Esempio n. 1
0
def correltrack(data,
                start=0,
                avgover=10,
                pixelsize=70.0,
                centersize=7,
                centroidfrac=1.5):
    cs = centersize
    shp = [d for d in data.shape if d > 1]
    nsteps = long((shp[2] - start) / avgover)
    shh = (shp[0] / 2, shp[1] / 2)
    xctw = np.zeros((2 * centersize + 1, 2 * centersize + 1, nsteps))
    shifts = []
    i1 = data[:, :, start:start + avgover].squeeze().mean(axis=2)
    I1 = fftn(i1)
    for i in range(nsteps):
        xc = abs(
            ifftshift(
                ifftn(I1 *
                      ifftn(data[:, :, start + i * avgover:start +
                                 (i + 1) * avgover].squeeze().mean(axis=2)))))
        xct = xc - xc.min()
        xct = (xct -
               xct.max() / centroidfrac) * (xct > xct.max() / centroidfrac)
        xctw[:, :, i] = xct[shh[0] - cs:shh[0] + cs + 1,
                            shh[1] - cs:shh[1] + cs + 1]
        shifts.append(scipy.ndimage.measurements.center_of_mass(xctw[:, :, i]))

    sh = np.array(shifts)
    t = start + np.arange(nsteps) * avgover
    sh = pixelsize * (sh - sh[0])
    return t, sh, xctw
Esempio n. 2
0
def correlateFrames(A, B):
    A = A.squeeze()/A.mean() - 1
    B = B.squeeze()/B.mean() - 1
    
    X, Y = np.mgrid[0.0:A.shape[0], 0.0:A.shape[1]]
    
    C = ifftshift(np.abs(ifftn(fftn(A)*ifftn(B))))
    
    Cm = C.max()    
    
    Cp = np.maximum(C - 0.5*Cm, 0)
    Cpsum = Cp.sum()
    
    x0 = (X*Cp).sum()/Cpsum
    y0 = (Y*Cp).sum()/Cpsum
    
    return x0 - A.shape[0]/2, y0 - A.shape[1]/2, Cm, Cpsum
Esempio n. 3
0
def correlateFrames(A, B):
    A = A.squeeze() / A.mean() - 1
    B = B.squeeze() / B.mean() - 1

    X, Y = np.mgrid[0.0:A.shape[0], 0.0:A.shape[1]]

    C = ifftshift(np.abs(ifftn(fftn(A) * ifftn(B))))

    Cm = C.max()

    Cp = np.maximum(C - 0.5 * Cm, 0)
    Cpsum = Cp.sum()

    x0 = (X * Cp).sum() / Cpsum
    y0 = (Y * Cp).sum() / Cpsum

    return x0 - A.shape[0] / 2, y0 - A.shape[1] / 2, Cm, Cpsum
Esempio n. 4
0
def calcCorrShift(im1, im2):
    im1 = im1 - im1.mean()
    im2 = im2 - im2.mean()
    xc = np.abs(ifftshift(ifftn(fftn(im1) * ifftn(im2))))

    xct = (xc - xc.max() / 1.1) * (xc > xc.max() / 1.1)
    print((xct.shape))

    #figure(1)
    #imshow(xct)

    #dx, dy =  ndimage.measurements.center_of_mass(xct)

    #print np.where(xct==xct.max())

    dx, dy = np.where(xct == xct.max())

    return dx[0] - im1.shape[0] / 2, dy[0] - im1.shape[1] / 2
Esempio n. 5
0
def setIllumPattern(pattern, z0):
    global illPattern, illZOffset, illPCache
    sx, sy = pattern.shape
    psx, psy, sz = interpModel.shape
    
    
    
    il = np.zeros([sx,sy,sz], 'f')
    il[:,:,sz/2] = pattern
    ps = np.zeros_like(il)
    if sx > psx:
        ps[(sx/2-psx/2):(sx/2+psx/2), (sy/2-psy/2):(sy/2+psy/2), :] = interpModel
    else:
        ps[:,:,:] = interpModel[(psx/2-sx/2):(psx/2+sx/2), (psy/2-sy/2):(psy/2+sy/2), :]
    ps= ps/ps[:,:,sz/2].sum()
    
    illPattern = abs(ifftshift(ifftn(fftn(il)*fftn(ps)))).astype('f')
    
    illPCache = None
Esempio n. 6
0
    def propagate(self, F, z):
        """ Propagate a complex pupil, F,  a distance z from the nominal focus and return the electric field amplitude
        
        Parameters
        ==========
        
        F : 2D array
            complex pupil
            
        z : float
            distance in nm to propagate
        
        """
        pf = self.propFac*float(z)
        fs = F*self.pfm*(np.cos(pf) + j*np.sin(pf))
        self._F[:] = ifftshift(fs)

        self._plan_F_f()
        return fftshift(self._f/np.sqrt(self._f.size))
Esempio n. 7
0
    def propagate_r(self, f, z):
        """
        Backpropagate an electric field distribution, f, at defocus z to the nominal focus and return the complex pupil
        
        Parameters
        ----------
        f : 2D array
            complex electric field amplitude
        z : float
            nominal distance of plane from focus in nm

        Returns
        -------

        """
        self._f[:] = fftshift(f)
        self._plan_f_F()
        
        pf = -self.propFac*float(z)
        return (ifftshift(self._F)*(np.cos(pf)+j*np.sin(pf)))/np.sqrt(self._f.size)
Esempio n. 8
0
def correltrack2(data,
                 start=0,
                 avgover=10,
                 pixelsize=70.0,
                 centersize=15,
                 centroidfac=0.6,
                 roi=[0, None, 0, None]):
    cs = centersize
    shp = [d for d in data.shape if d > 1]
    nsteps = long((shp[2] - start) / avgover)
    xctw = np.zeros((2 * centersize + 1, 2 * centersize + 1, nsteps))
    shifts = []
    if avgover > 1:
        ref = data[:, :, start:start + avgover].squeeze().mean(axis=2)
    else:
        ref = data[:, :, start].squeeze()
    ref = ref[roi[0]:roi[3], roi[1]:roi[3]]
    refn = ref / ref.mean() - 1
    Frefn = fftn(refn)
    shh = (ref.shape[0] / 2, ref.shape[1] / 2)

    for i in range(nsteps):
        comp = data[:, :,
                    start + i * avgover:start + (i + 1) * avgover].squeeze()
        if len(comp.shape) > 2:
            comp = comp.mean(axis=2)
        comp = comp[roi[0]:roi[3], roi[1]:roi[3]]
        compn = comp / comp.mean() - 1
        xc = ifftshift(np.abs(ifftn(Frefn * ifftn(compn))))
        xcm = xc.max()
        xcp = np.maximum(xc - centroidfac * xcm, 0)
        xctw[:, :, i] = xcp[shh[0] - cs:shh[0] + cs + 1,
                            shh[1] - cs:shh[1] + cs + 1]
        shifts.append(scipy.ndimage.measurements.center_of_mass(xctw[:, :, i]))

    sh = np.array(shifts)
    t = start + np.arange(nsteps) * avgover
    sh = pixelsize * (sh - sh[0])
    return t, sh, xctw
Esempio n. 9
0
    def compare(self):
        d = 1.0 * self.scope.pa.dsa.squeeze()
        dm = d / d.mean() - 1

        #find x-y drift
        C = ifftshift(np.abs(ifftn(fftn(dm) * self.FA)))

        Cm = C.max()

        Cp = np.maximum(C - 0.5 * Cm, 0)
        Cpsum = Cp.sum()

        dx = (self.X * Cp).sum() / Cpsum
        dy = (self.Y * Cp).sum() / Cpsum

        ds = ndimage.shift(dm, [-dx, -dy]) * self.mask

        #print A.shape, As.shape

        ds_A = (ds - self.refA)

        return dx, dy, self.deltaZ * np.dot(ds_A.ravel(), self.dz) * self.dzn
Esempio n. 10
0
 def compare(self):
     d = 1.0*self.scope.pa.dsa.squeeze()
     dm = d/d.mean() - 1
     
     #find x-y drift
     C = ifftshift(np.abs(ifftn(fftn(dm)*self.FA)))
     
     Cm = C.max()    
     
     Cp = np.maximum(C - 0.5*Cm, 0)
     Cpsum = Cp.sum()
     
     dx = (self.X*Cp).sum()/Cpsum
     dy = (self.Y*Cp).sum()/Cpsum
     
     ds = ndimage.shift(dm, [-dx, -dy])*self.mask
     
     #print A.shape, As.shape
     
     ds_A = (ds - self.refA)
     
     return dx, dy, self.deltaZ*np.dot(ds_A.ravel(), self.dz)*self.dzn
Esempio n. 11
0
def correlateAndCompareFrames(A, B):
    A = A.squeeze() / A.mean() - 1
    B = B.squeeze() / B.mean() - 1

    X, Y = np.mgrid[0.0:A.shape[0], 0.0:A.shape[1]]

    C = ifftshift(np.abs(ifftn(fftn(A) * ifftn(B))))

    Cm = C.max()

    Cp = np.maximum(C - 0.5 * Cm, 0)
    Cpsum = Cp.sum()

    x0 = (X * Cp).sum() / Cpsum
    y0 = (Y * Cp).sum() / Cpsum

    dx, dy = x0 - A.shape[0] / 2, y0 - A.shape[1] / 2

    As = ndimage.shift(A, [-dx, -dy])

    #print A.shape, As.shape

    return (As - B).mean(), dx, dy
Esempio n. 12
0
def correlateAndCompareFrames(A, B):
    A = A.squeeze()/A.mean() - 1
    B = B.squeeze()/B.mean() - 1
    
    X, Y = np.mgrid[0.0:A.shape[0], 0.0:A.shape[1]]
    
    C = ifftshift(np.abs(ifftn(fftn(A)*ifftn(B))))
    
    Cm = C.max()    
    
    Cp = np.maximum(C - 0.5*Cm, 0)
    Cpsum = Cp.sum()
    
    x0 = (X*Cp).sum()/Cpsum
    y0 = (Y*Cp).sum()/Cpsum
    
    dx, dy = x0 - A.shape[0]/2, y0 - A.shape[1]/2
    
    As = ndimage.shift(A, [-dx, -dy])
    
    #print A.shape, As.shape
    
    return (As -B).mean(), dx, dy
Esempio n. 13
0
    def propagate(self, F, z):
        """
        Propagate a complex pupil, F,  a distance z from the nominal focus and return the electric field amplitude

        Parameters
        ==========

        F : 2D array
            complex pupil

        z : float
            distance in nm to propagate

        """
        pf = self.propFac*float(z)
        r = max(self.appR*(1 -self.apertureZGrad*z), 0)
        
        M = (self.x*self.x + self.y*self.y) < (r*r)
        fs = F*M*self.pfm*(np.cos(pf) + j*np.sin(pf))
        self._F[:] = fftshift(fs)

        self._plan_F_f()
        
        return ifftshift(self._f/np.sqrt(self._f.size))
Esempio n. 14
0
 def propagate(self, F, z):
     return ifftshift(ifftn(F*np.exp(self.propFac*z)))
Esempio n. 15
0
def correction_light(I, method, show_light, mask=None):
    """Corrige la derive eclairement

    :I: array_like ou iplimage
    :method: 'polynomial' or 'frequency'
    :show_light: option affiche correction (true|false)
    :mask: array de zone non interet
    :returns: iplimage 32bit

    """
    from progress import *
    import Tkinter
    if type(I) == cv.iplimage:
        if I.nChannels == 3:
            if method == 'None':
                I = RGB2L(I)
                I = cv2array(I)[:, :, 0]
                I = pymorph.hmin(I, 15, pymorph.sedisk(3))
                I = array2cv(I)
                cv.EqualizeHist(I, I)
                return I
            I = RGB2L(I)
            I_32bit = cv.CreateImage(cv.GetSize(I), cv.IPL_DEPTH_32F, 1)
            cv.ConvertScale(I, I_32bit, 3000.0, 0.0)
            I = cv.CloneImage(I_32bit)
        I = cv2array(I)[:, :, 0]
    elif len(I.shape) == 3:
        I = (I[:, :, 0] + I[:, :, 0] + I[:, :, 0])\
            / 3.0  # A modifier: non utiliser dans notre cas
    elif method == 'None':
        I = array2cv(I)
        cv.EqualizeHist(I, I)
        return I

    I = np.log(I + 10 ** (-6))
    (H, W) = np.shape(I)
    I_out = I * 0 + 10 ** (-6)
    if method == 'polynomial':
        ## I = M.A avec A coeff. du polynome
        I_flat = I.flatten()
        degree = 3
        print("modification degree 3")
        #degree du polynome
        nb_coeff = (degree + 1) * (degree + 2) / 2  # nombre coefficient
        [yy, xx] = np.meshgrid(np.arange(W, dtype=np.float64),
                               np.arange(H, dtype=np.float64))
        if mask is not None:
            xx[mask] = 0
            yy[mask] = 0
        # Creation de M
        try:
            M = np.zeros((H * W, nb_coeff), dtype=np.float64)
        except MemoryError:
            print MemoryError
            return MemoryError
        i, j = 0, 0  # i,j degree de x,y
        #Bar progression
        bar = Tkinter.Tk(className='Correcting Light...')
        m = Meter(bar, relief='ridge', bd=3)
        m.pack(fill='x')
        m.set(0.0, 'Starting correction...')
        for col in np.arange(nb_coeff):
            M[:, col] = (xx.flatten() ** i) * (yy.flatten() ** j)
            i += 1
            m.set(0.5 * float(col) / (nb_coeff - 1))
            if i + j == degree + 1:
                i = 0
                j += 1

        # Resolution au sens des moindres carree: pseudo-inverse
        try:
            M = pl.pinv(M)
            A = np.dot(M, I_flat)
        except ValueError:
            return ValueError
        # Calcul de la surface
        i, j = 0, 0
        surface = np.zeros((H, W), dtype=np.float64)
        for cmpt in np.arange(nb_coeff):
            surface += A[cmpt] * (xx ** i) * (yy ** j)  # forme quadratique
            i += 1
            m.set(0.5 + 0.5 * float(cmpt) / (nb_coeff - 1))
            if i + j == degree + 1:
                i = 0
                j += 1
        bar.destroy()
        I_out = np.exp(I / surface)
        light = surface
    elif method == 'frequency':
        Rx, Ry = 2, 2
        # zero padding
        N = [H, W]
        filtre = np.zeros((N[1], N[0]))
        centre_x = round(N[0] / 2)
        centre_y = round(N[1] / 2)
        print("FFT2D...")
        I_fourier = pl.fftshift(pl.fft2(I, N))

        # Gaussian filter
        [xx, yy] = np.meshgrid(np.arange(N[0], dtype=np.float),
                               np.arange(N[1], dtype=np.float))
        filtre = np.exp(-2 * ((xx - centre_x) ** 2 + (yy - centre_y) ** 2) /
                        (Rx ** 2 + Ry ** 2))
        filtre = pl.transpose(filtre)
        I_fourier = I_fourier * filtre
        print("IFFT2D...")
        I_out = (np.abs(pl.ifft2(pl.ifftshift(I_fourier), N)))[0:H, 0:W]
        light = I_out
        I_out = np.exp(I / I_out)
    else:
        light = I * 0
        I_out = I
    # Display Light
    if show_light:
        light = ((light - light.min()) * 3000.0 /
                 light.max()).astype('float32')
        light = array2cv(light)
        fig = pl.figure()
        pl.imshow(light)
        fig.show()

    I_out = (I_out - I_out.min()) * 3000.0 / I_out.max()
    I_out = I_out.astype('uint8')

    #chapeau haut de forme
    I_out = pymorph.hmin(I_out, 25, pymorph.sedisk(3))
    #Conversion en iplimage et ajustement contraste
    gr = array2cv(I_out)
    cv.EqualizeHist(gr, gr)
    return gr
Esempio n. 16
0
    def compare(self):
        d = 1.0 * self.scope.frameWrangler.currentFrame.squeeze()
        dm = d / d.mean() - 1

        #where is the piezo suppposed to be
        #nomPos = self.piezo.GetPos(0)
        nomPos = self.piezo.GetTargetPos(0)

        #find closest calibration position
        posInd = np.argmin(np.abs(nomPos - self.calPositions))

        #dz = float('inf')
        #count = 0
        #while np.abs(dz) > 0.5*self.deltaZ and count < 1:
        #    count += 1

        #retrieve calibration information at this location
        calPos = self.calPositions[posInd]
        FA = self.calFTs[:, :, posInd]
        refA = self.calImages[:, :, posInd]

        ddz = self.dz[:, posInd]
        dzn = self.dzn[posInd]

        #what is the offset between our target position and the calibration position
        posDelta = nomPos - calPos

        print('%s' % [nomPos, posInd, calPos, posDelta])

        #find x-y drift
        C = ifftshift(np.abs(ifftn(fftn(dm) * FA)))

        Cm = C.max()

        Cp = np.maximum(C - 0.5 * Cm, 0)
        Cpsum = Cp.sum()

        dx = (self.X * Cp).sum() / Cpsum
        dy = (self.Y * Cp).sum() / Cpsum

        ds = ndimage.shift(dm, [-dx, -dy]) * self.mask

        #print A.shape, As.shape

        self.ds_A = (ds - refA)

        #calculate z offset between actual position and calibration position
        dz = self.deltaZ * np.dot(self.ds_A.ravel(), ddz) * dzn

        #posInd += np.round(dz / self.deltaZ)
        #posInd = int(np.clip(posInd, 0, self.NCalibStates))

        #            print count, dz

        #add the offset back to determine how far we are from the target position
        dz = dz - posDelta

        #        if 1000*np.abs((dz + posDelta))>200 and self.WantRecord:
        #dz = np.median(self.buffer)
        #            tif.imsave('C:\\Users\\Lab-test\\Desktop\\peakimage.tif', d)
        # np.savetxt('C:\\Users\\Lab-test\\Desktop\\parameter.txt', self.buffer[-1])
        #np.savetxt('C:\\Users\\Lab-test\\Desktop\\posDelta.txt', posDelta)
        #            self.WantRecord = False

        #return dx, dy, dz + posDelta, Cm, dz, nomPos, posInd, calPos, posDelta
        return dx, dy, dz, Cm, dz, nomPos, posInd, calPos, posDelta
Esempio n. 17
0
    def _shift_space( self, R ):
        R_out = pl.zeros(R.shape)
        for itime, _ in enumerate(self.t):
            R_out[:,:,itime].real = pl.ifftshift(R[:,:,itime].real)

        return R_out