_width/2, size=N)
    age_width[:10] = 10
    age_mid[:10] = pl.arange(5, 105, 10)
    #age_width[10:20] = 10
    #age_mid[10:20] = pl.arange(5, 105, 10)

    age_start = pl.array(age_mid - age_width/2, dtype=int)
    age_end = pl.array(age_mid + age_width/2, dtype=int)

    model.input_data['age_start'] = age_start
    model.input_data['age_end'] = age_end


    # choose effective sample size uniformly at random
    n = mc.runiform(100, 10000, size=N)
    model.input_data['effective_sample_size'] = n


    # integrate true age-specific rate across age groups to find true group rate
    model.input_data['true'] = pl.nan
    model.input_data['age_weights'] = ''

    for i in range(N):
        beta = mc.rnormal(0., .025**-2)

        # TODO: clean this up, it is computing more than is necessary
        age_weights = pl.exp(beta*model.ages)
        sum_pi_wt = pl.cumsum(model.pi_age_true*age_weights)
        sum_wt = pl.cumsum(age_weights)
        p = (sum_pi_wt[age_end] - sum_pi_wt[age_start]) / (sum_wt[age_end] - sum_wt[age_start])

        model.input_data.ix[i, 'true'] = p[i]
        model.input_data.ix[i, 'age_weights'] = ';'.join(['%.4f'%w for w in age_weights[age_start[i]:(age_end[i]+1)]])

    # sample observed rate values from negative binomial distribution
    model.input_data['value'] = mc.rnegative_binomial(n*model.input_data['true'], delta_true) / n

    print model.input_data.drop(['standard_error', 'upper_ci', 'lower_ci'], axis=1)
    return model
Esempio n. 7
0
def random_walk(steps):
    thetas = n.random.uniform(0, 2*p.pi, steps)

    real = [n.cos(t) for t in thetas]
    imag = [n.sin(t) for t in thetas]

    xs = p.cumsum(real)
    ys = p.cumsum(imag)

    ell = []
    for i in xrange(steps):
        ell.append([xs[i], ys[i]])

    return n.array(ell)
Esempio n. 8
0
def synthbeats(duration, meanhr=60, stdhr=1, samplingfreq=250, sinfreq=None):
    #Minimaly based on the parameters from:
    #http://physionet.cps.unizar.es/physiotools/ecgsyn/Matlab/ecgsyn.m
    #If freq exist it will be used to generate a sin instead of using rand
    #Inputs: duration in seconds
    #Returns: signal, peaks

    t = np.arange(duration * samplingfreq) / float(samplingfreq)
    signal = np.zeros(len(t))

    print(len(t))
    print(len(signal))

    if sinfreq == None:

        npeaks = 1.2 * (duration * meanhr / 60)
        # add 20% more beats for some cummulative error
        hr = pl.randn(int(npeaks)) * stdhr + meanhr
        peaks = pl.cumsum(60. / hr) * samplingfreq
        peaks = peaks.astype('int')
        peaks = peaks[peaks < t[-1] * samplingfreq]

    else:
        hr = meanhr + sin(2 * pi * t * sinfreq) * float(stdhr)
        index = int(60. / hr[0] * samplingfreq)
        peaks = []
        while index < len(t):
            peaks += [index]
            index += int(60. / hr[index] * samplingfreq)

    signal[peaks] = 1.0

    return t, signal, peaks
Esempio n. 9
0
def place_axes ( fig, x,y, fieldwidths, fieldheights, showy, margins, wh, twiny=False ):
    w,h = wh
    fieldwidths = pl.array ( fieldwidths, 'd' )
    fieldheights = pl.array ( fieldheights, 'd' )
    cwidths = pl.concatenate ( [[0],pl.cumsum ( fieldwidths )] )

    ax = []
    for i in xrange (len(fieldwidths)):
        xpos = float(x+cwidths[i]+margins[i])/w
        ypos = (y+1.)/h
        width = float(fieldwidths[i]-2*margins[i])/w
        heigh = (fieldheights[i]-2)/h
        if heigh>0:
            yax = showy[i]
            if len ( ax )>0 and twiny:
                ax.append (
                    graphics.prepare_axes (
                        fig.add_axes ( [xpos,ypos,width,heigh],
                            sharey=ax[0] ),
                        haveon=('bottom','left') if yax else ('bottom',) )
                    )
            else:
                ax.append (
                    graphics.prepare_axes (
                        fig.add_axes ( [xpos,ypos,width,heigh] ),
                        haveon=('bottom','left') if yax else ('bottom',) )
                    )
    return ax
Esempio n. 10
0
def graphTopKSubredditWords(subreddit, K):
    if K < 1:
        raise ValueError("Invalid K value")
    #get the key words for the subreddit
    subredditWords = scrape_subreddit(subreddit, 15)
    #sum dictionary to get the total number of keywords
    Len = sum(subredditWords.values())
    #get top k words from ordered dictionary
    #0 ... K-1 for K words
    wordsToPlot = []
    for key in range(0, K):
        wordsToPlot.append(subredditWords.popitem(False))
    #print(wordsToPlot)
    percentArray = []
    #set for long the x axis will be
    xArray = range(1, K + 1)
    for item in wordsToPlot:
        #find the percentage the top words are of entire word back
        x = percentage(item[1], Len)
        percentArray.append(x)
    #cumlitative sum of top k words
    test = pl.cumsum(percentArray)
    pl.plot(xArray, test)
    #after running multiple times starting at 100
    #10 was found as the best way to display the data, since they never
    #went above 10 percent
    pl.axis([0, K, 0, 10])
    pl.xticks(xArray)
    pl.ylabel("Percentage of keywords for Subreddit")
    pl.xlabel("The top K frequent keywords")
    pl.title(subreddit)
    pl.show()
    return
Esempio n. 11
0
def graphTopKSubredditWords(subreddit,K):
    if K < 1:
        raise ValueError("Invalid K value")
    #get the key words for the subreddit
    subredditWords = scrape_subreddit(subreddit,15)
    #sum dictionary to get the total number of keywords    
    Len = sum(subredditWords.values())
    #get top k words from ordered dictionary
    #0 ... K-1 for K words
    wordsToPlot = []
    for key in range(0,K):
       wordsToPlot.append(subredditWords.popitem(False))
    #print(wordsToPlot)
    percentArray = []
    #set for long the x axis will be
    xArray = range(1,K+1)
    for item in wordsToPlot:
        #find the percentage the top words are of entire word back
        x = percentage(item[1],Len)
        percentArray.append(x)
    #cumlitative sum of top k words
    test = pl.cumsum(percentArray)
    pl.plot(xArray,test)
    #after running multiple times starting at 100
    #10 was found as the best way to display the data, since they never
    #went above 10 percent
    pl.axis([0,K,0,10])
    pl.xticks(xArray)
    pl.ylabel("Percentage of keywords for Subreddit")
    pl.xlabel("The top K frequent keywords")
    pl.title(subreddit)
    pl.show()
    return
Esempio n. 12
0
def synthbeats(duration, meanhr=60, stdhr=1, samplingfreq=250, sinfreq=None):
    #Minimaly based on the parameters from:
    #http://physionet.cps.unizar.es/physiotools/ecgsyn/Matlab/ecgsyn.m
    #If frequ exist it will be used to generate a sin instead of using rand
    #Inputs: duration in seconds
    #Returns: signal, peaks

    t = np.arange(duration * samplingfreq) / float(samplingfreq)
    signal = np.zeros(len(t))

    print(len(t))
    print(len(signal))

    if sinfreq == None:

        npeaks = 1.2 * (duration * meanhr / 60)
        # add 20% more beats for some cummulative error
        hr = pl.randn(npeaks) * stdhr + meanhr
        peaks = pl.cumsum(60. / hr) * samplingfreq
        peaks = peaks.astype('int')
        peaks = peaks[peaks < t[-1] * samplingfreq]

    else:
        hr = meanhr + sin(2 * pi * t * sinfreq) * float(stdhr)
        index = int(60. / hr[0] * samplingfreq)
        peaks = []
        while index < len(t):
            peaks += [index]
            index += int(60. / hr[index] * samplingfreq)

    signal[peaks] = 1.0

    return t, signal, peaks
Esempio n. 13
0
def drawGroupAngleDistribution(filename,filenames, control=False):
  data = []
  for fn in filenames:
    try:
      f = open(fn,'r')
    except IOError:
      return
    data.append(json.load(f))
    data[-1]["filename"] = fn
  if control:
    cbins,cweights = angleDistributionControlData(180)
    data.append({"bin_boundaries":cbins,"bin_weights":cweights,"filename":"Control"})
  default_bounds = data[0]["bin_boundaries"]
  for d in data:
    bounds = d["bin_boundaries"]
    if bounds != default_bounds:
      print "Warning: bin boundaries differ in group angle distribution",data[0]["filename"],d["filename"]
    d["bounds90"] = [b-90 for b in bounds]
    bin_widths = [y-x for x,y in zip(bounds[:-1],bounds[1:])]
    weights = d["bin_weights"]
    total = sum(weights)
    d["fractions"] = [weight/(width*total) for weight,width in zip(weights,bin_widths)]
    d["cumul_fractions"] = pl.cumsum(d["fractions"])
  new_filename = fp.replace_extension(fp.down_folder(filename,"plots"),".png")
  new_filename = fp.down_folder(new_filename,"angles")
  drawGroupAngleDistributionSub(fp.append_to_filename(new_filename,"_f"),
                                [d["bounds90"] for d in data],
                                [d["fractions"] for d in data],
                                "Angle distributions",
                                "Angle to plane", "Probability density")
  drawGroupAngleDistributionSub(fp.append_to_filename(new_filename,"_cf"),
                                [d["bounds90"] for d in data],
                                [d["cumul_fractions"] for d in data],
                                "Cumulative angle distributions",
                                "Angle to plane", "Cumulative probability density")
Esempio n. 14
0
def getEffortSpent(project, session):
  ''' Determine the effort spent on the project.
  
      returned is a tuple (times, spent). Both values are lists of equal length.
      times are in weeks since project start.
  '''
  efforts = session.query(PlannedEffort).\
                    filter(PlannedEffort.Project==project.Id).\
                    order_by(PlannedEffort.Week).all()
  times = []
  current_week = None
  sums = []
  current_sum = 0.0
  for e in efforts:
    if e.Week != None:
      if e.Week != current_week:
        times.append(e.Week)
        current_week = e.Week
        sums.append(current_sum)
        current_sum = e.Hours
      else:
        current_sum += e.Hours
  sums.append(current_sum)
  times.append(e.Week)
    
  # Convert the date ordinal number to a week number since project start.
  times = [(t.dt.toordinal()-project.FirstWeek.dt.toordinal())/7.0 for t in times]
  # Convert the sums (which are in hours) into mandays
  sums = [s/8.0 for s in sums]
  csum = pylab.cumsum(sums)
  
  return times, csum
def calc_cma(arr):
    cum_sum_arr = plb.cumsum(arr)
    cum_avg_list = []
    for i, x in enumerate(cum_sum_arr, 1):
        if i > 1:
            cum_avg_list.append(x / i)
    cum_avg_arr = plb.asarray(cum_avg_list)
    print("The CMA of this SMA is: ", cum_avg_arr)
Esempio n. 16
0
def calcL2Error(weight1,weight2,bins):
  weights = [weight1,weight2]
  total = [sum(w) for w in weights]
  densities = [[weight/width for weight,width in zip(w,bins)] for w in weights]
  fractions = [[density/t for density in d] for (t,d) in zip(total,densities)]
  cumul_fractions = [pl.cumsum(f) for f in fractions]
  cumul_error = [a-b for (a,b) in zip(*cumul_fractions)]
  cumul_squared_error = [a*a for a in cumul_error]
  cumul_squared_integral = [a*b for (a,b) in zip(cumul_squared_error,bins)]
  return pl.sqrt(sum(cumul_squared_integral))
Esempio n. 17
0
def DFA(data, npoints=None, degree=1, use_median=False):
    """
    computes the detrended fluctuation analysis
    returns the fluctuation F and the corresponding window length L

    :args:
        data (n-by-1 array): the data from which to compute the DFA
        npoints (int): the number of points to evaluate; if omitted the log(n)
            will be used
        degree (int): degree of the polynomial to use for detrending
        use_median (bool): use median instead of mean fluctuation

    :returns:
        F, L: the fluctuation F as function of the window length L

    """
    # max window length: n/4

    #0th: compute integral
    integral = cumsum(data - mean(data))

    #1st: compute different window lengths
    n_samples = npoints if npoints is not None else int(log(len(data)))
    lengths = sort(array(list(set(
            logspace(2,log(len(data)/4.),n_samples,base=exp(1)).astype(int)
             ))))

    #print lengths
    all_flucs = []
    used_lengths = []
    for wlen in lengths:
        # compute the fluctuation of residuals from a linear fit
        # according to Kantz&Schreiber, ddof must be the degree of polynomial,
        # i.e. 1 (or 2, if mean also counts? -> see in book)
        curr_fluc = []
#        rrt = 0
        for startIdx in arange(0,len(integral),wlen):
            pt = integral[startIdx:startIdx+wlen]
            if len(pt) > 3*(degree+1):
                resids = pt - polyval(polyfit(arange(len(pt)),pt,degree),
                                  arange(len(pt)))
#                if abs(wlen - lengths[0]) < -1:
#                    print resids[:20]
#                elif rrt == 0:
#                    print "wlen", wlen, "l0", lengths[0]
#                    rrt += 1
                curr_fluc.append(std(resids, ddof=degree+1))
        if len(curr_fluc) > 0:
            if use_median:
                all_flucs.append(median(curr_fluc))
            else:
                all_flucs.append(mean(curr_fluc))
            used_lengths.append(wlen)
    return array(all_flucs), array(used_lengths)
Esempio n. 18
0
def find_factors(idat, odat, k = None):
    """
    A routine to compute the main predictors (linear combinations of
    coordinates) in idat to predict odat.

    *Parameters*
        idat: d x n data matrix,
            with n measurements, each of dimension d
        odat: q x n data matrix
             with n measurements, each of dimension q

    *Returns*
        **Depending on whether or not** *k* **is provided, the returned
        value is different**

      * if k is given, compute the first k regressors and return an orthogonal
        matrix that contains the regressors in its colums,
        i.e. reg[0,:] is the first regressor

      * if k is not given or None, return a d-dimensional vector v(k)
        explaining which fraction of the total predictable variance can be
        explained using only k regressors.

    **NOTE**


    #. idat and odat must have zero mean
    #. To interpret the regressors, it is advisable to have the
       for columns of idat having the same variance
    """
    # transform into z-scores
    u, s, v = svd(idat, full_matrices = False)
    su = dot(diag(1./s), u.T)

    z = dot(su,idat)
    # ! Note that the covariance of z is *NOT* 1, but 1/n; z*z.T = 1 !

    # least-squares regression:
    A = dot(odat, pinv(z))

    uA, sigma_A, vA = svd(A, full_matrices = False)
    if k is None:
        vk = cumsum(sigma_A**2) / sum(sigma_A**2)
        return vk

    else:
    # choose k predictors
        sigma_A1 = sigma_A.copy()
        sigma_A1[k:] = 0
        A1 = reduce(dot, [uA, diag(sigma_A1), vA])
        B = dot(A1, su)
        uB, sigma_B, vB = svd(B, full_matrices = False)
        regs = vB[:k,:].T
        return regs
Esempio n. 19
0
 def plot_upd_impz(self, fig, taps, a=1):
     if not signal:
         return
     self.plot_init_impz(fig)
     ax1, ax2 = fig.get_axes()
     l = len(taps)
     impulse = pylab.repeat(0.,l); impulse[0] =1.
     x = arange(0,l)
     response = signal.lfilter(taps,a,impulse)
     ax1.stem(x, response)
     step = pylab.cumsum(response)
     ax2.stem(x, step)
Esempio n. 20
0
def unwrap(xs, min_value, max_value, in_place=False, jump_fraction=0.5):
    range_ = max_value - min_value
    jump_threshold = range_ * jump_fraction
    diffs = pl.diff(xs)
    octave_diffs = pl.zeros(len(xs) - 1, dtype=pl.int64)
    octave_diffs[diffs > jump_threshold] = -1
    octave_diffs[diffs < -jump_threshold] = 1
    octaves = pl.append(0, pl.cumsum(octave_diffs))
    if in_place:
        xs += octaves * range_
    else:
        return xs + octaves * range_
Esempio n. 21
0
def generate_data(N, delta_true, pi_true, heterogeneity, bias, sigma_prior):
    a = pl.arange(0, 101, 1)
    pi_age_true = pi_true(a)

    model = data_simulation.simple_model(N)
    model.parameters['p']['parameter_age_mesh'] = range(0, 101, 10)
    model.parameters['p']['smoothness'] = dict(amount='Moderately')
    model.parameters['p']['heterogeneity'] = heterogeneity

    age_start = pl.array(mc.runiform(0, 100, size=N), dtype=int)
    age_end = pl.array(mc.runiform(age_start, 100, size=N), dtype=int)

    age_weights = pl.ones_like(a)
    sum_pi_wt = pl.cumsum(pi_age_true*age_weights)
    sum_wt = pl.cumsum(age_weights)
    p = (sum_pi_wt[age_end] - sum_pi_wt[age_start]) / (sum_wt[age_end] - sum_wt[age_start])

    # correct cases where age_start == age_end
    i = age_start == age_end
    if pl.any(i):
        p[i] = pi_age_true[age_start[i]]

    n = mc.runiform(10000, 100000, size=N)

    model.input_data['age_start'] = age_start
    model.input_data['age_end'] = age_end
    model.input_data['effective_sample_size'] = n
    model.input_data['true'] = p
    model.input_data['value'] = mc.rnegative_binomial(n*p, delta_true*n*p) / n * pl.exp(bias)

    emp_priors = {}
    emp_priors['p', 'mu'] = pi_age_true
    emp_priors['p', 'sigma'] = sigma_prior*pi_age_true
    model.emp_priors = emp_priors

    model.a = a
    model.pi_age_true = pi_age_true
    model.delta_true = delta_true

    return model
def plot_cascade(cascade, model):

    weights = []
    thresholds = []
    for i, stage in enumerate(cascade.stages):
        #print("stage:" , i)
        if stage.feature_type == stage.Level2DecisionTree:
            weights.append(stage.weight)
            thresholds.append(stage.cascade_threshold)
        elif stage.feature_type == stage.Stumps:
            weights.append(stage.weight)
            thresholds.append(stage.cascade_threshold)
        else:
            raise Exception("Received an unhandled stage.feature_type")
    # end of "for each stage"

    for i, stage in enumerate(cascade.stages):
        #print("stage %i cascade threshold:" % i , stage.cascade_threshold)
        #print("stage %i weight:" % i , weights[i])
        pass

    if thresholds[0] < -1E5:
        print("The provided model seems not have a soft cascade, " \
              "skipping plot_cascade")
        return

    # create new figure
    #fig =
    pylab.figure()
    pylab.clf()  # clear the figure
    pylab.gcf().set_facecolor("w")  # set white background
    pylab.grid(True)

    #pylab.spectral() # set the default color map

    # draw the figure
    max_scores = pylab.cumsum(pylab.absolute(weights))
    pylab.plot(max_scores, label="maximum possible score")
    pylab.plot(thresholds, label="cascade threshold")

    pylab.legend(loc="upper left", fancybox=True)
    pylab.xlabel("Cascade stage")
    pylab.ylabel("Detection score")

    title = "Soft cascade"
    if model:
        title = "Soft cascade for model '%s' over '%s' dataset" \
                % (model.detector_name, model.training_dataset_name)
    pylab.title(title)
    pylab.draw()

    return
Esempio n. 23
0
def plot_cascade(cascade, model):
    
    weights = []
    thresholds = []
    for i, stage in enumerate(cascade.stages):
        #print("stage:" , i)
        if stage.feature_type == stage.Level2DecisionTree:
            weights.append(stage.weight)
            thresholds.append(stage.cascade_threshold) 
        elif stage.feature_type == stage.Stumps:
            weights.append(stage.weight)
            thresholds.append(stage.cascade_threshold)       
        else:
            raise Exception("Received an unhandled stage.feature_type")            
    # end of "for each stage"

    for i, stage in enumerate(cascade.stages):
        #print("stage %i cascade threshold:" % i , stage.cascade_threshold)
        #print("stage %i weight:" % i , weights[i])
        pass
    
    if thresholds[0] < -1E5:
        print("The provided model seems not have a soft cascade, " \
              "skipping plot_cascade")
        return

    # create new figure    
    #fig = 
    pylab.figure()
    pylab.clf() # clear the figure
    pylab.gcf().set_facecolor("w") # set white background            
    pylab.grid(True)

    #pylab.spectral() # set the default color map    
        
    # draw the figure
    max_scores = pylab.cumsum(pylab.absolute(weights))
    pylab.plot(max_scores, label="maximum possible score")    
    pylab.plot(thresholds, label="cascade threshold")
    
    pylab.legend(loc ="upper left", fancybox=True)
    pylab.xlabel("Cascade stage")
    pylab.ylabel("Detection score")
  
    title = "Soft cascade"
    if model:
        title = "Soft cascade for model '%s' over '%s' dataset" \
                % (model.detector_name, model.training_dataset_name)
    pylab.title(title)    
    pylab.draw() 

    return
Esempio n. 24
0
 def plot_upd_impz(self, fig, taps, a=1):
     if not signal:
         return
     self.plot_init_impz(fig)
     ax1, ax2 = fig.get_axes()
     l = len(taps)
     impulse = pylab.repeat(0., l)
     impulse[0] = 1.
     x = arange(0, l)
     response = signal.lfilter(taps, a, impulse)
     ax1.stem(x, response)
     step = pylab.cumsum(response)
     ax2.stem(x, step)
Esempio n. 25
0
def s(x,n):
    num = pl.zeros(n+1)
    denom = pl.zeros(n+1)
    result = pl.zeros(n+1)
    for i in pl.arange(0,n+1,1):
        num[i] = x**i
        denom[i] = factorial(i)
        result[i] = num[i]/denom[i]
        partial = pl.cumsum(result)
    pl.plot(pl.arange(0,n+1,1), partial, 'bo')
    pl.xlabel('n')
    pl.ylabel('s(x,n)')
    pl.title('Partial Sums Graph of s(x,n,)')
    pl.show()
    return partial
Esempio n. 26
0
    def plot(self, lw=2, fontsize=16, marker='o', logy=False):
        """plot the number of downloads

        The data used is the data stored in the :attr:`df` attribute.

        :param int lw: width of the curves
        :param int fontsize: fontsize used in titles
        :param marker:
        :param bool logy: set y-axis to logarithmic scale


        #. first plot shows the cumulative downloads
        #. second plot shows the individual downloads

        .. plot::

            from pypiview import PYPIView
            p = PYPIView("requests", verbose=False)
            p.plot()

        """

        times = self.df.index
        fig, (ax1, ax2) = pylab.subplots(2,1, figsize=(12,8))
        fig.autofmt_xdate()

        for this in self.df.columns:
            data = self.df[this].values
            ax1.plot(times, data, lw=lw, marker='o')
            ax2.plot(times, pylab.cumsum(data), lw=lw, marker='o')


        ax1.legend(list(self.df.columns), loc="upper left")
        ax1.set_title("Downloads of each release", fontsize=fontsize)
        ax1.grid(True)
        #ax1.xticks(rotation=45, fontsize=fontsize)
        ax2.legend(list(self.df.columns), loc="upper left")
        ax2.set_title("Cumulative downloads of each release", fontsize=fontsize)
        ax2.grid(True)
        #ax2.xticks(rotation=45, fontsize=fontsize)

        try:
            pylab.tight_layout()
        except:
            pass
        if logy:
            ax1.semilogy()
            ax2.semilogy()
Esempio n. 27
0
def repartplotdata(data_in, _color='k', _xlabel = 'Rank',
        _ylabel = 'Cumulative Percentage of Data',
        _title = 'Repartition of values', _name = 'Data', _lw = 2,
        _fs = 'x-large', _fs_legend='medium', _ls = '-', _loc=0):
    "Plot the repartition of a data array"
    data = pylab.array(data_in, copy=True)
    data.sort()
    rank = pylab.arange(1, len(data) + 1)
    values = pylab.cumsum(data[::-1])
    pylab.plot(rank, 100 * values / values[-1], _color, lw = _lw,
            drawstyle = 'steps', label = _name, ls = _ls)
    pylab.xlabel(_xlabel, size = _fs)
    pylab.ylabel(_ylabel, size = _fs)
    pylab.title(_title, size = _fs)
    font = FontProperties(size = _fs_legend)
    pylab.legend(loc = _loc, prop = font)
Esempio n. 28
0
 def _generate_basis(self):
     """
     This method generates a basis of the linear manifold w.r.t the \
     canonical basis. Each basis vector leaves in the ambiant space \
     dimension and the number of vectors is equal to intrinsic dimension.
     """
     data = pl.stack([pl.ones(self.input_dimension), self.slope],
                     1).flatten().astype('float32')
     indices = pl.stack([
         pl.arange(self.input_dimension),
         pl.full(self.input_dimension, self.input_dimension)
     ], 1).flatten().astype('int32')
     indptr = pl.full(self.input_dimension + 1, 2, dtype=pl.float32)
     indptr[0] = 0
     basis = sp.csc_matrix(
         (data, indices, pl.cumsum(indptr)),
         shape=(self.ambiant_dimension, self.input_dimension))
     return basis
Esempio n. 29
0
def age_standardize_approx(name, age_weights, mu_age, age_start, age_end,
                           ages):
    """ Generate PyMC objects for approximating the integral of gamma from age_start[i] to age_end[i]

    Parameters
    ----------
    name : str
    age_weights : array, len == len(ages)
    mu_age : pymc.Node with values of PCGP
    age_start, age_end : array

    Results
    -------
    Returns dict of PyMC objects, including 'mu_interval'
    the approximate integral of gamma  data predicted stochastic
    """
    cum_sum_weights = pl.cumsum(age_weights)

    @mc.deterministic(name='cum_sum_mu_%s' % name)
    def weighted_sum_mu(mu_age=mu_age, age_weights=age_weights):
        return pl.cumsum(mu_age * age_weights)

    age_start = age_start.__array__().clip(ages[0], ages[-1]) - ages[
        0]  # FIXME: Pandas bug, makes clip require __array__()
    age_end = age_end.__array__().clip(ages[0], ages[-1]) - ages[0]
    pl.seterr('ignore')

    @mc.deterministic(name='mu_interval_%s' % name)
    def mu_interval(weighted_sum_mu=weighted_sum_mu,
                    cum_sum_weights=cum_sum_weights,
                    mu_age=mu_age,
                    age_start=pl.array(age_start, dtype=int),
                    age_end=pl.array(age_end, dtype=int)):
        mu = (weighted_sum_mu[age_end] - weighted_sum_mu[age_start]) / (
            cum_sum_weights[age_end] - cum_sum_weights[age_start])

        # correct cases where age_start == age_end
        i = age_start == age_end
        if pl.any(i):
            mu[i] = mu_age[age_start[i]]

        return mu

    return dict(mu_interval=mu_interval)
Esempio n. 30
0
def serialize(settings, out_fn = 'tmpdata'):
    scen, output = output_from_settings(settings)
    f_diagrams = fds(output.ml, scen)
    capacity, w, ff, j = zip(*f_diagrams)
    _counts, _dt, _flows = map(lambda fn: fn(settings), [counts, dt, flows])
    m = len(_counts[0])
    n = len(output.ml_lengths)
    Time = pylab.array([range(m)] * n) / 3600.0 * _dt
    Lengths = pylab.array([output.ml_lengths] * m).transpose() / 1000.0
    XLengths = pylab.array([pylab.cumsum(output.ml_lengths)] * m).transpose() / 1000.0
    Lanes = pylab.array([output.ml_lanes] * m).transpose()
    density = _counts[output.ml_idxs,:] / Lengths / Lanes
    flow = _flows[output.ml_idxs,:] / _dt * 3600.0 / Lanes
    velocity = pylab.nan_to_num(flow / density)
    queues = pylab.array([_counts[idx, :] if idx is not None else [0.0] * m for idx in output.or_idxs])
    srcs = queues = pylab.array([_counts[idx, :] if idx is not None else [0.0] * m for idx in output.src_idxs])
    queues += srcs
    ser_out = [
        output.ml_idxs,
        output.ml_lengths,
        output.ml_lanes,
        output.or_idxs,
        capacity,
        w,
        ff,
        j,
        Time,
        Lengths,
        XLengths,
        Lanes,
        density,
        flow, 
        velocity,
        queues,
        _dt,
        n,
        m
    ]
    import pickle
    json = pickle
    with open(out_fn, 'w') as fn:
        json.dump(ser_out, fn)
Esempio n. 31
0
def _test_unwrap():
    pl.seed(1)
    xs = pl.cumsum(scipy.stats.norm.rvs(scale=1000, size=10000))
    axes = pl.subplot(411)
    pl.plot(xs)
    xs %= 2**16
    pl.subplot(412, sharex=axes)
    pl.plot(xs)
    in_place = False
    if in_place:
        pl.subplot(413, sharex=axes)
        unwrap(xs, 0, 2**16, True)
        pl.plot(xs)
        pl.subplot(414, sharex=axes)
        pl.plot(xs)
    else:
        pl.subplot(413, sharex=axes)
        pl.plot(unwrap(xs, 0, 2**16))
        pl.subplot(414, sharex=axes)
        pl.plot(xs)
    pl.show()
Esempio n. 32
0
    def guessParam(self):
        """looks for 2 positive peaks of around the same width. first one is simply searched for at the maximum of the curve"""
        self.fitterAnnex = FitterLorentz()
        self.fitterAnnex.Xdata = self.Xdata
        self.fitterAnnex.Ydata = self.Ydata
        self.fitterAnnex.fit(
            verboseLevel=0,
            param_fixed={__X0_HZ__: self.Xdata[self.Ydata.argmax()]})
        self.residu = self.Ydata - self.fitterAnnex.Y
        self.residucum = pylab.cumsum(self.residu)

        #        left = self.Xdata[self.residucum.argmax()]
        #       right = self.Xdata[self.residucum.argmin()]

        ### find the largest increase of residucum on an interval of FWHM(first peak)
        x0 = self.Xdata[0]
        FWHM1 = self.fitterAnnex.param_fitted[__GAMMA_HZ__]
        for i, x in enumerate(self.Xdata):
            if abs(x - x0) > abs(FWHM1):
                discreteWidth = i
                break
        discreteWidth = discreteWidth / 2  #this might help when the guess is to wide
        if discreteWidth == 0:
            discreteWidth = 1
        vals = self.residucum[discreteWidth:] - self.residucum[:-discreteWidth]
        x0_2 = self.Xdata[vals.argmax() + discreteWidth / 2]

        FWHM2 = FWHM1
        #        x0_2 = (left+right)/2
        #       FWHM2 = abs(right-left)/5
        a2 = vals.max() * FWHM2 / 5
        param_guess = self.fitterAnnex.param_guess
        param_guess[__X0_HZ__] = self.fitterAnnex.param_fixed[__X0_HZ__]

        param_guess[__OFFSET__] = 0  #no offset
        param_guess[__GAMMA_2_HZ__] = param_guess[__GAMMA_HZ__]  #FWHM2
        param_guess[__X0_2__] = x0_2
        param_guess[__AREA_2__] = a2

        return param_guess
Esempio n. 33
0
File: dsp.py Progetto: mwalde/davepy
def view_filter(h, fp=None, fs=None):
    '''view filter'''
    w, H = signal.freqz(h, 1)
    H_phase = pl.unwrap([pl.degrees(cmath.phase(H[i])) for i in range(len(H))],
                        180)
    H = 20 * pl.log10(abs(H[:]))
    x = range(0, len(h))
    step = pl.cumsum(h)

    pl.figure(figsize=(16, 6.6), dpi=80)

    pl.subplot(221)
    pl.stem(x, h)
    pl.ylabel('Amplitude')
    pl.xlabel(r'n (samples)')
    pl.title(r'Impulse response')
    pl.text(0.2, 0.7, 'N_taps = {0}'.format(len(h)))

    pl.subplot(222)
    pl.stem(x, step)
    pl.ylabel('Amplitude')
    pl.xlabel(r'n (samples)')
    pl.title(r'Step response')

    pl.subplot(223)
    pl.plot(w / (2.0 * pl.pi), H)
    pl.ylabel('Magnitude (db)')
    pl.xlabel(r'Normalized Frequency (x$\pi$rad/sample)')
    pl.title(r'Frequency response')
    if fp != None:
        pl.axvline(fp, linewidth=1, color='k', ls='-')
    if fs != None:
        pl.axvline(fs, linewidth=1, color='k', ls='-')

    pl.subplot(224)
    pl.plot(w / (2.0 * pl.pi), H_phase)
    pl.ylabel('Phase (radians)')
    pl.xlabel(r'Normalized Frequency (Hz)')
    pl.title(r'Phase response')
Esempio n. 34
0
def age_standardize_approx(name, age_weights, mu_age, age_start, age_end, ages):
    """ Generate PyMC objects for approximating the integral of gamma from age_start[i] to age_end[i]

    Parameters
    ----------
    name : str
    age_weights : array, len == len(ages)
    mu_age : pymc.Node with values of PCGP
    age_start, age_end : array

    Results
    -------
    Returns dict of PyMC objects, including 'mu_interval'
    the approximate integral of gamma  data predicted stochastic
    """
    cum_sum_weights = pl.cumsum(age_weights)

    @mc.deterministic(name='cum_sum_mu_%s'%name)
    def weighted_sum_mu(mu_age=mu_age, age_weights=age_weights):
        return pl.cumsum(mu_age*age_weights)

    age_start = age_start.__array__().clip(ages[0], ages[-1]) - ages[0]  # FIXME: Pandas bug, makes clip require __array__()
    age_end = age_end.__array__().clip(ages[0], ages[-1]) - ages[0]
    pl.seterr('ignore')
    @mc.deterministic(name='mu_interval_%s'%name)
    def mu_interval(weighted_sum_mu=weighted_sum_mu, cum_sum_weights=cum_sum_weights,
                    mu_age=mu_age,
                    age_start=pl.array(age_start, dtype=int),
                    age_end=pl.array(age_end, dtype=int)):
        mu = (weighted_sum_mu[age_end] - weighted_sum_mu[age_start]) / (cum_sum_weights[age_end] - cum_sum_weights[age_start])
        
        # correct cases where age_start == age_end
        i = age_start == age_end
        if pl.any(i):
            mu[i] = mu_age[age_start[i]]

        return mu

    return dict(mu_interval=mu_interval)
def stoc_eqs(INP,ts): 
	V = INP
	Rate=np.zeros((8))
	Change=np.zeros((8,3))
	N=pl.sum(V[range(3)])
	Rate[0] = beta*V[0]*V[1]/N;  Change[0,:]=([-1, +1, 0]);
	Rate[1] = gamma*V[1];  Change[1,:]=([0, -1, +1]);
	Rate[2] = mu*N;  Change[2,:]=([+1, 0, 0]);
	Rate[3] = mu*V[0];  Change[3,:]=([-1, 0, 0]);
	Rate[4] = mu*V[1];  Change[4,:]=([0, -1, 0]);
	Rate[5] = mu*V[2];  Change[5,:]=([0, 0, -1]);
	Rate[6] = epsilon*V[0];  Change[6,:]=[-1, +1, 0];
	Rate[7] = delta;  Change[7,:]=[0, +1, 0];
	R1=pl.rand();
	R2=pl.rand();
	ts = -np.log(R2)/(np.sum(Rate));
	m=min(pl.find(pl.cumsum(Rate)>=R1*pl.sum(Rate)));
	V[range(3)]=V[range(3)]+Change[m,:]
	V[3]=0; V[4]=0.;
	if m == 6: V[3] = 1.
	if m == 7: V[4] = 1.
	return [V,ts]
Esempio n. 36
0
    def guessParam(self):
        """looks for 2 positive peaks of around the same width. first one is simply searched for at the maximum of the curve"""
        self.fitterAnnex = FitterLorentz()
        self.fitterAnnex.Xdata = self.Xdata
        self.fitterAnnex.Ydata = self.Ydata
        self.fitterAnnex.fit(verboseLevel = 0,param_fixed = {__X0_HZ__:self.Xdata[self.Ydata.argmax()]})
        self.residu = self.Ydata-self.fitterAnnex.Y
        self.residucum = pylab.cumsum(self.residu)

#        left = self.Xdata[self.residucum.argmax()]
#       right = self.Xdata[self.residucum.argmin()]

        ### find the largest increase of residucum on an interval of FWHM(first peak)
        x0 = self.Xdata[0]
        FWHM1 = self.fitterAnnex.param_fitted[__GAMMA_HZ__]
        for i,x in enumerate(self.Xdata):
            if abs(x-x0)>abs(FWHM1):
                discreteWidth = i
                break
        discreteWidth = discreteWidth/2 #this might help when the guess is to wide
        if discreteWidth==0:
            discreteWidth = 1
        vals = self.residucum[discreteWidth:]-self.residucum[:-discreteWidth]
        x0_2 = self.Xdata[vals.argmax()+discreteWidth/2]

        FWHM2 = FWHM1
#        x0_2 = (left+right)/2
 #       FWHM2 = abs(right-left)/5
        a2 = vals.max()*FWHM2/5
        param_guess = self.fitterAnnex.param_guess
        param_guess[__X0_HZ__] = self.fitterAnnex.param_fixed[__X0_HZ__]

        param_guess[__OFFSET__] = 0 #no offset
        param_guess[__GAMMA_2_HZ__] = param_guess[__GAMMA_HZ__]#FWHM2
        param_guess[__X0_2__] = x0_2
        param_guess[__AREA_2__] = a2

        return param_guess
Esempio n. 37
0
def view_filter(h, fp=None, fs=None):
	'''view filter'''
	w, H = signal.freqz(h,1)
	H_phase = pl.unwrap([pl.degrees(cmath.phase(H[i])) for i in range(len(H))], 180)
	H = 20 * pl.log10 (abs(H[:]))
	x = range(0,len(h))
	step = pl.cumsum(h)
	
	pl.figure(figsize=(16, 6.6), dpi=80)
	
	pl.subplot(221)
	pl.stem(x, h)
	pl.ylabel('Amplitude')
	pl.xlabel(r'n (samples)')
	pl.title(r'Impulse response')
	pl.text(0.2, 0.7, 'N_taps = {0}'.format(len(h)))
	
	pl.subplot(222)
	pl.stem(x, step)
	pl.ylabel('Amplitude')
	pl.xlabel(r'n (samples)')
	pl.title(r'Step response')	

	pl.subplot(223)
	pl.plot(w/(2.0*pl.pi), H)
	pl.ylabel('Magnitude (db)')
	pl.xlabel(r'Normalized Frequency (x$\pi$rad/sample)')
	pl.title(r'Frequency response')
	if fp != None:
		pl.axvline(fp, linewidth=1, color='k', ls='-')
	if fs != None:
		pl.axvline(fs, linewidth=1, color='k', ls='-')
	
	pl.subplot(224)
	pl.plot(w/(2.0*pl.pi), H_phase)
	pl.ylabel('Phase (radians)')
	pl.xlabel(r'Normalized Frequency (Hz)')
	pl.title(r'Phase response')
Esempio n. 38
0
def qqplot ( th, D, interval=(0,1) ):
    """Create a q-q plot of theta with respect to density D

    :Parameters:
        *th*
            a sample that might be from the density D
        *D*
            a density object
    """
    th = th.copy()
    th.sort()
    nq = len(th)
    q = (pl.arange ( 0, nq, dtype='d' )+1)/nq
    x = pl.mgrid[interval[0]:interval[1]:1j*4*nq]
    f = D(x)
    qD = pl.cumsum(f)*pl.diff(x)[0]/pl.trapz(f,x)
    th_ = []
    for q_ in q:
        i = pl.where ( qD<=q_ )[0]
        th_.append ( x[i[-1]] )

    pl.plot ( th, th_, '.' )
    pl.plot ( [th[0],th[-1]],[th[0],th[-1]], 'k:' )
Esempio n. 39
0
pl.subplot(2,2,2)
for sigma in [2, 4]:
    for mode in [1, 2]:
        dc = compute_decay(N, sigma, mode, gamma, False)
        pl.plot(dc,color[sigma]+marker[mode]+"-")
        l.append("sigma=%d, start=%d" % (sigma, mode))
pl.legend(l)


N = 15
l = []
pl.subplot(2,2,3)
for sigma in [2, 4]:
    for mode in [1, 2]:
        dc = compute_decay(N, sigma, mode, gamma, False)
        pl.plot(pl.cumsum(dc),color[sigma]+marker[mode]+"-")
        l.append("sigma=%d, start=%d" % (sigma, mode))
pl.legend(l, loc="lower right")

N = 50
l = []
pl.subplot(2,2,4)
for sigma in [2, 4]:
    for mode in [1, 2]:
        dc = compute_decay(N, sigma, mode, gamma, False)
        pl.plot(pl.cumsum(dc),color[sigma]+marker[mode]+"-")
        l.append("sigma=%d, start=%d" % (sigma, mode))
pl.legend(l, loc="lower right")


Esempio n. 40
0
non_simple_words = []  #sorted(list(set(words) - simple_english))
number_of_simple_words = 0  #len(words) - len(non_simple_words)
for w in words:
    if w in simple_english:
        number_of_simple_words += 1
    else:
        non_simple_words.append(w)
non_simple_words = Counter(non_simple_words)
toc = time()
#print "style analysis (or, writer invariant, or writeprint):"
print "total number of words {:d}".format(total_length)
print "{:3.2f}% simple english".format(number_of_simple_words * 100. /
                                       total_length)
sentences_length = map(len, [i.split(' ') for i in sentences])
print "average sentence length {:.2f}".format(pylab.mean(sentences_length))
cusum = pylab.cumsum(
    pylab.array(sentences_length) - pylab.mean(sentences_length))
print "average word length {:.2f}".format(pylab.mean(map(len, tokens)))
#print "noun usage frequency {:.2f}%".format(normalized_counts['NN'] + normalized_counts['NNP'] + normalized_counts['NNS'])
#print "verb usage frequency {:.2f}%".format(normalized_counts['VBD'] + normalized_counts['VBP'] + normalized_counts['VBZ'])

#lexical richness
#according to the paper http://link.springer.com/article/10.1023%2FA%3A1001749303137 (1998, 15 years ago, 203 citations), Yule K function, Z, and D are more constant than other measures
#currently I'm using the Yule K function
#vocabulary_size = len(set(tokens))
#print "lexical richness; type token ratio {:.3f}".format(vocabulary_size / float(len(tokens)))  # from http://nltk.org/book3/ch01.html, also known as type token ratio
#lexical richness; hapax legomena
#print "hapax legomena", nltk.probability.FreqDist(words).hapaxes()
#lexical richness; dis legomena
#print "lexical richness; dis legomena {:.3f}".format(VN(2)*1./vocabulary_size)
#lexical richness; yule K function
freqs = Counter(nltk.probability.FreqDist(words).values())
Esempio n. 41
0
    print(nerr)

    Voldmesh = Vmesh
    Vmesh = Vs.compute_vertex_values()

elapsed_time = time.time() - start_time
print(fx(0.66, 0.01))
print(fy(0.66, 0.01))
print(elapsed_time)

#Simulations
import pylab
T = 100
nsteps = 100000
#Noise Generator
rBM = lambda tv: pylab.cumsum(
    pylab.randn(tv.size) * pylab.sqrt(pylab.diff(pylab.append(0, tv))))
tv = pylab.linspace(0, T, nsteps + 1)
dt = tv[2] - tv[1]
Bx = rBM(tv)
By = rBM(tv)

#Define functions that are used in the population dynamics simulation
C = lambda x, y: Cmax * beta * x * y / (beta * x + Cmax)
fx1 = lambda x, y: r * x * (1 - x / K) - C(x, y) - fx(x, y) * x
fy1 = lambda x, y: epsilon * C(x, y) - dr * y - fy(x, y) * y
gx = lambda x: sigmax * x
gy = lambda y: sigmay * y

#profit functions for the prey and predator
profitX = lambda x, y: PrHer * sqrt(fx(x, y) * x)
profitY = lambda x, y: PrCod * sqrt(fy(x, y) * y)
def validate_age_integrating_model_sim(N=500,
                                       delta_true=.15,
                                       pi_true=quadratic):
    ## generate simulated data
    a = pl.arange(0, 101, 1)
    pi_age_true = pi_true(a)

    model = data_simulation.simple_model(N)
    #model.parameters['p']['parameter_age_mesh'] = range(0, 101, 10)
    #model.parameters['p']['smoothness'] = dict(amount='Very')

    age_start = pl.array(mc.runiform(0, 100, size=N), dtype=int)
    age_end = pl.array(mc.runiform(age_start, 100, size=N), dtype=int)

    age_weights = pl.ones_like(a)
    sum_pi_wt = pl.cumsum(pi_age_true * age_weights)
    sum_wt = pl.cumsum(age_weights)
    p = (sum_pi_wt[age_end] - sum_pi_wt[age_start]) / (sum_wt[age_end] -
                                                       sum_wt[age_start])

    # correct cases where age_start == age_end
    i = age_start == age_end
    if pl.any(i):
        p[i] = pi_age_true[age_start[i]]

    n = mc.runiform(100, 10000, size=N)

    model.input_data['age_start'] = age_start
    model.input_data['age_end'] = age_end
    model.input_data['effective_sample_size'] = n
    model.input_data['true'] = p
    model.input_data['value'] = mc.rnegative_binomial(n * p,
                                                      delta_true * n * p) / n

    ## Then fit the model and compare the estimates to the truth
    model.vars = {}
    model.vars['p'] = data_model.data_model('p', model, 'p', 'all', 'total',
                                            'all', None, None, None)
    model.map, model.mcmc = fit_model.fit_data_model(model.vars['p'],
                                                     iter=10000,
                                                     burn=5000,
                                                     thin=25,
                                                     tune_interval=100)

    graphics.plot_one_ppc(model.vars['p'], 'p')
    graphics.plot_convergence_diag(model.vars)
    graphics.plot_one_type(model, model.vars['p'], {}, 'p')
    pl.plot(a, pi_age_true, 'r:', label='Truth')
    pl.legend(fancybox=True, shadow=True, loc='upper left')

    pl.show()

    model.input_data['mu_pred'] = model.vars['p']['p_pred'].stats()['mean']
    model.input_data['sigma_pred'] = model.vars['p']['p_pred'].stats(
    )['standard deviation']
    data_simulation.add_quality_metrics(model.input_data)

    model.delta = pandas.DataFrame(dict(true=[delta_true]))
    model.delta['mu_pred'] = pl.exp(model.vars['p']['eta'].trace()).mean()
    model.delta['sigma_pred'] = pl.exp(model.vars['p']['eta'].trace()).std()
    data_simulation.add_quality_metrics(model.delta)

    print 'delta'
    print model.delta

    print '\ndata prediction bias: %.5f, MARE: %.3f, coverage: %.2f' % (
        model.input_data['abs_err'].mean(),
        pl.median(pl.absolute(model.input_data['rel_err'].dropna())),
        model.input_data['covered?'].mean())

    model.mu = pandas.DataFrame(
        dict(true=pi_age_true,
             mu_pred=model.vars['p']['mu_age'].stats()['mean'],
             sigma_pred=model.vars['p']['mu_age'].stats()
             ['standard deviation']))
    data_simulation.add_quality_metrics(model.mu)

    model.results = dict(param=[], bias=[], mare=[], mae=[], pc=[])
    data_simulation.add_to_results(model, 'delta')
    data_simulation.add_to_results(model, 'mu')
    data_simulation.add_to_results(model, 'input_data')
    model.results = pandas.DataFrame(model.results,
                                     columns='param bias mae mare pc'.split())

    print model.results

    return model
Esempio n. 43
0
    def run(self, initialize=True, do_plot=False, verbose=None, **kwargs):
        ''' Run the simulation '''

        T = sc.tic()

        # Reset settings and results
        if verbose is None:
            verbose = self['verbose']
        if initialize:
            self.initialize()  # Create people, results, etc.

        # Main simulation loop
        self.stopped = False  # We've just been asked to run, so ensure we're unstopped
        for t in range(self.npts):

            # Check timing and stopping function
            elapsed = sc.toc(T, output=True)
            if elapsed > self['timelimit']:
                print(
                    f"Time limit ({self['timelimit']} s) exceeded; stopping..."
                )
                self.stopped = {
                    'why': 'timelimit',
                    'message': 'Time limit exceeded at step {t}',
                    't': t
                }

            if self['stop_func']:
                self.stopped = self['stop_func'](
                    self,
                    t)  # Feed in the current simulation object and the time

            # If this gets set, stop running -- e.g. if the time limit is exceeded
            if self.stopped:
                break

            # Zero counts for this time step.
            n_susceptible = 0
            n_exposed = 0
            n_deaths = 0
            n_recoveries = 0
            n_infectious = 0
            n_infections = 0
            n_symptomatic = 0
            n_recovered = 0

            # Extract these for later use. The values do not change in the person loop and the dictionary lookup is expensive.
            rand_popdata = (self['usepopdata'] == 'random')
            beta = self['beta']
            asym_factor = self['asym_factor']
            diag_factor = self['diag_factor']
            cont_factor = self['cont_factor']
            beta_pop = self['beta_pop']

            # Print progress
            if verbose >= 1:
                string = f'  Running day {t:0.0f} of {self.pars["n_days"]} ({elapsed:0.2f} s elapsed)...'
                if verbose >= 2:
                    sc.heading(string)
                else:
                    print(string)

            # Update each person, skipping people who are susceptible
            not_susceptible = filter(lambda p: not p.susceptible,
                                     self.people.values())
            n_susceptible = len(self.people)

            for person in not_susceptible:
                n_susceptible -= 1

                # If exposed, check if the person becomes infectious or develops symptoms
                if person.exposed:
                    n_exposed += 1
                    if not person.infectious and t >= person.date_infectious:  # It's the day they become infectious
                        person.infectious = True
                        sc.printv(
                            f'      Person {person.uid} became infectious!', 2,
                            verbose)
                    if not person.symptomatic and person.date_symptomatic is not None and t >= person.date_symptomatic:  # It's the day they develop symptoms
                        person.symptomatic = True
                        sc.printv(
                            f'      Person {person.uid} developed symptoms!',
                            2, verbose)

                # If infectious, check if anyone gets infected
                if person.infectious:

                    # Check for death
                    died = person.check_death(t)
                    n_deaths += died

                    # Check for recovery
                    recovered = person.check_recovery(t)
                    n_recoveries += recovered

                    # If the person didn't die or recover, check for onward transmission
                    if not died and not recovered:
                        n_infectious += 1  # Count this person as infectious

                        # Calculate transmission risk based on whether they're asymptomatic/diagnosed/have been isolated
                        thisbeta = beta * \
                                   (asym_factor if person.symptomatic else 1.) * \
                                   (diag_factor if person.diagnosed else 1.) * \
                                   (cont_factor if person.known_contact else 1.)

                        # Determine who gets infected
                        if rand_popdata:  # Flat contacts
                            transmission_inds = cvu.bf(thisbeta,
                                                       person.contacts)
                        else:  # Dictionary of contacts -- extra loop over layers
                            transmission_inds = []
                            for ckey in self.contact_keys:
                                layer_beta = thisbeta * beta_pop[ckey]
                                transmission_inds.extend(
                                    cvu.bf(layer_beta, person.contacts[ckey]))

                        # Loop over people who do
                        for contact_ind in transmission_inds:
                            target_person = self.get_person(
                                contact_ind)  # Stored by integer

                            # This person was diagnosed last time step: time to flag their contacts
                            if person.date_diagnosed is not None and person.date_diagnosed == t - 1:
                                target_person.known_contact = True

                            # Skip people who are not susceptible
                            if target_person.susceptible:
                                n_infections += target_person.infect(
                                    t, person)  # Actually infect them
                                sc.printv(
                                    f'        Person {person.uid} infected person {target_person.uid}!',
                                    2, verbose)

                # Count people who developed symptoms
                if person.symptomatic:
                    n_symptomatic += 1

                # Count people who recovered
                if person.recovered:
                    n_recovered += 1

            # End of person loop; apply interventions
            for intervention in self['interventions']:
                intervention.apply(self, t)
            if self['interv_func'] is not None:  # Apply custom intervention function
                self = self['interv_func'](self, t)

            # Update counts for this time step
            self.results['n_susceptible'][t] = n_susceptible
            self.results['n_exposed'][t] = n_exposed
            self.results['deaths'][t] = n_deaths
            self.results['recoveries'][t] = n_recoveries
            self.results['n_infectious'][t] = n_infectious
            self.results['infections'][t] = n_infections
            self.results['n_symptomatic'][t] = n_symptomatic
            self.results['n_recovered'][t] = n_recovered

        # End of time loop; compute cumulative results outside of the time loop
        self.results['cum_exposed'].values = pl.cumsum(
            self.results['infections'].values) + self[
                'n_infected']  # Include initially infected people
        self.results['cum_tested'].values = pl.cumsum(
            self.results['tests'].values)
        self.results['cum_diagnosed'].values = pl.cumsum(
            self.results['diagnoses'].values)
        self.results['cum_deaths'].values = pl.cumsum(
            self.results['deaths'].values)
        self.results['cum_recoveries'].values = pl.cumsum(
            self.results['recoveries'].values)

        # Add in the results from the interventions
        for intervention in self['interventions']:
            intervention.finalize(self)  # Execute any post-processing

        # Scale the results
        for reskey in self.reskeys:
            if self.results[reskey].scale:
                self.results[reskey].values *= self['scale']

        # Perform calculations on results
        self.compute_doubling()
        self.compute_r_eff()
        self.likelihood()

        # Tidy up
        self.results_ready = True
        sc.printv(f'\nRun finished after {elapsed:0.1f} s.\n', 1, verbose)
        self.results['summary'] = self.summary_stats()

        if do_plot:
            self.plot(**kwargs)

        # Convert to an odict to allow e.g. sim.people[25] later, and results to an objdict to allow e.g. sim.results.diagnoses
        self.people = sc.odict(self.people)
        self.results = sc.objdict(self.results)

        return self.results
def raster_tuning(ax):

    fullbehaviorDir = behaviorDir + subject + '/'
    behavName = subject + '_tuning_curve_' + tuningBehavior + '.h5'
    tuningBehavFileName = os.path.join(fullbehaviorDir, behavName)

    tuning_bdata = loadbehavior.BehaviorData(tuningBehavFileName,
                                             readmode='full')
    freqEachTrial = tuning_bdata['currentFreq']
    possibleFreq = np.unique(freqEachTrial)
    numberOfTrials = len(freqEachTrial)

    # -- The old way of sorting (useful for plotting sorted raster) --
    sortedTrials = []
    numTrialsEachFreq = [
    ]  #Used to plot lines after each group of sorted trials
    for indf, oneFreq in enumerate(
            possibleFreq
    ):  #indf is index of this freq and oneFreq is the frequency
        indsThisFreq = np.flatnonzero(
            freqEachTrial == oneFreq)  #this gives indices of this frequency
        sortedTrials = np.concatenate(
            (sortedTrials,
             indsThisFreq))  #adds all indices to a list called sortedTrials
        numTrialsEachFreq.append(
            len(indsThisFreq))  #finds number of trials each frequency has
    sortingInds = argsort(
        sortedTrials)  #gives array of indices that would sort the sortedTrials

    # -- Load event data and convert event timestamps to ms --
    tuning_ephysDir = os.path.join(settings.EPHYS_PATH, subject, tuningEphys)
    tuning_eventFilename = os.path.join(tuning_ephysDir, 'all_channels.events')
    tuning_ev = loadopenephys.Events(
        tuning_eventFilename)  #load ephys data (like bdata structure)
    tuning_eventTimes = np.array(
        tuning_ev.timestamps
    ) / SAMPLING_RATE  #get array of timestamps for each event and convert to seconds by dividing by sampling rate (Hz). matches with eventID and
    tuning_evID = np.array(
        tuning_ev.eventID
    )  #loads the onset times of events (matches up with eventID to say if event 1 went on (1) or off (0)
    tuning_eventOnsetTimes = tuning_eventTimes[
        tuning_evID ==
        1]  #array that is a time stamp for when the chosen event happens.
    #ev.eventChannel woul load array of events like trial start and sound start and finish times (sound event is 0 and trial start is 1 for example). There is only one event though and its sound start
    while (numberOfTrials < len(tuning_eventOnsetTimes)):
        tuning_eventOnsetTimes = tuning_eventOnsetTimes[:-1]

    #######################################################################################################
    ###################THIS IS SUCH A HACK TO GET SPKDATA FROM EPHYSCORE###################################
    #######################################################################################################

    thisCell = celldatabase.CellInfo(
        animalName=subject,  ############################################
        ephysSession=tuningEphys,
        tuningSession='DO NOT NEED THIS',
        tetrode=tetrode,
        cluster=cluster,
        quality=1,
        depth=0,
        tuningBehavior='DO NOT NEED THIS',
        behavSession=tuningBehavior)

    tuning_spkData = ephyscore.CellData(thisCell)
    tuning_spkTimeStamps = tuning_spkData.spikes.timestamps

    (tuning_spikeTimesFromEventOnset, tuning_trialIndexForEachSpike,
     tuning_indexLimitsEachTrial) = spikesanalysis.eventlocked_spiketimes(
         tuning_spkTimeStamps, tuning_eventOnsetTimes, tuning_timeRange)

    #print 'numTrials ',max(tuning_trialIndexForEachSpike)#####################################
    '''
        Create a vector with the spike timestamps w.r.t. events onset.

        (spikeTimesFromEventOnset,trialIndexForEachSpike,indexLimitsEachTrial) = 
            eventlocked_spiketimes(timeStamps,eventOnsetTimes,timeRange)

        timeStamps: (np.array) the time of each spike.
        eventOnsetTimes: (np.array) the time of each instance of the event to lock to.
        timeRange: (list or np.array) two-element array specifying time-range to extract around event.

        spikeTimesFromEventOnset: 1D array with time of spikes locked to event.
    o    trialIndexForEachSpike: 1D array with the trial corresponding to each spike.
           The first spike index is 0.
        indexLimitsEachTrial: [2,nTrials] range of spikes for each trial. Note that
           the range is from firstSpike to lastSpike+1 (like in python slices)
        spikeIndices
    '''

    tuning_sortedIndexForEachSpike = sortingInds[
        tuning_trialIndexForEachSpike]  #Takes values of trialIndexForEachSpike and finds value of sortingInds at that index and makes array. This array gives an array with the sorted index of each trial for each spike

    # -- Calculate tuning --
    #nSpikes = spikesanalysis.spiketimes_to_spikecounts(spikeTimesFromEventOnset,indexLimitsEachTrial,responseRange) #array of the number of spikes in range for each trial
    '''Count number of spikes on each trial in a given time range.

           spikeTimesFromEventOnset: vector of spikes timestamps with respect
             to the onset of the event.
           indexLimitsEachTrial: each column contains [firstInd,lastInd+1] of the spikes on a trial.
           timeRange: time range to evaluate. Spike times exactly at the limits are not counted.

           returns nSpikes
    '''
    '''
    meanSpikesEachFrequency = np.empty(len(possibleFreq)) #make empty array of same size as possibleFreq

    # -- This part will be replace by something like behavioranalysis.find_trials_each_type --
    trialsEachFreq = []
    for indf,oneFreq in enumerate(possibleFreq):
        trialsEachFreq.append(np.flatnonzero(freqEachTrial==oneFreq)) #finds indices of each frequency. Appends them to get an array of indices of trials sorted by freq

    # -- Calculate average firing for each freq --
    for indf,oneFreq in enumerate(possibleFreq):
        meanSpikesEachFrequency[indf] = np.mean(nSpikes[trialsEachFreq[indf]])
    '''
    #clf()
    #if (len(tuning_spkTimeStamps)>0):
    #ax1 = plt.subplot2grid((4,4), (3, 0), colspan=1)
    #spikesorting.plot_isi_loghist(spkData.spikes.timestamps)
    #ax3 = plt.subplot2grid((4,4), (3, 3), colspan=1)
    #spikesorting.plot_events_in_time(tuning_spkTimeStamps)
    #samples = tuning_spkData.spikes.samples.astype(float)-2**15
    #samples = (1000.0/tuning_spkData.spikes.gain[0,0]) *samples
    #ax2 = plt.subplot2grid((4,4), (3, 1), colspan=2)
    #spikesorting.plot_waveforms(samples)
    #ax4 = plt.subplot2grid((4,4), (0, 0), colspan=3,rowspan = 3)
    plot(tuning_spikeTimesFromEventOnset,
         tuning_sortedIndexForEachSpike,
         '.',
         ms=3)
    #axvline(x=0, ymin=0, ymax=1, color='r')

    #The cumulative sum of the list of specific frequency presentations,
    #used below for plotting the lines across the figure.
    numTrials = cumsum(numTrialsEachFreq)

    #Plot the lines across the figure in between each group of sorted trials
    for indf, num in enumerate(numTrials):
        ax.axhline(y=num, xmin=0, xmax=1, color='0.90', zorder=0)

    tickPositions = numTrials - mean(numTrialsEachFreq) / 2
    tickLabels = [
        "%0.2f" % (possibleFreq[indf] / 1000)
        for indf in range(len(possibleFreq))
    ]
    ax.set_yticks(tickPositions)
    ax.set_yticklabels(tickLabels)
    ax.set_ylim([-1, numberOfTrials])
    ylabel('Frequency Presented (kHz), {} total trials'.format(numTrials[-1]))
    #title(ephysSession+' T{}c{}'.format(tetrodeID,clusterID))
    xlabel('Time (sec)')
    '''

    ax5 = plt.subplot2grid((4,4), (0, 3), colspan=1,rowspan=3)
    ax5.set_xscale('log')
    plot(possibleFreq,meanSpikesEachFrequency,'o-')
    ylabel('Avg spikes in window {0}-{1} sec'.format(*responseRange))
    xlabel('Frequency')
    '''
    #show()
    '''
def validate_age_integrating_model_sim(N=500, delta_true=.15, pi_true=quadratic):
    ## generate simulated data
    a = pl.arange(0, 101, 1)
    pi_age_true = pi_true(a)

    model = data_simulation.simple_model(N)
    #model.parameters['p']['parameter_age_mesh'] = range(0, 101, 10)
    #model.parameters['p']['smoothness'] = dict(amount='Very')

    age_start = pl.array(mc.runiform(0, 100, size=N), dtype=int)
    age_end = pl.array(mc.runiform(age_start, 100, size=N), dtype=int)

    age_weights = pl.ones_like(a)
    sum_pi_wt = pl.cumsum(pi_age_true*age_weights)
    sum_wt = pl.cumsum(age_weights)
    p = (sum_pi_wt[age_end] - sum_pi_wt[age_start]) / (sum_wt[age_end] - sum_wt[age_start])

    # correct cases where age_start == age_end
    i = age_start == age_end
    if pl.any(i):
        p[i] = pi_age_true[age_start[i]]

    n = mc.runiform(100, 10000, size=N)

    model.input_data['age_start'] = age_start
    model.input_data['age_end'] = age_end
    model.input_data['effective_sample_size'] = n
    model.input_data['true'] = p
    model.input_data['value'] = mc.rnegative_binomial(n*p, delta_true*n*p) / n

    ## Then fit the model and compare the estimates to the truth
    model.vars = {}
    model.vars['p'] = data_model.data_model('p', model, 'p', 'all', 'total', 'all', None, None, None)
    model.map, model.mcmc = fit_model.fit_data_model(model.vars['p'], iter=10000, burn=5000, thin=25, tune_interval=100)

    graphics.plot_one_ppc(model.vars['p'], 'p')
    graphics.plot_convergence_diag(model.vars)
    graphics.plot_one_type(model, model.vars['p'], {}, 'p')
    pl.plot(a, pi_age_true, 'r:', label='Truth')
    pl.legend(fancybox=True, shadow=True, loc='upper left')

    pl.show()

    model.input_data['mu_pred'] = model.vars['p']['p_pred'].stats()['mean']
    model.input_data['sigma_pred'] = model.vars['p']['p_pred'].stats()['standard deviation']
    data_simulation.add_quality_metrics(model.input_data)

    model.delta = pandas.DataFrame(dict(true=[delta_true]))
    model.delta['mu_pred'] = pl.exp(model.vars['p']['eta'].trace()).mean()
    model.delta['sigma_pred'] = pl.exp(model.vars['p']['eta'].trace()).std()
    data_simulation.add_quality_metrics(model.delta)

    print 'delta'
    print model.delta

    print '\ndata prediction bias: %.5f, MARE: %.3f, coverage: %.2f' % (model.input_data['abs_err'].mean(),
                                                     pl.median(pl.absolute(model.input_data['rel_err'].dropna())),
                                                                       model.input_data['covered?'].mean())

    model.mu = pandas.DataFrame(dict(true=pi_age_true,
                                     mu_pred=model.vars['p']['mu_age'].stats()['mean'],
                                     sigma_pred=model.vars['p']['mu_age'].stats()['standard deviation']))
    data_simulation.add_quality_metrics(model.mu)

    model.results = dict(param=[], bias=[], mare=[], mae=[], pc=[])
    data_simulation.add_to_results(model, 'delta')
    data_simulation.add_to_results(model, 'mu')
    data_simulation.add_to_results(model, 'input_data')
    model.results = pandas.DataFrame(model.results, columns='param bias mae mare pc'.split())

    print model.results

    return model
Esempio n. 46
0
    def plot(self,
             do_save=None,
             fig_args=None,
             plot_args=None,
             scatter_args=None,
             axis_args=None,
             as_days=True,
             font_size=18,
             use_grid=True,
             verbose=None):
        '''
        Plot the results -- can supply arguments for both the figure and the plots.

        Parameters
        ----------
        do_save : bool or str
            Whether or not to save the figure. If a string, save to that filename.

        fig_args : dict
            Dictionary of kwargs to be passed to pl.figure()

        plot_args : dict
            Dictionary of kwargs to be passed to pl.plot()

        as_days : bool
            Whether to plot the x-axis as days or time points

        Returns
        -------
        Figure handle
        '''

        if verbose is None:
            verbose = self['verbose']
        if verbose:
            print('Plotting...')

        if fig_args is None: fig_args = {'figsize': (26, 16)}
        if plot_args is None: plot_args = {'lw': 3, 'alpha': 0.7}
        if scatter_args is None: scatter_args = {'s': 150, 'marker': 's'}
        if axis_args is None:
            axis_args = {
                'left': 0.1,
                'bottom': 0.05,
                'right': 0.9,
                'top': 0.97,
                'wspace': 0.2,
                'hspace': 0.25
            }

        fig = pl.figure(**fig_args)
        pl.subplots_adjust(**axis_args)
        pl.rcParams['font.size'] = font_size

        res = self.results  # Shorten since heavily used

        # Plot everything
        colors = sc.gridcolors(5)
        to_plot = sc.odict({ # TODO
            'Total counts': sc.odict({'n_susceptible':'Number susceptible',
                                      'n_exposed':'Number exposed',
                                      'n_infectious':'Number infectious',
                                      'cum_diagnosed':'Number diagnosed',
                                    }),
            'Daily counts': sc.odict({'infections':'New infections',
                                      'tests':'Number of tests',
                                      'diagnoses':'New diagnoses',
                                     }),
            })

        data_mapping = {
            'cum_diagnosed': pl.cumsum(self.data['new_positives']),
            'tests': self.data['new_tests'],
            'diagnoses': self.data['new_positives'],
        }

        for p, title, keylabels in to_plot.enumitems():
            pl.subplot(2, 1, p + 1)
            for i, key, label in keylabels.enumitems():
                this_color = colors[i + p]
                y = res[key]
                pl.plot(res['t'], y, label=label, **plot_args, c=this_color)
                if key in data_mapping:
                    pl.scatter(self.data['day'],
                               data_mapping[key],
                               c=[this_color],
                               **scatter_args)
            pl.scatter(pl.nan,
                       pl.nan,
                       c=[(0, 0, 0)],
                       label='Data',
                       **scatter_args)
            pl.grid(use_grid)
            cv.fixaxis(self)
            pl.ylabel('Count')
            pl.xlabel('Days since index case')
            pl.title(title)

        # Ensure the figure actually renders or saves
        if do_save:
            if isinstance(do_save, str):
                filename = do_save  # It's a string, assume it's a filename
            else:
                filename = 'covid_abm_results.png'  # Just give it a default name
            pl.savefig(filename)

        pl.show()

        return fig
Esempio n. 47
0
    def run(self,
            seed_infections=1,
            verbose=None,
            calc_likelihood=False,
            do_plot=False,
            **kwargs):
        ''' Run the simulation '''

        T = sc.tic()

        # Reset settings and results
        if verbose is None:
            verbose = self['verbose']
        self.init_results()
        self.init_people(
            seed_infections=seed_infections)  # Actually create the people
        daily_tests = self.data[
            'new_tests']  # Number of tests each day, from the data
        evacuated = self.data['evacuated']  # Number of people evacuated

        # Main simulation loop
        for t in range(self.npts):

            # Print progress
            if verbose >= 1:
                string = f'  Running day {t:0.0f} of {self["n_days"]}...'
                if verbose >= 2:
                    sc.heading(string)
                else:
                    print(string)

            test_probs = {
            }  # Store the probability of each person getting tested

            # Update each person
            for person in self.people.values():

                # Count susceptibles
                if person.susceptible:
                    self.results['n_susceptible'][t] += 1
                    continue  # Don't bother with the rest of the loop

                # Handle testing probability
                if person.infectious:
                    test_probs[person.uid] = self[
                        'symptomatic']  # They're infectious: high probability of testing
                else:
                    test_probs[person.uid] = 1.0

                # If exposed, check if the person becomes infectious
                if person.exposed:
                    self.results['n_exposed'][t] += 1
                    if not person.infectious and t >= person.date_infectious:  # It's the day they become infectious
                        person.infectious = True
                        if verbose >= 2:
                            print(
                                f'      Person {person.uid} became infectious!'
                            )

                # If infectious, check if anyone gets infected
                if person.infectious:
                    # First, check for recovery
                    if person.date_recovered and t >= person.date_recovered:  # It's the day they become infectious
                        person.exposed = False
                        person.infectious = False
                        person.recovered = True
                        self.results['recoveries'][t] += 1
                    else:
                        self.results['n_infectious'][
                            t] += 1  # Count this person as infectious
                        n_contacts = cv.pt(
                            person.contacts
                        )  # Draw the number of Poisson contacts for this person
                        contact_inds = cv.choose_people(
                            max_ind=len(self.people),
                            n=n_contacts)  # Choose people at random
                        for contact_ind in contact_inds:
                            exposure = cv.bt(self['r_contact']
                                             )  # Check for exposure per person
                            if exposure:
                                target_person = self.people[contact_ind]
                                if target_person.susceptible:  # Skip people who are not susceptible
                                    self.results['infections'][t] += 1
                                    target_person.susceptible = False
                                    target_person.exposed = True
                                    target_person.date_exposed = t
                                    incub_pars = dict(dist='normal_int',
                                                      par1=self['incub'],
                                                      par2=self['incub_std'])
                                    dur_pars = dict(dist='normal_int',
                                                    par1=self['dur'],
                                                    par2=self['dur_std'])
                                    incub_dist = cv.sample(**incub_pars)
                                    dur_dist = cv.sample(**dur_pars)

                                    target_person.date_infectious = t + incub_dist
                                    target_person.date_recovered = target_person.date_infectious + dur_dist
                                    if verbose >= 2:
                                        print(
                                            f'        Person {person.uid} infected person {target_person.uid}!'
                                        )

                # Count people who recovered
                if person.recovered:
                    self.results['n_recovered'][t] += 1

            # Implement testing -- this is outside of the loop over people, but inside the loop over time
            if t < len(
                    daily_tests
            ):  # Don't know how long the data is, ensure we don't go past the end
                n_tests = daily_tests.iloc[t]  # Number of tests for this day
                if n_tests and not pl.isnan(
                        n_tests):  # There are tests this day
                    self.results['tests'][
                        t] = n_tests  # Store the number of tests
                    test_probs = pl.array(list(test_probs.values()))
                    test_probs /= test_probs.sum()
                    test_inds = cv.choose_people_weighted(probs=test_probs,
                                                          n=n_tests)
                    uids_to_pop = []
                    for test_ind in test_inds:
                        tested_person = self.people[test_ind]
                        if tested_person.infectious and cv.bt(
                                self['sensitivity']
                        ):  # Person was tested and is true-positive
                            self.results['diagnoses'][t] += 1
                            tested_person.diagnosed = True
                            if self['evac_positives']:
                                uids_to_pop.append(tested_person.uid)
                            if verbose >= 2:
                                print(
                                    f'          Person {person.uid} was diagnosed!'
                                )
                    for uid in uids_to_pop:  # Remove people from the ship once they're diagnosed
                        self.off_ship[uid] = self.people.pop(uid)

            # Implement quarantine
            if t == self['quarantine']:
                if verbose >= 1:
                    print(f'Implementing quarantine on day {t}...')
                for person in self.people.values():
                    if 'quarantine_eff' in self.pars.keys():
                        quarantine_eff = self['quarantine_eff']  # Both
                    else:
                        if person.crew:
                            quarantine_eff = self['quarantine_eff_c']  # Crew
                        else:
                            quarantine_eff = self['quarantine_eff_g']  # Guests
                    person.contacts *= quarantine_eff

            # Implement testing change
            if t == self['testing_change']:
                if verbose >= 1:
                    print(f'Implementing testing change on day {t}...')
                self['symptomatic'] *= self[
                    'testing_symptoms']  # Reduce the proportion of symptomatic testing

            # Implement evacuations
            if t < len(evacuated):
                n_evacuated = evacuated.iloc[
                    t]  # Number of evacuees for this day
                if n_evacuated and not pl.isnan(
                        n_evacuated
                ):  # There are evacuees this day # TODO -- refactor with n_tests
                    if verbose >= 1:
                        print(f'Implementing evacuation on day {t}')
                    evac_inds = cv.choose_people(max_ind=len(self.people),
                                                 n=n_evacuated)
                    uids_to_pop = []
                    for evac_ind in evac_inds:
                        evac_person = self.people[evac_ind]
                        if evac_person.infectious and cv.bt(
                                self['sensitivity']):
                            self.results['evac_diagnoses'][t] += 1
                        uids_to_pop.append(evac_person.uid)
                    for uid in uids_to_pop:  # Remove people from the ship once they're diagnosed
                        self.off_ship[uid] = self.people.pop(uid)

        # Compute cumulative results
        self.results['cum_exposed'] = pl.cumsum(self.results['infections'])
        self.results['cum_tested'] = pl.cumsum(self.results['tests'])
        self.results['cum_diagnosed'] = pl.cumsum(self.results['diagnoses'])

        # Compute likelihood
        if calc_likelihood:
            self.likelihood()

        # Tidy up
        self.results['ready'] = True
        elapsed = sc.toc(T, output=True)
        if verbose >= 1:
            print(f'\nRun finished after {elapsed:0.1f} s.\n')
            summary = self.summary_stats()
            print(f"""Summary:
     {summary['n_susceptible']:5.0f} susceptible
     {summary['n_exposed']:5.0f} exposed
     {summary['n_infectious']:5.0f} infectious
               """)

        if do_plot:
            self.plot(**kwargs)

        return self.results
Esempio n. 48
0
    pylab.ylabel(r"\textit{Freeway offset} (%s)" % length_units)


def congestionDecrease(ttt, ff=totalFreeFlow, c=totalCongestion):
    return 100 * (1 - (ttt - ff) / c)


adjoint_ttt = data["experiment"]["onerun"]["adjoint"]
alinea_ttt = data["experiment"]["onerun"]["alinea"]

running_time = map(list, zip(*data["experiment"]["adjoint"]["runtime"]))


newfigure()
max_rt = 2 * pylab.median(pylab.diff([0] + running_time[0]))
running_time[0] = pylab.cumsum([min(max_rt, rt) for rt in pylab.diff([0] + running_time[0])])

pylab.plot(
    [0] + [x / 1000.0 for x in running_time[0]],
    [0] + [congestionDecrease(a) for a in running_time[1]],
    LineCycler.next(),
    label="Adjoint",
)
pylab.hold(True)
pylab.plot(
    [0] + [x / 1000.0 for x in running_time[0]],
    [congestionDecrease(alinea_ttt)] * (1 + len(running_time[0])),
    LineCycler.next(),
    label="Alinea",
)
pylab.xlabel(r"\textit{Running time} (seconds)")
Esempio n. 49
0
def thermodynamic_pathway_analysis(S, rids, fluxes, cids, thermodynamics,
                                   html_writer):
    Nr, Nc = S.shape

    # adjust the directions of the reactions in S to fit the fluxes
    fluxes = map(abs, fluxes)
    kegg = Kegg.getInstance()

    #kegg.write_reactions_to_html(html_writer, S, rids, fluxes, cids, show_cids=False)
    dG0_f = thermodynamics.GetTransformedFormationEnergies(cids)
    bounds = [thermodynamics.bounds.get(cid, (None, None)) for cid in cids]
    res = {}
    try:
        c_mid = thermodynamics.c_mid
        c_range = thermodynamics.c_range
        res['pCr'] = find_pCr(S, dG0_f, c_mid=c_mid, ratio=3.0, bounds=bounds)
        #res['PCR2'] = find_unfeasible_concentrations(S, dG0_f, c_range, c_mid=c_mid, bounds=bounds)
        res['MTDF'] = find_mtdf(S, dG0_f, c_range=c_range, bounds=bounds)

        #path = pathway_modelling.Pathway(S, dG0_f)
        #res['pCr_regularized'] = path.FindPcr_OptimizeConcentrations(
        #    c_mid=c_mid, ratio=3.0, bounds=bounds)
        #res['pCr_regularized (dGr < -2.7)'] = path.FindPcr_OptimizeConcentrations(
        #    c_mid=c_mid, ratio=3.0, bounds=bounds, max_reaction_dg=-2.7)
        #res['MTDF_regularized'] = path.FindMTDF_OptimizeConcentrations(
        #    c_range=c_range, bounds=bounds, c_mid=c_mid)

        #costs = []
        #for max_dg in pylab.arange(0.0,-4.25,-0.25):
        #    c = path.FindPcrEnzymeCost(c_mid=c_mid,
        #                               ratio=3.0,
        #                               bounds=bounds,
        #                               max_reaction_dg=max_dg,
        #                               fluxes=fluxes)
        #    costs.append(str(c))

        #print ', '.join(costs)

    except LinProgNoSolutionException:
        html_writer.write(
            '<b>No feasible solution found, cannot calculate the Margin</b>')

    # plot the profile graph
    pylab.rcParams['text.usetex'] = False
    pylab.rcParams['legend.fontsize'] = 10
    pylab.rcParams['font.family'] = 'sans-serif'
    pylab.rcParams['font.size'] = 12
    pylab.rcParams['lines.linewidth'] = 2
    pylab.rcParams['lines.markersize'] = 5
    pylab.rcParams['figure.figsize'] = [8.0, 6.0]
    pylab.rcParams['figure.dpi'] = 100

    # plot the thermodynamic profile in standard conditions

    profile_fig = pylab.figure()
    profile_fig.hold(True)

    pylab.title('Thermodynamic profile', figure=profile_fig)
    pylab.ylabel('cumulative dG [kJ/mol]', figure=profile_fig)
    pylab.xlabel('Reaction KEGG ID', figure=profile_fig)
    pylab.xticks(pylab.arange(1, Nr + 1),
                 ['R%05d' % rids[i] for i in xrange(Nr)],
                 fontproperties=FontProperties(size=8),
                 rotation=30)

    dG0_r = pylab.zeros((Nr, 1))
    for r in range(Nr):
        reactants = pylab.find(S[r, :])
        dG0_r[r, 0] = pylab.dot(S[r, reactants], dG0_f[reactants])

    nan_indices = pylab.find(pylab.isnan(dG0_r))
    finite_indices = pylab.find(pylab.isfinite(dG0_r))
    if (len(nan_indices) > 0):
        dG0_r_finite = pylab.zeros((Nr, 1))
        dG0_r_finite[finite_indices] = dG0_r[finite_indices]
        cum_dG0_r = pylab.cumsum(
            [0] + [dG0_r_finite[r, 0] * fluxes[r] for r in range(Nr)])
    else:
        cum_dG0_r = pylab.cumsum([0] +
                                 [dG0_r[r, 0] * fluxes[r] for r in range(Nr)])
    pylab.plot(pylab.arange(0.5, Nr + 1),
               cum_dG0_r,
               figure=profile_fig,
               label='Standard [1M]')

    # plot the thermodynamic profile for the different optimization schemes

    pylab.grid(True, figure=profile_fig)
    for optimization in res.keys():
        dG_f, conc, score = res[optimization]
        if score is None:
            continue

        dG_r = pylab.dot(S, dG_f)
        cum_dG_r = pylab.cumsum([0] +
                                [dG_r[i, 0] * fluxes[i] for i in range(Nr)])
        pylab.plot(pylab.arange(0.5, Nr + 1),
                   cum_dG_r,
                   figure=profile_fig,
                   label='%s = %.1f' % (optimization, score))

    pylab.legend()
    html_writer.embed_matplotlib_figure(profile_fig, width=480, height=360)

    # plot the optimal metabolite concentrations for the different optimization schemes
    ind_nan = pylab.find(pylab.isnan(dG0_f))
    for optimization in res.keys():
        dG_f, conc, score = res[optimization]
        if score is None:
            continue

        dG_r = pylab.dot(S, dG_f)
        conc[
            ind_nan] = thermodynamics.c_mid  # give all compounds with unknown dG0_f the middle concentration value

        conc_fig = pylab.figure()
        conc_fig.suptitle('Concentrations (%s = %.1f)' % (optimization, score))
        pylab.xscale('log', figure=conc_fig)
        pylab.ylabel('Compound KEGG ID', figure=conc_fig)
        pylab.xlabel('Concentration [M]', figure=conc_fig)
        pylab.yticks(range(Nc, 0, -1), ["C%05d" % cid for cid in cids],
                     fontproperties=FontProperties(size=8))
        pylab.plot(conc, range(Nc, 0, -1), '*b', figure=conc_fig)

        x_min = conc.min() / 10
        x_max = conc.max() * 10
        y_min = 0
        y_max = Nc + 1

        for c in range(Nc):
            pylab.text(conc[c, 0] * 1.1, Nc - c, kegg.cid2name(cids[c]), \
                       figure=conc_fig, fontsize=6, rotation=0)
            b_low, b_up = bounds[c]
            if b_low is None:
                b_low = x_min
            if b_up is None:
                b_up = x_max
            pylab.plot([b_low, b_up], [Nc - c, Nc - c], '-k', linewidth=0.4)

        if optimization.startswith('pCr'):
            c_range_opt = pC_to_range(score,
                                      c_mid=thermodynamics.c_mid,
                                      ratio=3.0)
            pylab.axvspan(c_range_opt[0],
                          c_range_opt[1],
                          facecolor='g',
                          alpha=0.3,
                          figure=conc_fig)
        else:
            pylab.axvspan(thermodynamics.c_range[0],
                          thermodynamics.c_range[1],
                          facecolor='r',
                          alpha=0.3,
                          figure=conc_fig)
        pylab.axis([x_min, x_max, y_min, y_max], figure=conc_fig)
        try:
            html_writer.embed_matplotlib_figure(conc_fig,
                                                width=420,
                                                height=360)
        except AttributeError:
            html_writer.write('<b>Failed to generate concentration figure</b>')

    # write all the results in tables as well

    for optimization in res.keys():
        (dG_f, conc, score) = res[optimization]
        html_writer.write(
            '<p>Biochemical Compound Formation Energies (%s = %.1f)<br>\n' %
            (optimization, score))
        html_writer.write('<table border="1">\n')
        html_writer.write('  ' + '<td>%s</td>' * 5 %
                          ("KEGG CID", "Compound Name", "Concentration [M]",
                           "dG'0_f [kJ/mol]", "dG'_f [kJ/mol]") + '\n')
        for c in range(Nc):
            cid = cids[c]
            name = kegg.cid2name(cid)

            if (pylab.isnan(dG0_f[c, 0])):
                html_writer.write('<tr><td><a href="%s">C%05d</a></td><td>%s</td><td>%s</td><td>%s</td><td>%s</td></tr>\n' % \
                                  (kegg.cid2link(cid), cid, name, "N/A", "N/A", "N/A"))
            else:
                html_writer.write('<tr><td><a href="%s">C%05d</a></td><td>%s</td><td>%.2g</td><td>%.2f</td><td>%.2f</td></tr>\n' % \
                                  (kegg.cid2link(cid), cid, name, conc[c, 0], dG0_f[c, 0], dG_f[c, 0]))
        html_writer.write('</table></p>\n')

        html_writer.write(
            '<p>Biochemical Reaction Energies (%s = %.1f)<br>\n' %
            (optimization, score))
        html_writer.write('<table border="1">\n')
        html_writer.write('  ' + '<td>%s</td>' * 3 %
                          ("KEGG RID", "dG'0_r [kJ/mol]", "dG'_r [kJ/mol]") +
                          '\n')
        dG_r = pylab.dot(S, dG_f)
        for r in range(Nr):
            rid = rids[r]
            if (pylab.isnan(dG0_r[r, 0])):
                html_writer.write('<tr><td><a href="%s" title="%s">R%05d</a></td><td>%s</td><td>%.2f</td></tr>\n' % \
                                  (kegg.rid2link(rid), kegg.rid2name(rid), rid, "N/A", dG_r[r, 0]))
            else:
                html_writer.write('<tr><td><a href="%s" title="%s">R%05d</a></td><td>%.2f</td><td>%.2f</td></tr>\n' % \
                                  (kegg.rid2link(rid), kegg.rid2name(rid), rid, dG0_r[r, 0], dG_r[r, 0]))
        html_writer.write('</table></p>\n')

    return res
Esempio n. 50
0
def makecumulativenumbers():
    randomnumbers = pl.randn(50, 10)
    cumulativenumbers = pl.cumsum(abs(randomnumbers), axis=0)
    return cumulativenumbers
Esempio n. 51
0
    def plot(self,
             to_plot=None,
             do_save=None,
             fig_path=None,
             fig_args=None,
             plot_args=None,
             scatter_args=None,
             axis_args=None,
             as_dates=True,
             interval=None,
             dateformat=None,
             font_size=18,
             font_family=None,
             use_grid=True,
             use_commaticks=True,
             do_show=True,
             verbose=None):
        '''
        Plot the results -- can supply arguments for both the figure and the plots.

        Args:
            to_plot (dict): Nested dict of results to plot; see default_sim_plots for structure
            do_save (bool or str): Whether or not to save the figure. If a string, save to that filename.
            fig_path (str): Path to save the figure
            fig_args (dict): Dictionary of kwargs to be passed to pl.figure()
            plot_args (dict): Dictionary of kwargs to be passed to pl.plot()
            scatter_args (dict): Dictionary of kwargs to be passed to pl.scatter()
            axis_args (dict): Dictionary of kwargs to be passed to pl.subplots_adjust()
            as_dates (bool): Whether to plot the x-axis as dates or time points
            interval (int): Interval between tick marks
            dateformat (str): Date string format, e.g. '%B %d'
            font_size (int): Size of the font
            font_family (str): Font face
            use_grid (bool): Whether or not to plot gridlines
            use_commaticks (bool): Plot y-axis with commas rather than scientific notation
            do_show (bool): Whether or not to show the figure
            verbose (bool): Display a bit of extra information

        Returns:
            fig: Figure handle
        '''

        if verbose is None:
            verbose = self['verbose']
        sc.printv('Plotting...', 1, verbose)

        if to_plot is None:
            to_plot = default_sim_plots
        to_plot = sc.odict(to_plot)  # In case it's supplied as a dict

        # Handle input arguments -- merge user input with defaults
        fig_args = sc.mergedicts({'figsize': (16, 12)}, fig_args)
        plot_args = sc.mergedicts({'lw': 3, 'alpha': 0.7}, plot_args)
        scatter_args = sc.mergedicts({'s': 150, 'marker': 's'}, scatter_args)
        axis_args = sc.mergedicts(
            {
                'left': 0.1,
                'bottom': 0.05,
                'right': 0.9,
                'top': 0.97,
                'wspace': 0.2,
                'hspace': 0.25
            }, axis_args)

        fig = pl.figure(**fig_args)
        pl.subplots_adjust(**axis_args)
        pl.rcParams['font.size'] = font_size
        if font_family:
            pl.rcParams['font.family'] = font_family

        res = self.results  # Shorten since heavily used

        # Plot everything

        colors = sc.gridcolors(max([len(tp) for tp in to_plot.values()]))

        # Define the data mapping. Must be here since uses functions
        if self.data is not None and len(self.data):
            data_mapping = {
                'cum_exposed': pl.cumsum(self.data['new_infections']),
                'cum_diagnosed': pl.cumsum(self.data['new_positives']),
                'cum_tested': pl.cumsum(self.data['new_tests']),
                'infections': self.data['new_infections'],
                'tests': self.data['new_tests'],
                'diagnoses': self.data['new_positives'],
            }
        else:
            data_mapping = {}

        for p, title, keylabels in to_plot.enumitems():
            ax = pl.subplot(2, 1, p + 1)
            for i, key, label in keylabels.enumitems():
                this_color = colors[i]
                y = res[key].values
                pl.plot(res['t'], y, label=label, **plot_args, c=this_color)
                if key in data_mapping:
                    pl.scatter(self.data['day'],
                               data_mapping[key],
                               c=[this_color],
                               **scatter_args)
            if self.data is not None and len(self.data):
                pl.scatter(pl.nan,
                           pl.nan,
                           c=[(0, 0, 0)],
                           label='Data',
                           **scatter_args)

            pl.grid(use_grid)
            cvu.fixaxis(self)
            if use_commaticks:
                sc.commaticks()
            pl.title(title)

            # Optionally reset tick marks (useful for e.g. plotting weeks/months)
            if interval:
                xmin, xmax = ax.get_xlim()
                ax.set_xticks(pl.arange(xmin, xmax + 1, interval))

            # Set xticks as dates
            if as_dates:
                xticks = ax.get_xticks()
                xticklabels = self.inds2dates(xticks, dateformat=dateformat)
                ax.set_xticklabels(xticklabels)

            # Plot interventions
            for intervention in self['interventions']:
                intervention.plot(self, ax)

        # Ensure the figure actually renders or saves
        if do_save:
            if fig_path is None:  # No figpath provided - see whether do_save is a figpath
                if isinstance(do_save, str):
                    fig_path = do_save  # It's a string, assume it's a filename
                else:
                    fig_path = 'covasim.png'  # Just give it a default name
            fig_path = sc.makefilepath(
                fig_path)  # Ensure it's valid, including creating the folder
            pl.savefig(fig_path)

        if do_show:
            pl.show()
        else:
            pl.close(fig)

        return fig
Esempio n. 52
0
from pylab import loadmat, array, concatenate, cumsum

A = loadmat('data/MOCAP')

data = A['batchdata']

seqlengths = A['seqlengths']

seqstarts = concatenate(([0], cumsum(seqlengths)))



seqprobs = seqlengths / float(seqlengths.sum())

from pylab import rand,ifloor
def int_rand_range(a,b):
    return ifloor(rand()*(b-a)+a)


from pylab import true_multinomial, newaxis
def data_sample(batch_size):
    seq_id = int(true_multinomial(seqprobs[newaxis,:]))

    seq_len = seqlengths[seq_id]
    seq_absolute_A = seqstarts[seq_id]
    seq_absolute_B = seqstarts[seq_id+1]

    seq_pos_A = int_rand_range(seq_absolute_A, seq_absolute_B - batch_size)
    
    return data[seq_pos_A:seq_pos_A + batch_size]
def raster_tuning(ax):

    fullbehaviorDir = behaviorDir+subject+'/'
    behavName = subject+'_tuning_curve_'+tuningBehavior+'.h5'
    tuningBehavFileName=os.path.join(fullbehaviorDir, behavName)


    tuning_bdata = loadbehavior.BehaviorData(tuningBehavFileName,readmode='full')
    freqEachTrial = tuning_bdata['currentFreq']
    possibleFreq = np.unique(freqEachTrial)
    numberOfTrials = len(freqEachTrial)

    # -- The old way of sorting (useful for plotting sorted raster) --
    sortedTrials = []
    numTrialsEachFreq = []  #Used to plot lines after each group of sorted trials
    for indf,oneFreq in enumerate(possibleFreq): #indf is index of this freq and oneFreq is the frequency
        indsThisFreq = np.flatnonzero(freqEachTrial==oneFreq) #this gives indices of this frequency
        sortedTrials = np.concatenate((sortedTrials,indsThisFreq)) #adds all indices to a list called sortedTrials
        numTrialsEachFreq.append(len(indsThisFreq)) #finds number of trials each frequency has
    sortingInds = argsort(sortedTrials) #gives array of indices that would sort the sortedTrials

    # -- Load event data and convert event timestamps to ms --
    tuning_ephysDir = os.path.join(settings.EPHYS_PATH, subject,tuningEphys)
    tuning_eventFilename=os.path.join(tuning_ephysDir, 'all_channels.events')
    tuning_ev=loadopenephys.Events(tuning_eventFilename) #load ephys data (like bdata structure)
    tuning_eventTimes=np.array(tuning_ev.timestamps)/SAMPLING_RATE #get array of timestamps for each event and convert to seconds by dividing by sampling rate (Hz). matches with eventID and 
    tuning_evID=np.array(tuning_ev.eventID)  #loads the onset times of events (matches up with eventID to say if event 1 went on (1) or off (0)
    tuning_eventOnsetTimes=tuning_eventTimes[tuning_evID==1] #array that is a time stamp for when the chosen event happens.
    #ev.eventChannel woul load array of events like trial start and sound start and finish times (sound event is 0 and trial start is 1 for example). There is only one event though and its sound start
    while (numberOfTrials < len(tuning_eventOnsetTimes)):
        tuning_eventOnsetTimes = tuning_eventOnsetTimes[:-1]

    #######################################################################################################
    ###################THIS IS SUCH A HACK TO GET SPKDATA FROM EPHYSCORE###################################
    #######################################################################################################

    thisCell = celldatabase.CellInfo(animalName=subject,############################################
                 ephysSession = tuningEphys,
                 tuningSession = 'DO NOT NEED THIS',
                 tetrode = tetrode,
                 cluster = cluster,
                 quality = 1,
                 depth = 0,
                 tuningBehavior = 'DO NOT NEED THIS',
		 behavSession = tuningBehavior)
    
    tuning_spkData = ephyscore.CellData(thisCell)
    tuning_spkTimeStamps = tuning_spkData.spikes.timestamps

    (tuning_spikeTimesFromEventOnset,tuning_trialIndexForEachSpike,tuning_indexLimitsEachTrial) = spikesanalysis.eventlocked_spiketimes(tuning_spkTimeStamps,tuning_eventOnsetTimes,tuning_timeRange)

    #print 'numTrials ',max(tuning_trialIndexForEachSpike)#####################################
    '''
        Create a vector with the spike timestamps w.r.t. events onset.

        (spikeTimesFromEventOnset,trialIndexForEachSpike,indexLimitsEachTrial) = 
            eventlocked_spiketimes(timeStamps,eventOnsetTimes,timeRange)

        timeStamps: (np.array) the time of each spike.
        eventOnsetTimes: (np.array) the time of each instance of the event to lock to.
        timeRange: (list or np.array) two-element array specifying time-range to extract around event.

        spikeTimesFromEventOnset: 1D array with time of spikes locked to event.
    o    trialIndexForEachSpike: 1D array with the trial corresponding to each spike.
           The first spike index is 0.
        indexLimitsEachTrial: [2,nTrials] range of spikes for each trial. Note that
           the range is from firstSpike to lastSpike+1 (like in python slices)
        spikeIndices
    '''

    tuning_sortedIndexForEachSpike = sortingInds[tuning_trialIndexForEachSpike] #Takes values of trialIndexForEachSpike and finds value of sortingInds at that index and makes array. This array gives an array with the sorted index of each trial for each spike


    # -- Calculate tuning --
    #nSpikes = spikesanalysis.spiketimes_to_spikecounts(spikeTimesFromEventOnset,indexLimitsEachTrial,responseRange) #array of the number of spikes in range for each trial
    '''Count number of spikes on each trial in a given time range.

           spikeTimesFromEventOnset: vector of spikes timestamps with respect
             to the onset of the event.
           indexLimitsEachTrial: each column contains [firstInd,lastInd+1] of the spikes on a trial.
           timeRange: time range to evaluate. Spike times exactly at the limits are not counted.

           returns nSpikes
    '''
    '''
    meanSpikesEachFrequency = np.empty(len(possibleFreq)) #make empty array of same size as possibleFreq

    # -- This part will be replace by something like behavioranalysis.find_trials_each_type --
    trialsEachFreq = []
    for indf,oneFreq in enumerate(possibleFreq):
        trialsEachFreq.append(np.flatnonzero(freqEachTrial==oneFreq)) #finds indices of each frequency. Appends them to get an array of indices of trials sorted by freq

    # -- Calculate average firing for each freq --
    for indf,oneFreq in enumerate(possibleFreq):
        meanSpikesEachFrequency[indf] = np.mean(nSpikes[trialsEachFreq[indf]])
    '''
    #clf()
    #if (len(tuning_spkTimeStamps)>0):
        #ax1 = plt.subplot2grid((4,4), (3, 0), colspan=1)
        #spikesorting.plot_isi_loghist(spkData.spikes.timestamps)
        #ax3 = plt.subplot2grid((4,4), (3, 3), colspan=1)
        #spikesorting.plot_events_in_time(tuning_spkTimeStamps)
        #samples = tuning_spkData.spikes.samples.astype(float)-2**15
        #samples = (1000.0/tuning_spkData.spikes.gain[0,0]) *samples
        #ax2 = plt.subplot2grid((4,4), (3, 1), colspan=2)
        #spikesorting.plot_waveforms(samples)
    #ax4 = plt.subplot2grid((4,4), (0, 0), colspan=3,rowspan = 3)
    plot(tuning_spikeTimesFromEventOnset, tuning_sortedIndexForEachSpike, '.', ms=3)
    #axvline(x=0, ymin=0, ymax=1, color='r')

    #The cumulative sum of the list of specific frequency presentations, 
    #used below for plotting the lines across the figure. 
    numTrials = cumsum(numTrialsEachFreq)

    #Plot the lines across the figure in between each group of sorted trials
    for indf, num in enumerate(numTrials):
        ax.axhline(y = num, xmin = 0, xmax = 1, color = '0.90', zorder = 0)
       
    
    tickPositions = numTrials - mean(numTrialsEachFreq)/2
    tickLabels = ["%0.2f" % (possibleFreq[indf]/1000) for indf in range(len(possibleFreq))]
    ax.set_yticks(tickPositions)
    ax.set_yticklabels(tickLabels)
    ax.set_ylim([-1,numberOfTrials])
    ylabel('Frequency Presented (kHz), {} total trials'.format(numTrials[-1]))
    #title(ephysSession+' T{}c{}'.format(tetrodeID,clusterID))
    xlabel('Time (sec)')
    '''

    ax5 = plt.subplot2grid((4,4), (0, 3), colspan=1,rowspan=3)
    ax5.set_xscale('log')
    plot(possibleFreq,meanSpikesEachFrequency,'o-')
    ylabel('Avg spikes in window {0}-{1} sec'.format(*responseRange))
    xlabel('Frequency')
    '''
    #show()

    '''
    def CompareMtdf(self, target_mtdf=None):
        n_pathways = len(self.pathways)
        for i, (name, pathway_data) in enumerate(self.pathways.iteritems()):
            logging.info('Analyzing pathway %s', name)
            self.html_writer.write('<div margin="20px"><div><b>%s</b></div>' %
                                   name)
            self.GetConditions(pathway_data)
            S, rids, fluxes, cids = self.GetReactions(name, pathway_data)
            self.WriteReactionsToHtml(S, rids, fluxes, cids, show_cids=False)

            # Bounds on concentrations.
            bounds = [
                self.thermo.bounds.get(cid, (None, None)) for cid in cids
            ]

            # All fluxes are forwards
            fluxes = map(abs, fluxes)
            dG0_f = self.thermo.GetTransformedFormationEnergies(cids)
            c_mid = self.thermo.c_mid
            c_range = self.thermo.c_range

            path = pathway_modelling.Pathway(S, dG0_f)

            if target_mtdf is not None:
                _ln_conc, score = path.FindMtdf_Regularized(
                    c_range,
                    bounds,
                    c_mid,
                    min_mtdf=target_mtdf,
                    max_mtdf=target_mtdf)
            else:
                _ln_conc, score = path.FindMTDF_OptimizeConcentrations(
                    c_range, bounds, c_mid)
            if score is None:
                logging.error('No MTDF score for %s', name)
                continue

            Nr, Nc = S.shape
            profile_fig = pylab.figure()
            profile_fig.hold(True)
            pylab.title('Thermodynamic Profile', figure=profile_fig)
            pylab.ylabel('Cumulative dG [kJ/mol]', figure=profile_fig)
            pylab.xlabel('Reaction KEGG ID', figure=profile_fig)
            pylab.grid(True, figure=profile_fig)

            rids = ['%s' % rids[i] for i in xrange(Nr)]
            pylab.xticks(pylab.arange(1, Nr + 1),
                         rids,
                         fontproperties=FontProperties(size=8),
                         rotation=30)
            dG0_r = pylab.zeros((Nr, 1))
            for r in range(Nr):
                reactants = pylab.find(S[r, :])
                dG0_r[r, 0] = pylab.dot(S[r, reactants], dG0_f[reactants])

            nan_indices = pylab.find(pylab.isnan(dG0_r))
            finite_indices = pylab.find(pylab.isfinite(dG0_r))
            if (len(nan_indices) > 0):
                dG0_r_finite = pylab.zeros((Nr, 1))
                dG0_r_finite[finite_indices] = dG0_r[finite_indices]
                cum_dG0_r = pylab.cumsum(
                    [0] + [dG0_r_finite[r, 0] * fluxes[r] for r in range(Nr)])
            else:
                cum_dG0_r = pylab.cumsum(
                    [0] + [dG0_r[r, 0] * fluxes[r] for r in range(Nr)])
            pylab.plot(pylab.arange(0.5, Nr + 1),
                       cum_dG0_r,
                       'g--',
                       label='Standard [1M]',
                       figure=profile_fig)

            # plot the thermodynamic profile for the different optimization schemes
            dG_r = pylab.dot(S, dG_f)
            self.html_writer.write('<ol>')
            for i, dG in enumerate(dG_r):
                self.html_writer.write('<li>%s: %.2f' % (rids[i], dG))
            self.html_writer.write('</ol>')

            cum_dG_r = pylab.cumsum(
                [0] + [dG_r[i, 0] * fluxes[i] for i in range(Nr)])
            pylab.plot(pylab.arange(0.5, Nr + 1),
                       cum_dG_r,
                       figure=profile_fig,
                       label='%s MTDF = %.1f' % (name, score))

            pylab.legend(['Standard conditions', 'MTDF'], 'lower left')
            fname = '%s-profile-fig' % name

            html_writer.embed_matplotlib_figure(profile_fig,
                                                width=640,
                                                height=480,
                                                name=fname)

            # Give all compounds with unknown dG0_f the middle concentration value
            conc[nan_indices] = self.thermo.c_mid

            unconstrained_cs = []
            unconstrained_cids = []
            for i, bound in enumerate(bounds):
                b_low, b_up = bound
                if b_low is None and b_up is None:
                    unconstrained_cs.append(conc[i, 0])
                    unconstrained_cids.append(cids[i])

            n_constrained = len(unconstrained_cs)
            conc_fig = pylab.figure()
            conc_fig.suptitle('Concentrations %s (MTDF = %.1f)' %
                              (name, score))
            pylab.xscale('log', figure=conc_fig)
            pylab.ylabel('Compound KEGG ID', figure=conc_fig)
            pylab.xlabel('Concentration [M]', figure=conc_fig)
            cids_names = ["C%05d" % cid for cid in unconstrained_cids]
            pylab.yticks(range(n_constrained, 0, -1),
                         cids_names,
                         fontproperties=FontProperties(size=8))
            pylab.plot(unconstrained_cs,
                       range(n_constrained, 0, -1),
                       '*b',
                       figure=conc_fig)

            x_min = self.thermo.c_range[0] / 10
            x_max = self.thermo.c_range[1] * 50
            y_min = 0
            y_max = n_constrained + 1

            for i, concentration in enumerate(unconstrained_cs):
                pylab.text(concentration * 1.1,
                           n_constrained - i,
                           kegg.cid2name(unconstrained_cids[i]),
                           figure=conc_fig,
                           fontsize=6,
                           rotation=0)
                y_val = n_constrained - i
                pylab.plot([x_min, x_max], [y_val, y_val], '-k', linewidth=0.4)

            pylab.axvspan(min(unconstrained_cs),
                          max(unconstrained_cs),
                          facecolor='g',
                          alpha=0.3,
                          figure=conc_fig)
            pylab.axis([x_min, x_max, y_min, y_max], figure=conc_fig)

            fname = '%s-mtdf-conc-fig' % name
            html_writer.embed_matplotlib_figure(conc_fig,
                                                width=640,
                                                height=480,
                                                name=fname)

            self.html_writer.write('</div>')
Esempio n. 55
0
 def signal_in_unit(self, _unit):
     """
     method expresses signal in unit
     """
     multiplier = self.signal_unit.expressInUnit(_unit)
     return pl.cumsum(self.signal) * multiplier
    def CompareMtdf(self, target_mtdf=None):        
        n_pathways = len(self.pathways)
        for i, (name, pathway_data) in enumerate(self.pathways.iteritems()):
            logging.info('Analyzing pathway %s', name)
            self.html_writer.write('<div margin="20px"><div><b>%s</b></div>' % name)
            self.GetConditions(pathway_data)
            S, rids, fluxes, cids = self.GetReactions(name, pathway_data)
            self.WriteReactionsToHtml(S, rids, fluxes, cids, show_cids=False)
            
            # Bounds on concentrations.         
            bounds = [self.thermo.bounds.get(cid, (None, None))
                      for cid in cids]
            
            # All fluxes are forwards
            fluxes = map(abs, fluxes)
            dG0_f = self.thermo.GetTransformedFormationEnergies(cids)
            c_mid = self.thermo.c_mid
            c_range = self.thermo.c_range
            
            path = pathway_modelling.Pathway(S, dG0_f)
            
            if target_mtdf is not None:
                _ln_conc, score = path.FindMtdf_Regularized(
                    c_range, bounds, c_mid,
                    min_mtdf=target_mtdf,
                    max_mtdf=target_mtdf)
            else:
                _ln_conc, score = path.FindMTDF_OptimizeConcentrations(
                    c_range, bounds, c_mid)
            if score is None:
                logging.error('No MTDF score for %s', name)
                continue
        
            Nr, Nc = S.shape
            profile_fig = pylab.figure()
            profile_fig.hold(True)
            pylab.title('Thermodynamic Profile',
                        figure=profile_fig)
            pylab.ylabel('Cumulative dG [kJ/mol]', figure=profile_fig)
            pylab.xlabel('Reaction KEGG ID', figure=profile_fig)
            pylab.grid(True, figure=profile_fig)
            
            rids = ['%s' % rids[i] for i in xrange(Nr)]
            pylab.xticks(pylab.arange(1, Nr + 1), rids,
                         fontproperties=FontProperties(size=8),
                         rotation=30)
            dG0_r = pylab.zeros((Nr, 1))
            for r in range(Nr):
                reactants = pylab.find(S[r,:])
                dG0_r[r, 0] = pylab.dot(S[r, reactants], dG0_f[reactants])
        
            nan_indices = pylab.find(pylab.isnan(dG0_r))
            finite_indices = pylab.find(pylab.isfinite(dG0_r))
            if (len(nan_indices) > 0):
                dG0_r_finite = pylab.zeros((Nr, 1))
                dG0_r_finite[finite_indices] = dG0_r[finite_indices]
                cum_dG0_r = pylab.cumsum([0] + [dG0_r_finite[r, 0] * fluxes[r] for r in range(Nr)])
            else:
                cum_dG0_r = pylab.cumsum([0] + [dG0_r[r, 0] * fluxes[r] for r in range(Nr)])
            pylab.plot(pylab.arange(0.5, Nr + 1), cum_dG0_r, 'g--', label='Standard [1M]', figure=profile_fig)

            # plot the thermodynamic profile for the different optimization schemes
            dG_r = pylab.dot(S, dG_f)
            self.html_writer.write('<ol>')
            for i, dG in enumerate(dG_r):
                self.html_writer.write('<li>%s: %.2f' % (rids[i], dG))
            self.html_writer.write('</ol>')
            
            cum_dG_r = pylab.cumsum([0] + [dG_r[i, 0] * fluxes[i] for i in range(Nr)])
            pylab.plot(pylab.arange(0.5, Nr + 1), cum_dG_r, figure=profile_fig, label='%s MTDF = %.1f' % (name, score))
            
            pylab.legend(['Standard conditions', 'MTDF'], 'lower left')
            fname = '%s-profile-fig' % name
            
            html_writer.embed_matplotlib_figure(profile_fig, width=640, height=480,
                                                name=fname)

            # Give all compounds with unknown dG0_f the middle concentration value
            conc[nan_indices] = self.thermo.c_mid
            
            unconstrained_cs = []
            unconstrained_cids = []
            for i, bound in enumerate(bounds):
                b_low, b_up = bound
                if b_low is None and b_up is None:
                    unconstrained_cs.append(conc[i, 0])
                    unconstrained_cids.append(cids[i])
            
            n_constrained = len(unconstrained_cs)
            conc_fig = pylab.figure()
            conc_fig.suptitle('Concentrations %s (MTDF = %.1f)' % (name, score))
            pylab.xscale('log', figure=conc_fig)
            pylab.ylabel('Compound KEGG ID', figure=conc_fig)
            pylab.xlabel('Concentration [M]', figure=conc_fig)
            cids_names = ["C%05d" % cid for cid in unconstrained_cids]
            pylab.yticks(range(n_constrained, 0, -1), cids_names,
                         fontproperties=FontProperties(size=8))
            pylab.plot(unconstrained_cs, range(n_constrained, 0, -1),
                       '*b', figure=conc_fig)
    
            x_min = self.thermo.c_range[0] / 10
            x_max = self.thermo.c_range[1] * 50
            y_min = 0
            y_max = n_constrained + 1
            
            for i, concentration in enumerate(unconstrained_cs):
                pylab.text(concentration * 1.1, n_constrained - i,
                           kegg.cid2name(unconstrained_cids[i]),
                           figure=conc_fig, fontsize=6, rotation=0)
                y_val = n_constrained - i
                pylab.plot([x_min, x_max], [y_val, y_val], '-k', linewidth=0.4)
    
            pylab.axvspan(min(unconstrained_cs), max(unconstrained_cs),
                          facecolor='g', alpha=0.3, figure=conc_fig)
            pylab.axis([x_min, x_max, y_min, y_max], figure=conc_fig)
            
            fname = '%s-mtdf-conc-fig' % name
            html_writer.embed_matplotlib_figure(conc_fig, width=640, height=480,
                                                name=fname)

            self.html_writer.write('</div>')
Esempio n. 57
0
def validate_ai_re(N=500, delta_true=.15, sigma_true=[.1,.1,.1,.1,.1], pi_true=quadratic, smoothness='Moderately', heterogeneity='Slightly'):
    ## generate simulated data
    a = pl.arange(0, 101, 1)
    pi_age_true = pi_true(a)


    import dismod3
    import simplejson as json
    model = data.ModelData.from_gbd_jsons(json.loads(dismod3.disease_json.DiseaseJson().to_json()))
    gbd_hierarchy = model.hierarchy

    model = data_simulation.simple_model(N)
    model.hierarchy = gbd_hierarchy

    model.parameters['p']['parameter_age_mesh'] = range(0, 101, 10)
    model.parameters['p']['smoothness'] = dict(amount=smoothness)
    model.parameters['p']['heterogeneity'] = heterogeneity

    age_start = pl.array(mc.runiform(0, 100, size=N), dtype=int)
    age_end = pl.array(mc.runiform(age_start, 100, size=N), dtype=int)

    age_weights = pl.ones_like(a)
    sum_pi_wt = pl.cumsum(pi_age_true*age_weights)
    sum_wt = pl.cumsum(age_weights*1.)
    p = (sum_pi_wt[age_end] - sum_pi_wt[age_start]) / (sum_wt[age_end] - sum_wt[age_start])

    # correct cases where age_start == age_end
    i = age_start == age_end
    if pl.any(i):
        p[i] = pi_age_true[age_start[i]]

    model.input_data['age_start'] = age_start
    model.input_data['age_end'] = age_end
    model.input_data['effective_sample_size'] = mc.runiform(100, 10000, size=N)


    from validate_covariates import alpha_true_sim
    area_list = pl.array(['all', 'super-region_3', 'north_africa_middle_east', 'EGY', 'KWT', 'IRN', 'IRQ', 'JOR', 'SYR'])
    alpha = alpha_true_sim(model, area_list, sigma_true)
    print alpha

    model.input_data['true'] = pl.nan

    model.input_data['area'] = area_list[mc.rcategorical(pl.ones(len(area_list)) / float(len(area_list)), N)]
    
    for i, a in model.input_data['area'].iteritems():
        model.input_data['true'][i] = p[i] * pl.exp(pl.sum([alpha[n] for n in nx.shortest_path(model.hierarchy, 'all', a) if n in alpha]))
    p = model.input_data['true']

    n = model.input_data['effective_sample_size']
    model.input_data['value'] = mc.rnegative_binomial(n*p, delta_true*n*p) / n

    ## Then fit the model and compare the estimates to the truth
    model.vars = {}
    model.vars['p'] = data_model.data_model('p', model, 'p', 'north_africa_middle_east', 'total', 'all', None, None, None)
    #model.map, model.mcmc = fit_model.fit_data_model(model.vars['p'], iter=1005, burn=500, thin=5, tune_interval=100)
    model.map, model.mcmc = fit_model.fit_data_model(model.vars['p'], iter=10000, burn=5000, thin=25, tune_interval=100)

    graphics.plot_one_ppc(model.vars['p'], 'p')
    graphics.plot_convergence_diag(model.vars)
    graphics.plot_one_type(model, model.vars['p'], {}, 'p')
    pl.plot(range(101), pi_age_true, 'r:', label='Truth')
    pl.legend(fancybox=True, shadow=True, loc='upper left')

    pl.show()

    model.input_data['mu_pred'] = model.vars['p']['p_pred'].stats()['mean']
    model.input_data['sigma_pred'] = model.vars['p']['p_pred'].stats()['standard deviation']
    data_simulation.add_quality_metrics(model.input_data)

    model.delta = pandas.DataFrame(dict(true=[delta_true]))
    model.delta['mu_pred'] = pl.exp(model.vars['p']['eta'].trace()).mean()
    model.delta['sigma_pred'] = pl.exp(model.vars['p']['eta'].trace()).std()
    data_simulation.add_quality_metrics(model.delta)

    model.alpha = pandas.DataFrame(index=[n for n in nx.traversal.dfs_preorder_nodes(model.hierarchy)])
    model.alpha['true'] = pandas.Series(dict(alpha))
    model.alpha['mu_pred'] = pandas.Series([n.stats()['mean'] for n in model.vars['p']['alpha']], index=model.vars['p']['U'].columns)
    model.alpha['sigma_pred'] = pandas.Series([n.stats()['standard deviation'] for n in model.vars['p']['alpha']], index=model.vars['p']['U'].columns)
    model.alpha = model.alpha.dropna()
    data_simulation.add_quality_metrics(model.alpha)

    model.sigma = pandas.DataFrame(dict(true=sigma_true))
    model.sigma['mu_pred'] = [n.stats()['mean'] for n in model.vars['p']['sigma_alpha']]
    model.sigma['sigma_pred']=[n.stats()['standard deviation'] for n in model.vars['p']['sigma_alpha']]
    data_simulation.add_quality_metrics(model.sigma)

    print 'delta'
    print model.delta

    print '\ndata prediction bias: %.5f, MARE: %.3f, coverage: %.2f' % (model.input_data['abs_err'].mean(),
                                                     pl.median(pl.absolute(model.input_data['rel_err'].dropna())),
                                                                       model.input_data['covered?'].mean())

    model.mu = pandas.DataFrame(dict(true=pi_age_true,
                                     mu_pred=model.vars['p']['mu_age'].stats()['mean'],
                                     sigma_pred=model.vars['p']['mu_age'].stats()['standard deviation']))
    data_simulation.add_quality_metrics(model.mu)

    data_simulation.initialize_results(model)
    data_simulation.add_to_results(model, 'delta')
    data_simulation.add_to_results(model, 'mu')
    data_simulation.add_to_results(model, 'input_data')
    data_simulation.add_to_results(model, 'alpha')
    data_simulation.add_to_results(model, 'sigma')
    data_simulation.finalize_results(model)

    print model.results

    return model
Esempio n. 58
0
print "Proccessing logfile ",inputlogfile
lines=open(inputlogfile,"r").readlines()

metadata=[x for x in lines if x[0]=="#"] #select meta data
fields=[x.split()[2:] for x in  metadata if x.split()[1]=="Fields:"][0]
print fields
R_index=fields.index("R")
Clock_index=fields.index("CLOCKTIME")

q=[x for x in lines if x[0]!="#"] #remove meta data
q=q[:-1] #last line might be malformed
print "first line: ",q[0]
R=P.array([float(x.split()[R_index]) for x in q])
Realtime=P.array([float(x.split()[Clock_index]) for x in q])
N=len(R)
ns=range(1,N+1)
avgR=P.cumsum(R)/ns
n50=range(50,len(R))
l50=[P.mean(R[i-50:i]) for i in n50]
P.plot(ns,avgR,"r")
P.plot(n50,l50,"b")
P.text(N/2, avgR[N/4]-1, "Cumulative Average reward",color="r")
P.text(N/2, P.amax(l50) +1, "Average of last 50 rewards",color="b")
ytime=P.amin(avgR[:20]) +1
for i in P.arange(60,P.amax(Realtime),60):
    ind=bisect.bisect(Realtime,i)
    P.text(ind,ytime,".\n%d minute"%(i/60))
P.xlabel("Timestep")
P.savefig(inputlogfile+".pdf")