Esempio n. 1
0
    def test_zero_image(self):
        """
        Test on zero-value image if cause any division by zero
        """

        X = as_floatX(np.zeros((5, 32 * 32 * 3)))

        axes = ['b', 0, 1, 'c']
        view_converter = dense_design_matrix.DefaultViewConverter((32, 32, 3),
                                                                  axes)
        dataset = DenseDesignMatrix(X=X, view_converter=view_converter)
        dataset.axes = axes
        preprocessor = LeCunLCN(img_shape=[32, 32])
        dataset.apply_preprocessor(preprocessor)
        result = dataset.get_design_matrix()

        assert isfinite(result)
Esempio n. 2
0
    def test_channel(self):
        """
        Test if works fine withe different number of channel as argument
        """

        rng = np.random.RandomState([1, 2, 3])
        X = as_floatX(rng.randn(5, 32 * 32 * 3))

        axes = ['b', 0, 1, 'c']
        view_converter = dense_design_matrix.DefaultViewConverter((32, 32, 3),
                                                                  axes)
        dataset = DenseDesignMatrix(X=X, view_converter=view_converter)
        dataset.axes = axes
        preprocessor = LeCunLCN(img_shape=[32, 32], channels=[1, 2])
        dataset.apply_preprocessor(preprocessor)
        result = dataset.get_design_matrix()

        assert isfinite(result)
Esempio n. 3
0
    def test_random_image(self):
        """
        Test on a random image if the per-processor loads and works without
        anyerror and doesn't result in any nan or inf values

        """

        rng = np.random.RandomState([1, 2, 3])
        X = as_floatX(rng.randn(5, 32 * 32 * 3))

        axes = ['b', 0, 1, 'c']
        view_converter = dense_design_matrix.DefaultViewConverter((32, 32, 3),
                                                                  axes)
        dataset = DenseDesignMatrix(X=X, view_converter=view_converter)
        dataset.axes = axes
        preprocessor = LeCunLCN(img_shape=[32, 32])
        dataset.apply_preprocessor(preprocessor)
        result = dataset.get_design_matrix()

        assert isfinite(result)
Esempio n. 4
0
from pylearn2.datasets.preprocessing import Standardize, LeCunLCN, GlobalContrastNormalization
from pylearn2.datasets.tfd import TFD

import cPickle as  pkl
theano.subtensor_merge_bug=False

if __name__ == "__main__":
    weights_file = "../out/pae_mnist_enc_weights.npy"
    input = T.matrix("X", dtype=theano.config.floatX)
    tfd_ds = TFD("unlabeled")

    print "TFD shape: ", tfd_ds.X.shape
    gcn = GlobalContrastNormalization()
    standardizer = Standardize()
    lcn = LeCunLCN(img_shape=(48, 48), channels=[0])
    gcn.apply(tfd_ds, can_fit=True)
    standardizer.apply(tfd_ds, can_fit=True)
    lcn.apply(tfd_ds)

    rnd = numpy.random.RandomState(1231)

    powerup = PowerupAutoencoder(input,
                                 nvis=48*48,
                                 nhid=500,
                                 momentum=0.66,
                                 rho=0.92,
                                 num_pieces=4,
                                 cost_type="MeanSquaredCost",
                                 L2_reg=8.2*1e-5,
                                 L1_reg=1.2 * 1e-5,
Esempio n. 5
0
from pylearn2.datasets.preprocessing import Standardize, LeCunLCN, GlobalContrastNormalization
from pylearn2.datasets.tfd import TFD

import pickle as pkl

theano.subtensor_merge_bug = False

if __name__ == "__main__":
    weights_file = "../out/pae_mnist_enc_weights.npy"
    input = T.matrix("X", dtype=theano.config.floatX)
    tfd_ds = TFD("unlabeled")

    print(("TFD shape: ", tfd_ds.X.shape))
    gcn = GlobalContrastNormalization()
    standardizer = Standardize()
    lcn = LeCunLCN(img_shape=(48, 48), channels=[0])
    gcn.apply(tfd_ds, can_fit=True)
    standardizer.apply(tfd_ds, can_fit=True)
    lcn.apply(tfd_ds)

    rnd = numpy.random.RandomState(1231)

    powerup = PowerupAutoencoder(input,
                                 nvis=48 * 48,
                                 nhid=500,
                                 momentum=0.66,
                                 rho=0.92,
                                 num_pieces=4,
                                 cost_type="MeanSquaredCost",
                                 L2_reg=8.2 * 1e-5,
                                 L1_reg=1.2 * 1e-5,