def test_zero_image(self): """ Test on zero-value image if cause any division by zero """ X = as_floatX(np.zeros((5, 32 * 32 * 3))) axes = ['b', 0, 1, 'c'] view_converter = dense_design_matrix.DefaultViewConverter((32, 32, 3), axes) dataset = DenseDesignMatrix(X=X, view_converter=view_converter) dataset.axes = axes preprocessor = LeCunLCN(img_shape=[32, 32]) dataset.apply_preprocessor(preprocessor) result = dataset.get_design_matrix() assert isfinite(result)
def test_channel(self): """ Test if works fine withe different number of channel as argument """ rng = np.random.RandomState([1, 2, 3]) X = as_floatX(rng.randn(5, 32 * 32 * 3)) axes = ['b', 0, 1, 'c'] view_converter = dense_design_matrix.DefaultViewConverter((32, 32, 3), axes) dataset = DenseDesignMatrix(X=X, view_converter=view_converter) dataset.axes = axes preprocessor = LeCunLCN(img_shape=[32, 32], channels=[1, 2]) dataset.apply_preprocessor(preprocessor) result = dataset.get_design_matrix() assert isfinite(result)
def test_random_image(self): """ Test on a random image if the per-processor loads and works without anyerror and doesn't result in any nan or inf values """ rng = np.random.RandomState([1, 2, 3]) X = as_floatX(rng.randn(5, 32 * 32 * 3)) axes = ['b', 0, 1, 'c'] view_converter = dense_design_matrix.DefaultViewConverter((32, 32, 3), axes) dataset = DenseDesignMatrix(X=X, view_converter=view_converter) dataset.axes = axes preprocessor = LeCunLCN(img_shape=[32, 32]) dataset.apply_preprocessor(preprocessor) result = dataset.get_design_matrix() assert isfinite(result)
from pylearn2.datasets.preprocessing import Standardize, LeCunLCN, GlobalContrastNormalization from pylearn2.datasets.tfd import TFD import cPickle as pkl theano.subtensor_merge_bug=False if __name__ == "__main__": weights_file = "../out/pae_mnist_enc_weights.npy" input = T.matrix("X", dtype=theano.config.floatX) tfd_ds = TFD("unlabeled") print "TFD shape: ", tfd_ds.X.shape gcn = GlobalContrastNormalization() standardizer = Standardize() lcn = LeCunLCN(img_shape=(48, 48), channels=[0]) gcn.apply(tfd_ds, can_fit=True) standardizer.apply(tfd_ds, can_fit=True) lcn.apply(tfd_ds) rnd = numpy.random.RandomState(1231) powerup = PowerupAutoencoder(input, nvis=48*48, nhid=500, momentum=0.66, rho=0.92, num_pieces=4, cost_type="MeanSquaredCost", L2_reg=8.2*1e-5, L1_reg=1.2 * 1e-5,
from pylearn2.datasets.preprocessing import Standardize, LeCunLCN, GlobalContrastNormalization from pylearn2.datasets.tfd import TFD import pickle as pkl theano.subtensor_merge_bug = False if __name__ == "__main__": weights_file = "../out/pae_mnist_enc_weights.npy" input = T.matrix("X", dtype=theano.config.floatX) tfd_ds = TFD("unlabeled") print(("TFD shape: ", tfd_ds.X.shape)) gcn = GlobalContrastNormalization() standardizer = Standardize() lcn = LeCunLCN(img_shape=(48, 48), channels=[0]) gcn.apply(tfd_ds, can_fit=True) standardizer.apply(tfd_ds, can_fit=True) lcn.apply(tfd_ds) rnd = numpy.random.RandomState(1231) powerup = PowerupAutoencoder(input, nvis=48 * 48, nhid=500, momentum=0.66, rho=0.92, num_pieces=4, cost_type="MeanSquaredCost", L2_reg=8.2 * 1e-5, L1_reg=1.2 * 1e-5,