def _document_fe_graph(self) -> None: """Add FE execution graphs into the traceability document. """ with self.doc.create(Section("FastEstimator Architecture")): for mode in self.system.pipeline.data.keys(): scheduled_items = self.system.pipeline.get_scheduled_items( mode) + self.system.network.get_scheduled_items( mode) + self.system.traces signature_epochs = get_signature_epochs( scheduled_items, total_epochs=self.system.epoch_idx, mode=mode) epochs_with_data = self.system.pipeline.get_epochs_with_data( total_epochs=self.system.epoch_idx, mode=mode) if set(signature_epochs) & epochs_with_data: self.doc.append(NoEscape(r'\FloatBarrier')) with self.doc.create(Subsection(mode.capitalize())): for epoch in signature_epochs: if epoch not in epochs_with_data: continue self.doc.append(NoEscape(r'\FloatBarrier')) with self.doc.create( Subsubsection( f"Epoch {epoch}", label=Label( Marker(name=f"{mode}{epoch}", prefix="ssubsec")))): ds_ids = self.system.pipeline.get_ds_ids( epoch=epoch, mode=mode) for ds_id in ds_ids: with NonContext( ) if ds_id == '' else self.doc.create( Paragraph( f"Dataset {ds_id}", label=Label( Marker( name= f"{mode}{epoch}{ds_id}", prefix="para")))): diagram = self._draw_diagram( mode, epoch, ds_id) ltx = d2t.dot2tex(diagram.to_string(), figonly=True) args = Arguments( **{ 'max width': r'\textwidth, max height=0.9\textheight' }) args.escape = False with self.doc.create(Center()): with self.doc.create( AdjustBox(arguments=args) ) as box: box.append(NoEscape(ltx))
def render_table(self, doc: Document, name_override: Optional[LatexObject] = None, toc_ref: Optional[str] = None, extra_rows: Optional[List[Tuple[str, Any]]] = None) -> None: """Write this table into a LaTeX document. Args: doc: The LaTeX document to be appended to. name_override: An optional replacement for this table's name field. toc_ref: A reference to be added to the table of contents. extra_rows: Any extra rows to be added to the table before the kwargs. """ with doc.create(Table(position='htp!')) as table: table.append(NoEscape(r'\refstepcounter{table}')) table.append(Label(Marker(name=str(self.fe_id), prefix="tbl"))) if toc_ref: table.append(NoEscape(r'\addcontentsline{toc}{subsection}{' + escape_latex(toc_ref) + '}')) with doc.create(Tabularx('|lX|', booktabs=True)) as tabular: package = Package('xcolor', options='table') if package not in tabular.packages: # Need to invoke a table color before invoking TextColor (bug?) tabular.packages.append(package) package = Package('seqsplit') if package not in tabular.packages: tabular.packages.append(package) tabular.add_row((name_override if name_override else bold(self.name), MultiColumn(size=1, align='r|', data=TextColor('blue', self.fe_id)))) tabular.add_hline() type_str = f"{self.type}" match = re.fullmatch(r'^<.* \'(?P<typ>.*)\'>$', type_str) type_str = match.group("typ") if match else type_str tabular.add_row(("Type: ", escape_latex(type_str))) if self.path: if isinstance(self.path, LatexObject): tabular.add_row(("", self.path)) else: tabular.add_row(("", escape_latex(self.path))) for k, v in self.fields.items(): tabular.add_hline() tabular.add_row((f"{k.capitalize()}: ", v)) if self.args: tabular.add_hline() tabular.add_row(("Args: ", self.args)) if extra_rows: for (key, val) in extra_rows: tabular.add_hline() tabular.add_row(key, val) if self.kwargs: tabular.add_hline() for idx, (kwarg, val) in enumerate(self.kwargs.items()): tabular.add_row((italic(kwarg), val), color='white' if idx % 2 else 'black!5')
def _document_models(self) -> None: """Add model summaries to the traceability document. """ with self.doc.create(Section("Models")): for model in humansorted(self.system.network.models, key=lambda m: m.model_name): if not isinstance(model, (tf.keras.Model, torch.nn.Module)): continue self.doc.append(NoEscape(r'\FloatBarrier')) with self.doc.create(Subsection(f"{model.model_name}")): if isinstance(model, tf.keras.Model): # Text Summary summary = [] model.summary(line_length=92, print_fn=lambda x: summary.append(x)) summary = "\n".join(summary) self.doc.append(Verbatim(summary)) with self.doc.create(Center()): self.doc.append( HrefFEID(FEID(id(model)), model.model_name)) # Visual Summary # noinspection PyBroadException try: file_path = os.path.join( self.resource_dir, "{}_{}.pdf".format(self.report_name, model.model_name)) dot = tf.keras.utils.model_to_dot( model, show_shapes=True, expand_nested=True) # LaTeX \maxdim is around 575cm (226 inches), so the image must have max dimension less than # 226 inches. However, the 'size' parameter doesn't account for the whole node height, so # set the limit lower (100 inches) to leave some wiggle room. dot.set('size', '100') dot.write(file_path, format='pdf') except Exception: file_path = None print( f"FastEstimator-Warn: Model {model.model_name} could not be visualized by Traceability" ) elif isinstance(model, torch.nn.Module): if hasattr(model, 'fe_input_spec'): # Text Summary # noinspection PyUnresolvedReferences inputs = model.fe_input_spec.get_dummy_input() self.doc.append( Verbatim( pms.summary( model.module if self.system.num_devices > 1 else model, inputs, print_summary=False))) with self.doc.create(Center()): self.doc.append( HrefFEID(FEID(id(model)), model.model_name)) # Visual Summary # Import has to be done while matplotlib is using the Agg backend old_backend = matplotlib.get_backend() or 'Agg' matplotlib.use('Agg') # noinspection PyBroadException try: # Fake the IPython import when user isn't running from Jupyter sys.modules.setdefault('IPython', MagicMock()) sys.modules.setdefault('IPython.display', MagicMock()) import hiddenlayer as hl with Suppressor(): graph = hl.build_graph( model.module if self.system.num_devices > 1 else model, inputs) graph = graph.build_dot() graph.attr( rankdir='TB' ) # Switch it to Top-to-Bottom instead of Left-to-Right # LaTeX \maxdim is around 575cm (226 inches), so the image must have max dimension less # than 226 inches. However, the 'size' parameter doesn't account for the whole node # height, so set the limit lower (100 inches) to leave some wiggle room. graph.attr(size="100,100") graph.attr(margin='0') file_path = graph.render( filename="{}_{}".format( self.report_name, model.model_name), directory=self.resource_dir, format='pdf', cleanup=True) except Exception: file_path = None print( "FastEstimator-Warn: Model {} could not be visualized by Traceability" .format(model.model_name)) finally: matplotlib.use(old_backend) else: file_path = None self.doc.append( "This model was not used by the Network during training." ) if file_path: with self.doc.create(Figure(position='ht!')) as fig: fig.append( Label( Marker(name=str(FEID(id(model))), prefix="model"))) fig.add_image( os.path.relpath(file_path, start=self.save_dir), width=NoEscape( r'1.0\textwidth,height=0.95\textheight,keepaspectratio' )) fig.add_caption( NoEscape( HrefFEID(FEID(id(model)), model.model_name).dumps()))
def _document_models(self) -> None: """Add model summaries to the traceability document. """ with self.doc.create(Section("Models")): for model in humansorted(self.system.network.models, key=lambda m: m.model_name): if not isinstance(model, (tf.keras.Model, torch.nn.Module)): continue self.doc.append(NoEscape(r'\FloatBarrier')) with self.doc.create(Subsection(f"{model.model_name}")): if isinstance(model, tf.keras.Model): # Text Summary summary = [] model.summary(line_length=92, print_fn=lambda x: summary.append(x)) summary = "\n".join(summary) self.doc.append(Verbatim(summary)) with self.doc.create(Center()): self.doc.append( HrefFEID(FEID(id(model)), model.model_name)) # Visual Summary # noinspection PyBroadException try: file_path = os.path.join( self.figure_dir, f"FE_Model_{model.model_name}.pdf") tf.keras.utils.plot_model(model, to_file=file_path, show_shapes=True, expand_nested=True) # TODO - cap output image size like in the pytorch implementation in case of huge network # TODO - save raw .dot file in case system lacks graphviz except Exception: file_path = None print( f"FastEstimator-Warn: Model {model.model_name} could not be visualized by Traceability" ) elif isinstance(model, torch.nn.Module): if hasattr(model, 'fe_input_spec'): # Text Summary # noinspection PyUnresolvedReferences inputs = model.fe_input_spec.get_dummy_input() self.doc.append( Verbatim(pms.summary(model, inputs))) with self.doc.create(Center()): self.doc.append( HrefFEID(FEID(id(model)), model.model_name)) # Visual Summary # Import has to be done while matplotlib is using the Agg backend old_backend = matplotlib.get_backend() or 'Agg' matplotlib.use('Agg') # noinspection PyBroadException try: # Fake the IPython import when user isn't running from Jupyter sys.modules.setdefault('IPython', MagicMock()) sys.modules.setdefault('IPython.display', MagicMock()) import hiddenlayer as hl with Suppressor(): graph = hl.build_graph(model, inputs) graph = graph.build_dot() graph.attr( rankdir='TB' ) # Switch it to Top-to-Bottom instead of Left-to-Right graph.attr( size="200,200" ) # LaTeX \maxdim is around 575cm (226 inches) graph.attr(margin='0') # TODO - save raw .dot file in case system lacks graphviz file_path = graph.render( filename=f"FE_Model_{model.model_name}", directory=self.figure_dir, format='pdf', cleanup=True) except Exception: file_path = None print( "FastEstimator-Warn: Model {} could not be visualized by Traceability" .format(model.model_name)) finally: matplotlib.use(old_backend) else: self.doc.append( "This model was not used by the Network during training." ) if file_path: with self.doc.create(Figure(position='ht!')) as fig: fig.append( Label( Marker(name=str(FEID(id(model))), prefix="model"))) fig.add_image( os.path.relpath(file_path, start=self.save_dir), width=NoEscape( r'1.0\textwidth,height=0.95\textheight,keepaspectratio' )) fig.add_caption( NoEscape( HrefFEID(FEID(id(model)), model.model_name).dumps()))