Esempio n. 1
0
def test_extract_reassemble():
    """ Tests that ExtractGridPatches and ReassembleGridPatches are
    inverse of each other """

    rng = np.random.RandomState([1, 3, 7])

    topo = rng.randn(4, 3 * 5, 3 * 7, 2)

    dataset = DenseDesignMatrix(topo_view=topo)

    patch_shape = (3, 7)

    extractor = ExtractGridPatches(patch_shape, patch_shape)
    reassemblor = ReassembleGridPatches(patch_shape=patch_shape,
                                        orig_shape=topo.shape[1:3])

    dataset.apply_preprocessor(extractor)
    dataset.apply_preprocessor(reassemblor)

    new_topo = dataset.get_topological_view()

    assert new_topo.shape == topo.shape

    if not np.all(new_topo == topo):
        assert False
Esempio n. 2
0
    else:
        assert False

    print 'compiling theano function'
    f = function([V], feat)

    print 'running theano function'
    feat = f(X2)

    feat_dataset = DenseDesignMatrix(X=feat,
                                     view_converter=DefaultViewConverter(
                                         [1, 1, feat.shape[1]]))

    print 'reassembling features'
    ns = 32 - size + 1
    depatchifier = ReassembleGridPatches(orig_shape=(ns, ns),
                                         patch_shape=(1, 1))
    feat_dataset.apply_preprocessor(depatchifier)

    print 'making topological view'
    topo_feat = feat_dataset.get_topological_view()
    assert topo_feat.shape[0] == X.shape[0]

    print 'assembling visualizer'

    n = np.ceil(np.sqrt(model.nhid))

    pv3 = PatchViewer(grid_shape=(X.shape[0], num_filters),
                      patch_shape=(ns, ns),
                      is_color=False)
    pv4 = PatchViewer(grid_shape=(n, n),
                      patch_shape=(size, size),
Esempio n. 3
0
    def __call__(self, full_X):

        feature_type = self.feature_type
        pooling_region_counts = self.pooling_region_counts
        model = self.model
        size = self.size

        nan = 0

        full_X = full_X.reshape(1, full_X.shape[0], full_X.shape[1],
                                full_X.shape[2])

        if full_X.shape[3] == 1:
            full_X = np.concatenate((full_X, full_X, full_X), axis=3)

        print 'full_X.shape: ' + str(full_X.shape)

        num_examples = full_X.shape[0]
        assert num_examples == 1

        pipeline = self.preprocessor

        def average_pool(stride):
            def point(p):
                return p * ns / stride

            rval = np.zeros(
                (topo_feat.shape[0], stride, stride, topo_feat.shape[3]),
                dtype='float32')

            for i in xrange(stride):
                for j in xrange(stride):
                    rval[:, i, j, :] = self.region_features(
                        topo_feat[:,
                                  point(i):point(i + 1),
                                  point(j):point(j + 1), :])

            return rval

        outputs = [
            np.zeros((num_examples, count, count, model.nhid), dtype='float32')
            for count in pooling_region_counts
        ]

        assert len(outputs) > 0

        fd = DenseDesignMatrix(X=np.zeros((1, 1), dtype='float32'),
                               view_converter=DefaultViewConverter(
                                   [1, 1, model.nhid]))

        ns = 32 - size + 1
        depatchifier = ReassembleGridPatches(orig_shape=(ns, ns),
                                             patch_shape=(1, 1))

        batch_size = 1

        for i in xrange(0, num_examples - batch_size + 1, batch_size):
            print i
            t1 = time.time()

            d = DenseDesignMatrix(
                topo_view=np.cast['float32'](full_X[i:i + batch_size, :]),
                view_converter=DefaultViewConverter((32, 32, 3)))

            t2 = time.time()

            #print '\tapplying preprocessor'
            d.apply_preprocessor(pipeline, can_fit=False)
            X2 = d.get_design_matrix()

            t3 = time.time()

            #print '\trunning theano function'
            feat = self.f(X2)

            t4 = time.time()

            assert feat.dtype == 'float32'

            feat_dataset = copy.copy(fd)

            if np.any(np.isnan(feat)):
                nan += np.isnan(feat).sum()
                feat[np.isnan(feat)] = 0

            feat_dataset.set_design_matrix(feat)

            #print '\treassembling features'
            feat_dataset.apply_preprocessor(depatchifier)

            #print '\tmaking topological view'
            topo_feat = feat_dataset.get_topological_view()
            assert topo_feat.shape[0] == batch_size

            t5 = time.time()

            #average pooling
            for output, count in zip(outputs, pooling_region_counts):
                output[i:i + batch_size, ...] = average_pool(count)

            t6 = time.time()

            print(t6 - t1, t2 - t1, t3 - t2, t4 - t3, t5 - t4, t6 - t5)

        return outputs[0]
Esempio n. 4
0
    def _execute(self):

        global pooling_matrix
        save_path = self.save_path
        batch_size = self.batch_size
        feature_type = self.feature_type
        dataset_family = self.dataset_family
        which_set = self.which_set
        model = self.model
        size = self.size

        nan = 0

        dataset_descriptor = dataset_family[which_set][size]

        dataset = dataset_descriptor.dataset_maker()
        expected_num_examples = dataset_descriptor.num_examples

        full_X = dataset.get_design_matrix()
        num_examples = full_X.shape[0]
        assert num_examples == expected_num_examples

        if self.restrict is not None:
            assert self.restrict[1] <= full_X.shape[0]

            print 'restricting to examples ', self.restrict[
                0], ' through ', self.restrict[1], ' exclusive'
            full_X = full_X[self.restrict[0]:self.restrict[1], :]

            assert self.restrict[1] > self.restrict[0]

        #update for after restriction
        num_examples = full_X.shape[0]

        assert num_examples > 0

        dataset.X = None
        dataset.design_loc = None
        dataset.compress = False

        patchifier = ExtractGridPatches(patch_shape=(size, size),
                                        patch_stride=(1, 1))

        pipeline = serial.load(dataset_descriptor.pipeline_path)

        assert isinstance(pipeline.items[0], ExtractPatches)
        pipeline.items[0] = patchifier

        print 'defining features'
        V = T.matrix('V')
        model.make_pseudoparams()
        d = model.e_step.variational_inference(V=V)

        H = d['H_hat']
        Mu1 = d['S_hat']

        assert H.dtype == 'float32'
        assert Mu1.dtype == 'float32'

        if self.feature_type == 'map_hs':
            feat = (H > 0.5) * Mu1
        elif self.feature_type == 'map_h':
            feat = T.cast(H > 0.5, dtype='float32')
        elif self.feature_type == 'exp_hs':
            feat = H * Mu1
        elif self.feature_type == 'exp_h':
            feat = H
        elif self.feature_type == 'exp_h_thresh':
            feat = H * (H > .01)
        else:
            raise NotImplementedError()

        assert feat.dtype == 'float32'
        print 'compiling theano function'
        f = function([V], feat)

        if config.device.startswith('gpu') and model.nhid >= 4000:
            f = halver(f, model.nhid)

        topo_feat_var = T.TensorType(broadcastable=(False, False, False,
                                                    False),
                                     dtype='float32')()
        region_features = function([topo_feat_var],
                                   topo_feat_var.mean(axis=(1, 2)))

        def average_pool(stride):
            def point(p):
                return p * ns / stride

            rval = np.zeros(
                (topo_feat.shape[0], stride, stride, topo_feat.shape[3]),
                dtype='float32')

            for i in xrange(stride):
                for j in xrange(stride):
                    rval[:, i, j, :] = region_features(
                        topo_feat[:,
                                  point(i):point(i + 1),
                                  point(j):point(j + 1), :])

            return rval

        num_superpixels = 7
        output = np.zeros((num_examples, pooling_matrix.shape[0]),
                          dtype='float32')

        fd = DenseDesignMatrix(X=np.zeros((1, 1), dtype='float32'),
                               view_converter=DefaultViewConverter(
                                   [1, 1, model.nhid]))

        ns = 32 - size + 1
        depatchifier = ReassembleGridPatches(orig_shape=(ns, ns),
                                             patch_shape=(1, 1))

        if len(range(0, num_examples - batch_size + 1, batch_size)) <= 0:
            print num_examples
            print batch_size

        for i in xrange(0, num_examples - batch_size + 1, batch_size):
            print i
            t1 = time.time()

            d = copy.copy(dataset)
            d.set_design_matrix(full_X[i:i + batch_size, :])

            t2 = time.time()

            #print '\tapplying preprocessor'
            d.apply_preprocessor(pipeline, can_fit=False)
            X2 = d.get_design_matrix()

            t3 = time.time()

            #print '\trunning theano function'
            feat = f(X2)

            t4 = time.time()

            assert feat.dtype == 'float32'

            feat_dataset = copy.copy(fd)

            if np.any(np.isnan(feat)):
                nan += np.isnan(feat).sum()
                feat[np.isnan(feat)] = 0

            feat_dataset.set_design_matrix(feat)

            #print '\treassembling features'
            feat_dataset.apply_preprocessor(depatchifier)

            #print '\tmaking topological view'
            topo_feat = feat_dataset.get_topological_view()
            assert topo_feat.shape[0] == batch_size

            t5 = time.time()

            #average pooling
            superpixels = average_pool(num_superpixels)

            pooled = pooling_matrix.dot(superpixels.T).T

            output[i:i + batch_size, :] = pooled

            t6 = time.time()

            print(t6 - t1, t2 - t1, t3 - t2, t4 - t3, t5 - t4, t6 - t5)

        if self.chunk_size is not None:
            assert save_path.endswith('.npy')
            save_path_pieces = save_path.split('.npy')
            assert len(save_path_pieces) == 2
            assert save_path_pieces[1] == ''
            save_path = save_path_pieces[0] + '_' + chr(
                ord('A') + self.chunk_id) + '.npy'
        np.save(save_path, output)

        if nan > 0:
            warnings.warn(str(nan) + ' features were nan')
Esempio n. 5
0
    def _execute(self):

        global num_superpixels
        num_output_features = self.num_output_features
        idxs = self.idxs
        top = self.top
        bottom = self.bottom
        left = self.left
        right = self.right

        save_path = self.save_path
        batch_size = self.batch_size
        dataset_family = self.dataset_family
        which_set = self.which_set
        model = self.model
        size = self.size

        nan = 0

        dataset_descriptor = dataset_family[which_set][size]

        dataset = dataset_descriptor.dataset_maker()
        expected_num_examples = dataset_descriptor.num_examples

        full_X = dataset.get_design_matrix()
        num_examples = full_X.shape[0]
        assert num_examples == expected_num_examples

        if self.restrict is not None:
            assert self.restrict[1] <= full_X.shape[0]

            print 'restricting to examples ', self.restrict[
                0], ' through ', self.restrict[1], ' exclusive'
            full_X = full_X[self.restrict[0]:self.restrict[1], :]

            assert self.restrict[1] > self.restrict[0]

        #update for after restriction
        num_examples = full_X.shape[0]

        assert num_examples > 0

        dataset.X = None
        dataset.design_loc = None
        dataset.compress = False

        patchifier = ExtractGridPatches(patch_shape=(size, size),
                                        patch_stride=(1, 1))

        pipeline = serial.load(dataset_descriptor.pipeline_path)

        assert isinstance(pipeline.items[0], ExtractPatches)
        pipeline.items[0] = patchifier

        print 'defining features'
        V = T.matrix('V')

        mu = model.mu

        feat = triangle_code(V, mu)

        assert feat.dtype == 'float32'
        print 'compiling theano function'
        f = function([V], feat)

        nhid = model.mu.get_value().shape[0]

        if config.device.startswith('gpu') and nhid >= 4000:
            f = halver(f, model.nhid)

        topo_feat_var = T.TensorType(broadcastable=(False, False, False,
                                                    False),
                                     dtype='float32')()
        if self.pool_mode == 'mean':
            region_features = function([topo_feat_var],
                                       topo_feat_var.mean(axis=(1, 2)))
        elif self.pool_mode == 'max':
            region_features = function([topo_feat_var],
                                       topo_feat_var.max(axis=(1, 2)))
        else:
            assert False

        def average_pool(stride):
            def point(p):
                return p * ns / stride

            rval = np.zeros(
                (topo_feat.shape[0], stride, stride, topo_feat.shape[3]),
                dtype='float32')

            for i in xrange(stride):
                for j in xrange(stride):
                    rval[:, i, j, :] = region_features(
                        topo_feat[:,
                                  point(i):point(i + 1),
                                  point(j):point(j + 1), :])

            return rval

        output = np.zeros((num_examples, num_output_features), dtype='float32')

        fd = DenseDesignMatrix(X=np.zeros((1, 1), dtype='float32'),
                               view_converter=DefaultViewConverter(
                                   [1, 1, nhid]))

        ns = 32 - size + 1
        depatchifier = ReassembleGridPatches(orig_shape=(ns, ns),
                                             patch_shape=(1, 1))

        if len(range(0, num_examples - batch_size + 1, batch_size)) <= 0:
            print num_examples
            print batch_size

        for i in xrange(0, num_examples - batch_size + 1, batch_size):
            print i
            t1 = time.time()

            d = copy.copy(dataset)
            d.set_design_matrix(full_X[i:i + batch_size, :])

            t2 = time.time()

            #print '\tapplying preprocessor'
            d.apply_preprocessor(pipeline, can_fit=False)
            X2 = d.get_design_matrix()

            t3 = time.time()

            #print '\trunning theano function'
            feat = f(X2)

            t4 = time.time()

            assert feat.dtype == 'float32'

            feat_dataset = copy.copy(fd)

            if np.any(np.isnan(feat)):
                nan += np.isnan(feat).sum()
                feat[np.isnan(feat)] = 0

            feat_dataset.set_design_matrix(feat)

            #print '\treassembling features'
            feat_dataset.apply_preprocessor(depatchifier)

            #print '\tmaking topological view'
            topo_feat = feat_dataset.get_topological_view()
            assert topo_feat.shape[0] == batch_size

            t5 = time.time()

            #average pooling
            superpixels = average_pool(num_superpixels)

            assert batch_size == 1

            if self.pool_mode == 'mean':
                for j in xrange(num_output_features):
                    output[i:i + batch_size,
                           j] = superpixels[:, top[j]:bottom[j] + 1,
                                            left[j]:right[j] + 1,
                                            idxs[j]].mean()
            elif self.pool_mode == 'max':
                for j in xrange(num_output_features):
                    output[i:i + batch_size,
                           j] = superpixels[:, top[j]:bottom[j] + 1,
                                            left[j]:right[j] + 1,
                                            idxs[j]].max()
            else:
                assert False

            assert output[i:i + batch_size, :].max() < 1e20

            t6 = time.time()

            print(t6 - t1, t2 - t1, t3 - t2, t4 - t3, t5 - t4, t6 - t5)

        if self.chunk_size is not None:
            assert save_path.endswith('.npy')
            save_path_pieces = save_path.split('.npy')
            assert len(save_path_pieces) == 2
            assert save_path_pieces[1] == ''
            save_path = save_path_pieces[0] + '_' + chr(
                ord('A') + self.chunk_id) + '.npy'
        np.save(save_path, output)

        if nan > 0:
            warnings.warn(str(nan) + ' features were nan')
Esempio n. 6
0
    def _execute(self):

        batch_size = self.batch_size
        feature_type = self.feature_type
        pooling_region_counts = self.pooling_region_counts
        dataset_family = self.dataset_family
        which_set = self.which_set
        model = self.model
        size = self.size

        nan = 0

        dataset_descriptor = dataset_family[which_set][size]

        dataset = dataset_descriptor.dataset_maker()
        expected_num_examples = dataset_descriptor.num_examples

        full_X = dataset.get_design_matrix()
        assert full_X.dtype == 'float32'
        num_examples = full_X.shape[0]
        assert num_examples == expected_num_examples

        print 'restricting to examples from classes 0 and 1'
        full_X = full_X[dataset.y_fine < 2, :]

        #update for after restriction
        num_examples = full_X.shape[0]

        assert num_examples > 0

        dataset.X = None
        dataset.design_loc = None
        dataset.compress = False

        patchifier = ExtractGridPatches(patch_shape=(size, size),
                                        patch_stride=(1, 1))

        pipeline = serial.load(dataset_descriptor.pipeline_path)

        assert isinstance(pipeline.items[0], ExtractPatches)
        pipeline.items[0] = patchifier

        print 'defining features'
        V = T.matrix('V')
        assert V.type.dtype == 'float32'
        model.make_pseudoparams()
        d = model.infer(V=V)

        H = d['H_hat']
        Mu1 = d['S_hat']
        G = d['G_hat']
        if len(G) != 1:
            raise NotImplementedError(
                "only supports two layer pd-dbms for now")
        G, = G

        assert H.dtype == 'float32'
        assert Mu1.dtype == 'float32'

        nfeat = model.s3c.nhid + model.dbm.rbms[0].nhid

        if self.feature_type == 'map_hs':
            feat = (H > 0.5) * Mu1
            raise NotImplementedError("doesn't support layer 2")
        elif self.feature_type == 'map_h':
            feat = T.cast(H > 0.5, dtype='float32')
            raise NotImplementedError("doesn't support layer 2")
        elif self.feature_type == 'exp_hs':
            feat = H * Mu1
            raise NotImplementedError("doesn't support layer 2")
        elif self.feature_type == 'exp_hs_split':
            Z = H * Mu1
            pos = T.clip(Z, 0., 1e32)
            neg = T.clip(-Z, 0, 1e32)
            feat = T.concatenate((pos, neg), axis=1)
            nfeat *= 2
            raise NotImplementedError("doesn't support layer 2")
        elif self.feature_type == 'exp_h,exp_g':
            feat = T.concatenate((H, G), axis=1)
        elif self.feature_type == 'exp_h_thresh':
            feat = H * (H > .01)
            raise NotImplementedError("doesn't support layer 2")
        else:
            raise NotImplementedError()

        assert feat.dtype == 'float32'
        print 'compiling theano function'
        f = function([V], feat)

        if config.device.startswith('gpu') and nfeat >= 4000:
            f = halver(f, nfeat)

        topo_feat_var = T.TensorType(broadcastable=(False, False, False,
                                                    False),
                                     dtype='float32')()
        if self.pool_mode == 'mean':
            region_feat_var = topo_feat_var.mean(axis=(1, 2))
        elif self.pool_mode == 'max':
            region_feat_var = topo_feat_var.max(axis=(1, 2))
        else:
            raise ValueError("Unknown pool mode: " + self.pool_mode)
        region_features = function([topo_feat_var], region_feat_var)

        def average_pool(stride):
            def point(p):
                return p * ns / stride

            rval = np.zeros(
                (topo_feat.shape[0], stride, stride, topo_feat.shape[3]),
                dtype='float32')

            for i in xrange(stride):
                for j in xrange(stride):
                    rval[:, i, j, :] = region_features(
                        topo_feat[:,
                                  point(i):point(i + 1),
                                  point(j):point(j + 1), :])

            return rval

        outputs = [
            np.zeros((num_examples, count, count, nfeat), dtype='float32')
            for count in pooling_region_counts
        ]

        assert len(outputs) > 0

        fd = DenseDesignMatrix(X=np.zeros((1, 1), dtype='float32'),
                               view_converter=DefaultViewConverter(
                                   [1, 1, nfeat]))

        ns = 32 - size + 1
        depatchifier = ReassembleGridPatches(orig_shape=(ns, ns),
                                             patch_shape=(1, 1))

        if len(range(0, num_examples - batch_size + 1, batch_size)) <= 0:
            print num_examples
            print batch_size

        for i in xrange(0, num_examples - batch_size + 1, batch_size):
            print i
            t1 = time.time()

            d = copy.copy(dataset)
            d.set_design_matrix(full_X[i:i + batch_size, :])

            t2 = time.time()

            #print '\tapplying preprocessor'
            d.apply_preprocessor(pipeline, can_fit=False)
            X2 = np.cast['float32'](d.get_design_matrix())

            t3 = time.time()

            #print '\trunning theano function'
            feat = f(X2)

            t4 = time.time()

            assert feat.dtype == 'float32'

            feat_dataset = copy.copy(fd)

            if np.any(np.isnan(feat)):
                nan += np.isnan(feat).sum()
                feat[np.isnan(feat)] = 0

            feat_dataset.set_design_matrix(feat)

            #print '\treassembling features'
            feat_dataset.apply_preprocessor(depatchifier)

            #print '\tmaking topological view'
            topo_feat = feat_dataset.get_topological_view()
            assert topo_feat.shape[0] == batch_size

            t5 = time.time()

            #average pooling
            for output, count in zip(outputs, pooling_region_counts):
                output[i:i + batch_size, ...] = average_pool(count)

            t6 = time.time()

            print(t6 - t1, t2 - t1, t3 - t2, t4 - t3, t5 - t4, t6 - t5)

        for output, save_path in zip(outputs, self.save_paths):
            np.save(save_path, output)

        if nan > 0:
            warnings.warn(str(nan) + ' features were nan')
Esempio n. 7
0
    def _execute(self):

        batch_size = self.batch_size
        pooling_region_counts = self.pooling_region_counts
        dataset_family = self.dataset_family
        which_set = self.which_set
        size = self.size

        nan = 0


        dataset_descriptor = dataset_family[which_set][size]

        dataset = dataset_descriptor.dataset_maker()
        expected_num_examples = dataset_descriptor.num_examples

        full_X = dataset.get_design_matrix()
        num_examples = full_X.shape[0]
        assert num_examples == expected_num_examples

        if self.restrict is not None:
            assert self.restrict[1]  <= full_X.shape[0]

            print 'restricting to examples ',self.restrict[0],' through ',self.restrict[1],' exclusive'
            full_X = full_X[self.restrict[0]:self.restrict[1],:]

            assert self.restrict[1] > self.restrict[0]

        #update for after restriction
        num_examples = full_X.shape[0]

        assert num_examples > 0

        dataset.X = None
        dataset.design_loc = None
        dataset.compress = False

        patchifier = ExtractGridPatches( patch_shape = (size,size), patch_stride = (1,1) )

        pipeline = serial.load(dataset_descriptor.pipeline_path)

        assert isinstance(pipeline.items[0], ExtractPatches)
        pipeline.items[0] = patchifier


        print 'defining features'
        Z = T.matrix('Z')

        if self.one_sided:
            feat = abs(Z)
        else:
            pos = T.clip(Z,0.,1e30)
            neg = T.clip(-Z,0.,1e30)

            feat = T.concatenate((pos, neg), axis=1)

        print 'compiling theano function'
        f = function([Z],feat)

        nfeat = self.W.shape[1] * (2 - self.one_sided)
        if not (nfeat == 1600 or nfeat == 3200):
            print nfeat
            assert False

        if config.device.startswith('gpu') and nfeat >= 4000:
            f = halver(f, nfeat)

        topo_feat_var = T.TensorType(broadcastable = (False,False,False,False), dtype='float32')()
        region_features = function([topo_feat_var],
                topo_feat_var.mean(axis=(1,2)) )

        def average_pool( stride ):
            def point( p ):
                return p * ns / stride

            rval = np.zeros( (topo_feat.shape[0], stride, stride, topo_feat.shape[3] ) , dtype = 'float32')

            for i in xrange(stride):
                for j in xrange(stride):
                    rval[:,i,j,:] = region_features( topo_feat[:,point(i):point(i+1), point(j):point(j+1),:] )

            return rval

        outputs = [ np.zeros((num_examples,count,count,nfeat),dtype='float32') for count in pooling_region_counts ]

        assert len(outputs) > 0

        fd = DenseDesignMatrix(X = np.zeros((1,1),dtype='float32'), view_converter = DefaultViewConverter([1, 1, nfeat] ) )

        ns = 32 - size + 1
        depatchifier = ReassembleGridPatches( orig_shape  = (ns, ns), patch_shape=(1,1) )

        if len(range(0,num_examples-batch_size+1,batch_size)) <= 0:
            print num_examples
            print batch_size

        for i in xrange(0,num_examples-batch_size+1,batch_size):
            print i
            t1 = time.time()

            d = copy.copy(dataset)
            d.set_design_matrix(full_X[i:i+batch_size,:])

            t2 = time.time()

            #print '\tapplying preprocessor'
            d.apply_preprocessor(pipeline, can_fit = False)
            X2 = d.get_design_matrix()

            t3 = time.time()

            M.put(s,'batch',X2)

            M.eval(s, 'Z = sparse_codes(batch, dictionary, lambda)')
            Z = M.get(s, 'Z')

            feat = f(np.cast['float32'](Z))

            t4 = time.time()

            assert feat.dtype == 'float32'

            feat_dataset = copy.copy(fd)

            if np.any(np.isnan(feat)):
                nan += np.isnan(feat).sum()
                feat[np.isnan(feat)] = 0

            feat_dataset.set_design_matrix(feat)

            #print '\treassembling features'
            feat_dataset.apply_preprocessor(depatchifier)

            #print '\tmaking topological view'
            topo_feat = feat_dataset.get_topological_view()
            assert topo_feat.shape[0] == batch_size

            t5 = time.time()

            #average pooling
            for output, count in zip(outputs, pooling_region_counts):
                output[i:i+batch_size,...] = average_pool(count)

            t6 = time.time()

            print (t6-t1, t2-t1, t3-t2, t4-t3, t5-t4, t6-t5)

        for output, save_path in zip(outputs, self.save_paths):
            if self.chunk_size is not None:
                assert save_path.endswith('.npy')
                save_path_pieces = save_path.split('.npy')
                assert len(save_path_pieces) == 2
                assert save_path_pieces[1] == ''
                save_path = save_path_pieces[0] + '_' + chr(ord('A')+self.chunk_id)+'.npy'
            np.save(save_path,output)


        if nan > 0:
            warnings.warn(str(nan)+' features were nan')