def load_cifar10(cifar_path, confidence_ascending=None):
    from pylearn2.datasets.zca_dataset import ZCA_Dataset
    from pylearn2.utils import serial
    import theano
    import theano.tensor as T

    def flatten(img_set):
        result = []
        for img in img_set:
            result.append(img.ravel())
        return np.array(result)

    def shared_y_cast(y):
        shared_y = theano.shared(np.asarray(y, dtype=theano.config.floatX), borrow=True)
        return T.cast(shared_y, "int32")

    whitened_path = os.path.join(cifar_path, "pylearn2_gcn_whitened")
    preprocessed_train_dataset = serial.load(os.path.join(whitened_path, "train.pkl"))
    preprocessed_test_dataset = serial.load(os.path.join(whitened_path, "test.pkl"))
    preprocesssor = serial.load(os.path.join(whitened_path, "preprocessor.pkl"))

    train_set = ZCA_Dataset(preprocessed_train_dataset, preprocesssor, start=0, stop=45000)
    valid_set = ZCA_Dataset(preprocessed_train_dataset, preprocesssor, start=45000, stop=50000)
    test_set = ZCA_Dataset(preprocessed_test_dataset, preprocesssor)

    if confidence_ascending is not None:
        X_new = np.empty_like(train_set.X)
        y_new = np.empty_like(train_set.y)

        for i in range(len(X_new)):
            label = int(train_set.y[i])
            index_new = confidence_ascending[label].pop(0)
            X_new[i] = train_set.X[index_new]
            y_new[i] = train_set.y[index_new]

        train_set.X = X_new
        train_set.y = y_new

    train_set.X = flatten(train_set.X)
    valid_set.X = flatten(valid_set.X)
    test_set.X = flatten(test_set.X)

    train_set_tuple = (
        theano.shared(np.array(train_set.X, dtype=theano.config.floatX), borrow=True),
        shared_y_cast(train_set.y.ravel()),
    )

    valid_set_tuple = (
        theano.shared(np.array(valid_set.X, dtype=theano.config.floatX), borrow=True),
        shared_y_cast(valid_set.y.ravel()),
    )

    test_set_tuple = (
        theano.shared(np.array(test_set.X, dtype=theano.config.floatX), borrow=True),
        shared_y_cast(test_set.y.ravel()),
    )

    return [train_set_tuple, valid_set_tuple, test_set_tuple]
Esempio n. 2
0
        "${PYLEARN2_DATA_PATH}/cifar10/pylearn2_gcn_whitened/train.pkl"),
                            preprocessor=preprocessor,
                            start=45000,
                            stop=50000)
    test_set = ZCA_Dataset(preprocessed_dataset=serial.load(
        "${PYLEARN2_DATA_PATH}/cifar10/pylearn2_gcn_whitened/test.pkl"),
                           preprocessor=preprocessor)

    # bc01 format
    # print train_set.X.shape
    train_set.X = train_set.X.reshape(45000, 3, 32, 32)
    valid_set.X = valid_set.X.reshape(5000, 3, 32, 32)
    test_set.X = test_set.X.reshape(10000, 3, 32, 32)

    # flatten targets
    train_set.y = np.hstack(train_set.y)
    valid_set.y = np.hstack(valid_set.y)
    test_set.y = np.hstack(test_set.y)

    # Onehot the targets
    train_set.y = np.float32(np.eye(10)[train_set.y])
    valid_set.y = np.float32(np.eye(10)[valid_set.y])
    test_set.y = np.float32(np.eye(10)[test_set.y])

    # for hinge loss
    train_set.y = 2 * train_set.y - 1.
    valid_set.y = 2 * valid_set.y - 1.
    test_set.y = 2 * test_set.y - 1.

    print 'Creating the model'
Esempio n. 3
0
 valid_set = ZCA_Dataset(
     preprocessed_dataset= serial.load("${PYLEARN2_DATA_PATH}/cifar10/pylearn2_gcn_whitened/train.pkl"), 
     preprocessor = preprocessor,
     start=45000, stop = 50000)  
 test_set = ZCA_Dataset(
     preprocessed_dataset= serial.load("${PYLEARN2_DATA_PATH}/cifar10/pylearn2_gcn_whitened/test.pkl"), 
     preprocessor = preprocessor)
 
 # bc01 format
 # print train_set.X.shape
 train_set.X = train_set.X.reshape(45000,3,32,32)
 valid_set.X = valid_set.X.reshape(5000,3,32,32)
 test_set.X = test_set.X.reshape(10000,3,32,32)
 
 # flatten targets
 train_set.y = np.hstack(train_set.y)
 valid_set.y = np.hstack(valid_set.y)
 test_set.y = np.hstack(test_set.y)
 
 # Onehot the targets
 train_set.y = np.float32(np.eye(10)[train_set.y])    
 valid_set.y = np.float32(np.eye(10)[valid_set.y])
 test_set.y = np.float32(np.eye(10)[test_set.y])
 
 # for hinge loss
 train_set.y = 2* train_set.y - 1.
 valid_set.y = 2* valid_set.y - 1.
 test_set.y = 2* test_set.y - 1.
 
 print 'Creating the model'
 
Esempio n. 4
0
# print("Preprocessing the test data")
# test_set.apply_preprocessor(preprocessor=preprocessor, can_fit=False)
#
# print("Saving the test data")
# test_set.use_design_loc(output_dir+'/test.npy')
# serial.save(output_dir+'/test.pkl', test_set)

train_set = serial.load(os.path.join(output_dir, 'train.pkl'))
test_set = serial.load(os.path.join(output_dir, 'test.pkl'))

preprocessor = serial.load(os.path.join(output_dir, 'preprocessor.pkl'))

train_set = ZCA_Dataset(train_set, preprocessor, 0, 50000)
test_set = ZCA_Dataset(test_set, preprocessor)

train_set.X = train_set.X.reshape(-1, 3, 32, 32)
test_set.X = test_set.X.reshape(-1, 3, 32, 32)

# flatten targets
train_set.y = np.hstack(train_set.y)
test_set.y = np.hstack(test_set.y)

# Onehot the targets
train_set.y = np.float32(np.eye(10)[train_set.y])
test_set.y = np.float32(np.eye(10)[test_set.y])

np.savez_compressed(os.path.join(output_dir, 'x_train'), train_set.X)
np.savez_compressed(os.path.join(output_dir, 'y_train'), train_set.y)
np.savez_compressed(os.path.join(output_dir, 'x_test'), test_set.X)
np.savez_compressed(os.path.join(output_dir, 'y_test'), test_set.y)
Esempio n. 5
0
def read_cifar10_data():
    '''
    require Theano==0.80 version and pylearn2
    '''
    from pylearn2.datasets.zca_dataset import ZCA_Dataset
    from pylearn2.utils import serial
    train_set_size = 45000
    preprocessor = serial.load(
        "${PYLEARN2_DATA_PATH}/cifar10/pylearn2_gcn_whitened/preprocessor.pkl")
    train_set = ZCA_Dataset(preprocessed_dataset=serial.load(
        "${PYLEARN2_DATA_PATH}/cifar10/pylearn2_gcn_whitened/train.pkl"),
                            preprocessor=preprocessor,
                            start=0,
                            stop=train_set_size)
    valid_set = ZCA_Dataset(preprocessed_dataset=serial.load(
        "${PYLEARN2_DATA_PATH}/cifar10/pylearn2_gcn_whitened/train.pkl"),
                            preprocessor=preprocessor,
                            start=45000,
                            stop=50000)
    test_set = ZCA_Dataset(preprocessed_dataset=serial.load(
        "${PYLEARN2_DATA_PATH}/cifar10/pylearn2_gcn_whitened/test.pkl"),
                           preprocessor=preprocessor)

    import pdb
    pdb.set_trace()
    train_set.X = train_set.X.reshape(-1, 3, 32, 32)
    valid_set.X = valid_set.X.reshape(-1, 3, 32, 32)
    test_set.X = test_set.X.reshape(-1, 3, 32, 32)

    # flatten targets
    train_set.y = np.hstack(train_set.y)
    valid_set.y = np.hstack(valid_set.y)
    test_set.y = np.hstack(test_set.y)

    # Onehot the targets
    train_set.y = np.float32(np.eye(10)[train_set.y])
    valid_set.y = np.float32(np.eye(10)[valid_set.y])
    test_set.y = np.float32(np.eye(10)[test_set.y])

    # for hinge loss
    train_set.y = 2 * train_set.y - 1.
    valid_set.y = 2 * valid_set.y - 1.
    test_set.y = 2 * test_set.y - 1.

    train_set.X = train_set.X.astype(np.float32)
    valid_set.X = valid_set.X.astype(np.float32)
    test_set.X = test_set.X.astype(np.float32)

    train_set.y = train_set.y.astype(np.float32)
    valid_set.y = valid_set.y.astype(np.float32)
    test_set.y = test_set.y.astype(np.float32)

    x_train = train_set.X
    y_train = train_set.y

    x_validate = valid_set.X
    y_validate = valid_set.y

    x_test = test_set.X
    y_test = test_set.y

    # Reorder the indices of the array.
    x_train = x_train.transpose([0, 2, 3, 1])
    x_validate = x_validate.transpose([0, 2, 3, 1])
    x_test = x_test.transpose([0, 2, 3, 1])
def main(method,LR_start):
	
	name = "cifar100"
	print("dataset = "+str(name))

	print("Method = "+str(method))

	# alpha is the exponential moving average factor
	alpha = .1
	print("alpha = "+str(alpha))
	epsilon = 1e-4
	print("epsilon = "+str(epsilon))
	
	# Training parameters
	batch_size = 100
	print("batch_size = "+str(batch_size))
	
	num_epochs = 200
	print("num_epochs = "+str(num_epochs))

	print("LR_start = "+str(LR_start))
	LR_decay = 0.5
	print("LR_decay="+str(LR_decay))

	activation = lasagne.nonlinearities.rectify
	

	train_set_size = 45000
	print("train_set_size = "+str(train_set_size))
	
	print('Loading CIFAR-100 dataset...')
	
	preprocessor = serial.load("${PYLEARN2_DATA_PATH}/cifar100/pylearn2_gcn_whitened/preprocessor.pkl")
	train_set = ZCA_Dataset(
		preprocessed_dataset=serial.load("${PYLEARN2_DATA_PATH}/cifar100/pylearn2_gcn_whitened/train.pkl"), 
		preprocessor = preprocessor,
		start=0, stop = train_set_size)
	valid_set = ZCA_Dataset(
		preprocessed_dataset= serial.load("${PYLEARN2_DATA_PATH}/cifar100/pylearn2_gcn_whitened/train.pkl"), 
		preprocessor = preprocessor,
		start=45000, stop = 50000)  
	test_set = ZCA_Dataset(
		preprocessed_dataset= serial.load("${PYLEARN2_DATA_PATH}/cifar100/pylearn2_gcn_whitened/test.pkl"), 
		preprocessor = preprocessor)
		
	# bc01 format
	train_set.X = train_set.X.reshape(-1,3,32,32)
	valid_set.X = valid_set.X.reshape(-1,3,32,32)
	test_set.X = test_set.X.reshape(-1,3,32,32)
	
	# flatten targets
	train_set.y = np.int32(np.hstack(train_set.y))
	valid_set.y = np.int32(np.hstack(valid_set.y))
	test_set.y = np.int32(np.hstack(test_set.y))
   

	print('Building the CNN...') 
	
	# Prepare Theano variables for inputs and targets
	input = T.tensor4('inputs')
	target = T.ivector('targets')
	LR = T.scalar('LR', dtype=theano.config.floatX)

	l_in = lasagne.layers.InputLayer(
			shape=(None, 3, 32, 32),
			input_var=input)
	
	# 128C3-128C3-P2             
	l_cnn1 = laq.Conv2DLayer(
			l_in, 
			num_filters=128, 
			filter_size=(3, 3),
			pad=1,
			nonlinearity=lasagne.nonlinearities.identity,
			method = method)

	l_bn1 = batch_norm.BatchNormLayer(
			l_cnn1,
			epsilon=epsilon, 
			alpha=alpha)

	l_nl1 = lasagne.layers.NonlinearityLayer(
			l_bn1,
			nonlinearity = activation)

	l_cnn2 = laq.Conv2DLayer(
			l_nl1, 
			num_filters=128, 
			filter_size=(3, 3),
			pad=1,
			nonlinearity=lasagne.nonlinearities.identity,
			method = method)
	
	l_mp1 = lasagne.layers.MaxPool2DLayer(l_cnn2, pool_size=(2, 2))
	
	l_bn2 = batch_norm.BatchNormLayer(
			l_mp1,
			epsilon=epsilon, 
			alpha=alpha)

	l_nl2 = lasagne.layers.NonlinearityLayer(
			l_bn2,
			nonlinearity = activation)			
	# 256C3-256C3-P2             
	l_cnn3 = laq.Conv2DLayer(
			l_nl2, 
			num_filters=256, 
			filter_size=(3, 3),
			pad=1,
			nonlinearity=lasagne.nonlinearities.identity,
			method = method)
	
	l_bn3 = batch_norm.BatchNormLayer(
			l_cnn3,
			epsilon=epsilon, 
			alpha=alpha)

	l_nl3 = lasagne.layers.NonlinearityLayer(
			l_bn3,
			nonlinearity = activation)
			
	l_cnn4 = laq.Conv2DLayer(
			l_nl3, 
			num_filters=256, 
			filter_size=(3, 3),
			pad=1,
			nonlinearity=lasagne.nonlinearities.identity,
			method = method)
	
	l_mp2 = lasagne.layers.MaxPool2DLayer(l_cnn4, pool_size=(2, 2))
	
	l_bn4 = batch_norm.BatchNormLayer(
			l_mp2,
			epsilon=epsilon, 
			alpha=alpha)
	
	l_nl4 = lasagne.layers.NonlinearityLayer(
			l_bn4,
			nonlinearity = activation)

	# 512C3-512C3-P2              
	l_cnn5 = laq.Conv2DLayer(
			l_nl4, 
			num_filters=512, 
			filter_size=(3, 3),
			pad=1,
			nonlinearity=lasagne.nonlinearities.identity,
			method = method)
	
	l_bn5 = batch_norm.BatchNormLayer(
			l_cnn5,
			epsilon=epsilon, 
			alpha=alpha)

	l_nl5 = lasagne.layers.NonlinearityLayer(
			l_bn5,
			nonlinearity = activation)
				  
	l_cnn6 = laq.Conv2DLayer(
			l_nl5, 
			num_filters=512, 
			filter_size=(3, 3),
			pad=1,
			nonlinearity=lasagne.nonlinearities.identity,
			method = method)
	
	l_mp3 = lasagne.layers.MaxPool2DLayer(l_cnn6, pool_size=(2, 2))
	
	l_bn6 = batch_norm.BatchNormLayer(
			l_mp3,
			epsilon=epsilon, 
			alpha=alpha)

	l_nl6 = lasagne.layers.NonlinearityLayer(
			l_bn6,
			nonlinearity = activation)

	# print(cnn.output_shape)
	
	# 1024FP-1024FP-10FP            
	l_dn1 = laq.DenseLayer(
				l_nl6, 
				nonlinearity=lasagne.nonlinearities.identity,
				num_units=1024,
				method = method)      
				  
	l_bn7 = batch_norm.BatchNormLayer(
			l_dn1,
			epsilon=epsilon, 
			alpha=alpha)

	l_nl7 = lasagne.layers.NonlinearityLayer(
			l_bn7,
			nonlinearity = activation)

	l_dn2 = laq.DenseLayer(
				l_nl7, 
				nonlinearity=lasagne.nonlinearities.identity,
				num_units=1024,
				method = method)      
				  
	l_bn8 = batch_norm.BatchNormLayer(
			l_dn2,
			epsilon=epsilon, 
			alpha=alpha)

	l_nl8 = lasagne.layers.NonlinearityLayer(
			l_bn8,
			nonlinearity = activation)

	l_dn3 = laq.DenseLayer(
				l_nl8, 
				nonlinearity=lasagne.nonlinearities.identity,
				num_units=100,
				method = method)      

	l_out = lasagne.layers.NonlinearityLayer(l_dn3, nonlinearity=lasagne.nonlinearities.softmax) 



	train_output = lasagne.layers.get_output(l_out, deterministic=False)
	loss = categorical_crossentropy(train_output, target).mean()


	if method!="FPN":
		# W updates
		W = lasagne.layers.get_all_params(l_out, quantized=True)
		W_grads = laq.compute_grads(loss,l_out)
		updates = optimizer.adam(loss_or_grads=W_grads, params=W, learning_rate=LR)
		updates = laq.clipping_scaling(updates,l_out)
		
		# other parameters updates
		params = lasagne.layers.get_all_params(l_out, trainable=True, quantized=False)
		updates = OrderedDict(updates.items() + optimizer.adam(loss_or_grads=loss, params=params, learning_rate=LR).items())

		## update 2nd moment, can get from the adam optimizer also
		ternary_weights = laq.get_quantized_weights(loss, l_out)
		updates2 = OrderedDict()
		idx = 0
		tt_tag = lasagne.layers.get_all_params(l_out, tt=True)	
		for tt_tag_temp in tt_tag:
			updates2[tt_tag_temp]= ternary_weights[idx]
			idx = idx+1
		updates = OrderedDict(updates.items() + updates2.items())

		## update 2nd momentum
		updates3 = OrderedDict()
		acc_tag = lasagne.layers.get_all_params(l_out, acc=True)	
		idx = 0
		beta2 = 0.999   
		for acc_tag_temp in acc_tag:
			updates3[acc_tag_temp]= acc_tag_temp*beta2 + W_grads[idx]*W_grads[idx]*(1-beta2)
			idx = idx+1

		updates = OrderedDict(updates.items() + updates3.items())	


	else:
		params = lasagne.layers.get_all_params(l_out, trainable=True)
		updates = optimizer.adam(loss_or_grads=loss, params=params, learning_rate=LR)

	test_output = lasagne.layers.get_output(l_out, deterministic=True)
	test_loss = categorical_crossentropy(test_output, target).mean()
	test_err = T.mean(T.neq(T.argmax(test_output, axis=1), target),dtype=theano.config.floatX)

	train_fn = theano.function([input, target, LR], loss, updates=updates)
	val_fn = theano.function([input, target], [test_loss, test_err])

	print('Training...')
	

	X_train = train_set.X
	y_train = train_set.y
	X_val = valid_set.X
	y_val = valid_set.y
	X_test = test_set.X
	y_test = test_set.y
	# This function trains the model a full epoch (on the whole dataset)
	def train_epoch(X,y,LR):
		
		loss = 0
		batches = len(X)/batch_size
		shuffled_range = range(len(X))
		np.random.shuffle(shuffled_range)

		for i in range(batches):
			tmp_ind = shuffled_range[i*batch_size:(i+1)*batch_size] 
			newloss = train_fn(X[tmp_ind],y[tmp_ind],LR) 
			loss +=newloss				

		loss/=batches		
		return loss
	
	# This function tests the model a full epoch (on the whole dataset)
	def val_epoch(X,y):
		
		err = 0
		loss = 0
		batches = len(X)/batch_size
		
		for i in range(batches):
			new_loss, new_err = val_fn(X[i*batch_size:(i+1)*batch_size], y[i*batch_size:(i+1)*batch_size])
			err += new_err
			loss += new_loss
		
		err = err / batches * 100
		loss /= batches

		return err, loss
	

	best_val_err = 100
	best_epoch = 1
	LR = LR_start
	# We iterate over epochs:
	for epoch in range(1, num_epochs+1):
		
		start_time = time.time()
		train_loss = train_epoch(X_train,y_train,LR)
		
		val_err, val_loss = val_epoch(X_val,y_val)
		
		# test if validation error went down
		if val_err <= best_val_err:
			
			best_val_err = val_err
			best_epoch = epoch
			test_err, test_loss = val_epoch(X_test,y_test)

		epoch_duration = time.time() - start_time
		
		# Then we print the results for this epoch:
		print("Epoch "+str(epoch)+" of "+str(num_epochs)+" took "+str(epoch_duration)+"s")
		print("  LR:                            "+str(LR))
		print("  training loss:                 "+str(train_loss))
		print("  validation loss:               "+str(val_loss))
		print("  validation error rate:         "+str(val_err)+"%")
		print("  best epoch:                    "+str(best_epoch))
		print("  best validation error rate:    "+str(best_val_err)+"%")
		print("  test loss:                     "+str(test_loss))
		print("  test error rate:               "+str(test_err)+"%") 
		

		with open("{0}/{1}_lr{2}_{3}.txt".format(method, name,  LR_start, method), "a") as myfile:
			myfile.write("{0}  {1:.5f} {2:.5f} {3:.5f} {4:.5f} {5:.5f} {6:.5f} {7:.5f}\n".format(epoch, 
				train_loss, val_loss, test_loss, val_err, test_err, epoch_duration, LR))


		if epoch % 15 ==0:
			LR*=LR_decay
Esempio n. 7
0
    valid_set = ZCA_Dataset(
        preprocessed_dataset= serial.load("${PYLEARN2_DATA_PATH}/cifar10/pylearn2_gcn_whitened/train.pkl"), 
        preprocessor = preprocessor,
        start=40000, stop = 50000)  
    test_set = ZCA_Dataset(
        preprocessed_dataset= serial.load("${PYLEARN2_DATA_PATH}/cifar10/pylearn2_gcn_whitened/test.pkl"), 
        preprocessor = preprocessor)
    
    # bc01 format
    train_set.X = train_set.X.reshape(40000,3,32,32)
    valid_set.X = valid_set.X.reshape(10000,3,32,32)
    test_set.X = test_set.X.reshape(10000,3,32,32)
    
    # if using cross entrophy, comment out this block.
    # Onehot the targets
    train_set.y = np.float32(onehot(train_set.y))
    valid_set.y = np.float32(onehot(valid_set.y))
    test_set.y = np.float32(onehot(test_set.y))

    # for hinge loss
    train_set.y = 2* train_set.y - 1.
    valid_set.y = 2* valid_set.y - 1.
    test_set.y = 2* test_set.y - 1.

    """
    # if using hinge loss, comment out this block.
    train_set.y = train_set.y.reshape(40000, ).astype('int')
    valid_set.y = valid_set.y.reshape(10000, ).astype('int')
    test_set.y = test_set.y.reshape(10000, ).astype('int')
    """
    
def load_cifar10(cifar_path, confidence_ascending=None):
    from pylearn2.datasets.zca_dataset import ZCA_Dataset
    from pylearn2.utils import serial
    import theano
    import theano.tensor as T

    def flatten(img_set):
        result = []
        for img in img_set:
            result.append(img.ravel())
        return np.array(result)

    def shared_y_cast(y):
        shared_y = theano.shared(np.asarray(y, dtype=theano.config.floatX),
                                 borrow=True)
        return T.cast(shared_y, 'int32')

    whitened_path = os.path.join(cifar_path, 'pylearn2_gcn_whitened')
    preprocessed_train_dataset = serial.load(
        os.path.join(whitened_path, 'train.pkl'))
    preprocessed_test_dataset = serial.load(
        os.path.join(whitened_path, 'test.pkl'))
    preprocesssor = serial.load(os.path.join(whitened_path,
                                             'preprocessor.pkl'))

    train_set = ZCA_Dataset(preprocessed_train_dataset,
                            preprocesssor,
                            start=0,
                            stop=45000)
    valid_set = ZCA_Dataset(preprocessed_train_dataset,
                            preprocesssor,
                            start=45000,
                            stop=50000)
    test_set = ZCA_Dataset(preprocessed_test_dataset, preprocesssor)

    if confidence_ascending is not None:
        X_new = np.empty_like(train_set.X)
        y_new = np.empty_like(train_set.y)

        for i in range(len(X_new)):
            label = int(train_set.y[i])
            index_new = confidence_ascending[label].pop(0)
            X_new[i] = train_set.X[index_new]
            y_new[i] = train_set.y[index_new]

        train_set.X = X_new
        train_set.y = y_new

    train_set.X = flatten(train_set.X)
    valid_set.X = flatten(valid_set.X)
    test_set.X = flatten(test_set.X)

    train_set_tuple = \
        theano.shared(np.array(train_set.X, dtype=theano.config.floatX), borrow=True), \
        shared_y_cast(train_set.y.ravel())

    valid_set_tuple = \
        theano.shared(np.array(valid_set.X, dtype=theano.config.floatX), borrow=True), \
        shared_y_cast(valid_set.y.ravel())

    test_set_tuple = \
        theano.shared(np.array(test_set.X, dtype=theano.config.floatX), borrow=True), \
        shared_y_cast(test_set.y.ravel())

    return [train_set_tuple, valid_set_tuple, test_set_tuple]
Esempio n. 9
0
def main(method,LR_start,Binarize_weight_only):
	
	name = "cifar"
	print("dataset = "+str(name))

	print("Binarize_weight_only="+str(Binarize_weight_only))

	print("Method = "+str(method))

	# alpha is the exponential moving average factor
	alpha = .1
	print("alpha = "+str(alpha))
	epsilon = 1e-4
	print("epsilon = "+str(epsilon))
	
	# Training parameters
	batch_size = 50
	print("batch_size = "+str(batch_size))
	
	num_epochs = 200
	print("num_epochs = "+str(num_epochs))

	print("LR_start = "+str(LR_start))
	LR_decay = 0.5
	print("LR_decay="+str(LR_decay))

	if Binarize_weight_only =="w":
		activation = lasagne.nonlinearities.rectify
	else:
		activation = lab.binary_tanh_unit
	print("activation = "+ str(activation))
	

	train_set_size = 45000
	print("train_set_size = "+str(train_set_size))
	
	print('Loading CIFAR-10 dataset...')
	
	preprocessor = serial.load("${PYLEARN2_DATA_PATH}/cifar10/pylearn2_gcn_whitened/preprocessor.pkl")
	train_set = ZCA_Dataset(
		preprocessed_dataset=serial.load("${PYLEARN2_DATA_PATH}/cifar10/pylearn2_gcn_whitened/train.pkl"), 
		preprocessor = preprocessor,
		start=0, stop = train_set_size)
	valid_set = ZCA_Dataset(
		preprocessed_dataset= serial.load("${PYLEARN2_DATA_PATH}/cifar10/pylearn2_gcn_whitened/train.pkl"), 
		preprocessor = preprocessor,
		start=45000, stop = 50000)  
	test_set = ZCA_Dataset(
		preprocessed_dataset= serial.load("${PYLEARN2_DATA_PATH}/cifar10/pylearn2_gcn_whitened/test.pkl"), 
		preprocessor = preprocessor)
		
	# bc01 format
	train_set.X = train_set.X.reshape(-1,3,32,32)
	valid_set.X = valid_set.X.reshape(-1,3,32,32)
	test_set.X = test_set.X.reshape(-1,3,32,32)
	
	# flatten targets
	train_set.y = np.hstack(train_set.y)
	valid_set.y = np.hstack(valid_set.y)
	test_set.y = np.hstack(test_set.y)

   
	# Onehot the targets
	train_set.y = np.float32(np.eye(10)[train_set.y])    
	valid_set.y = np.float32(np.eye(10)[valid_set.y])
	test_set.y = np.float32(np.eye(10)[test_set.y])
	
	# for hinge loss
	train_set.y = 2* train_set.y - 1.
	valid_set.y = 2* valid_set.y - 1.
	test_set.y = 2* test_set.y - 1.

	print('Building the CNN...') 
	
	# Prepare Theano variables for inputs and targets
	input = T.tensor4('inputs')
	target = T.matrix('targets')
	LR = T.scalar('LR', dtype=theano.config.floatX)

	l_in = lasagne.layers.InputLayer(
			shape=(None, 3, 32, 32),
			input_var=input)
	
	# 128C3-128C3-P2             
	l_cnn1 = lab.Conv2DLayer(
			l_in, 
			num_filters=128, 
			filter_size=(3, 3),
			pad=1,
			nonlinearity=lasagne.nonlinearities.identity,
			method = method)

	l_bn1 = batch_norm.BatchNormLayer(
			l_cnn1,
			epsilon=epsilon, 
			alpha=alpha)

	l_nl1 = lasagne.layers.NonlinearityLayer(
			l_bn1,
			nonlinearity = activation)

	l_cnn2 = lab.Conv2DLayer(
			l_nl1, 
			num_filters=128, 
			filter_size=(3, 3),
			pad=1,
			nonlinearity=lasagne.nonlinearities.identity,
			method = method)
	
	l_mp1 = lasagne.layers.MaxPool2DLayer(l_cnn2, pool_size=(2, 2))
	
	l_bn2 = batch_norm.BatchNormLayer(
			l_mp1,
			epsilon=epsilon, 
			alpha=alpha)

	l_nl2 = lasagne.layers.NonlinearityLayer(
			l_bn2,
			nonlinearity = activation)			
	# 256C3-256C3-P2             
	l_cnn3 = lab.Conv2DLayer(
			l_nl2, 
			num_filters=256, 
			filter_size=(3, 3),
			pad=1,
			nonlinearity=lasagne.nonlinearities.identity,
			method = method)
	
	l_bn3 = batch_norm.BatchNormLayer(
			l_cnn3,
			epsilon=epsilon, 
			alpha=alpha)

	l_nl3 = lasagne.layers.NonlinearityLayer(
			l_bn3,
			nonlinearity = activation)
			
	l_cnn4 = lab.Conv2DLayer(
			l_nl3, 
			num_filters=256, 
			filter_size=(3, 3),
			pad=1,
			nonlinearity=lasagne.nonlinearities.identity,
			method = method)
	
	l_mp2 = lasagne.layers.MaxPool2DLayer(l_cnn4, pool_size=(2, 2))
	
	l_bn4 = batch_norm.BatchNormLayer(
			l_mp2,
			epsilon=epsilon, 
			alpha=alpha)
	
	l_nl4 = lasagne.layers.NonlinearityLayer(
			l_bn4,
			nonlinearity = activation)

	# 512C3-512C3-P2              
	l_cnn5 = lab.Conv2DLayer(
			l_nl4, 
			num_filters=512, 
			filter_size=(3, 3),
			pad=1,
			nonlinearity=lasagne.nonlinearities.identity,
			method = method)
	
	l_bn5 = batch_norm.BatchNormLayer(
			l_cnn5,
			epsilon=epsilon, 
			alpha=alpha)

	l_nl5 = lasagne.layers.NonlinearityLayer(
			l_bn5,
			nonlinearity = activation)
				  
	l_cnn6 = lab.Conv2DLayer(
			l_nl5, 
			num_filters=512, 
			filter_size=(3, 3),
			pad=1,
			nonlinearity=lasagne.nonlinearities.identity,
			method = method)
	
	l_mp3 = lasagne.layers.MaxPool2DLayer(l_cnn6, pool_size=(2, 2))
	
	l_bn6 = batch_norm.BatchNormLayer(
			l_mp3,
			epsilon=epsilon, 
			alpha=alpha)

	l_nl6 = lasagne.layers.NonlinearityLayer(
			l_bn6,
			nonlinearity = activation)

	# print(cnn.output_shape)
	
	# 1024FP-1024FP-10FP            
	l_dn1 = lab.DenseLayer(
				l_nl6, 
				nonlinearity=lasagne.nonlinearities.identity,
				num_units=1024,
				method = method)      
				  
	l_bn7 = batch_norm.BatchNormLayer(
			l_dn1,
			epsilon=epsilon, 
			alpha=alpha)

	l_nl7 = lasagne.layers.NonlinearityLayer(
			l_bn7,
			nonlinearity = activation)

	l_dn2 = lab.DenseLayer(
				l_nl7, 
				nonlinearity=lasagne.nonlinearities.identity,
				num_units=1024,
				method = method)      
				  
	l_bn8 = batch_norm.BatchNormLayer(
			l_dn2,
			epsilon=epsilon, 
			alpha=alpha)

	l_nl8 = lasagne.layers.NonlinearityLayer(
			l_bn8,
			nonlinearity = activation)

	l_dn3 = lab.DenseLayer(
				l_nl8, 
				nonlinearity=lasagne.nonlinearities.identity,
				num_units=10,
				method = method)      
				  
	l_out = batch_norm.BatchNormLayer(
			l_dn3,
			epsilon=epsilon, 
			alpha=alpha)

	train_output = lasagne.layers.get_output(l_out, deterministic=False)
	
	# squared hinge loss
	loss = T.mean(T.sqr(T.maximum(0.,1.-target*train_output)))
	
	if method!="FPN":
		# W updates
		W = lasagne.layers.get_all_params(l_out, binary=True)
		W_grads = lab.compute_grads(loss,l_out)
		updates = optimizer.adam(loss_or_grads=W_grads, params=W, learning_rate=LR)
		updates = lab.clipping_scaling(updates,l_out)
		
		# other parameters updates
		params = lasagne.layers.get_all_params(l_out, trainable=True, binary=False)
		updates = OrderedDict(updates.items() + optimizer.adam(loss_or_grads=loss, params=params, learning_rate=LR).items())

		## update 2nd moment, can get from the adam optimizer also
		updates3 = OrderedDict()
		acc_tag = lasagne.layers.get_all_params(l_out, acc=True)	
		idx = 0
		beta2 = 0.999   
		for acc_tag_temp in acc_tag:
			updates3[acc_tag_temp]= acc_tag_temp*beta2 + W_grads[idx]*W_grads[idx]*(1-beta2)
			idx = idx+1

		updates = OrderedDict(updates.items() + updates3.items())	
	else:
		params = lasagne.layers.get_all_params(l_out, trainable=True)
		updates = optimizer.adam(loss_or_grads=loss, params=params, learning_rate=LR)

	test_output = lasagne.layers.get_output(l_out, deterministic=True)
	test_loss = T.mean(T.sqr(T.maximum(0.,1.-target*test_output)))
	test_err = T.mean(T.neq(T.argmax(test_output, axis=1), T.argmax(target, axis=1)),dtype=theano.config.floatX)
	
	# Compile a function performing a training step on a mini-batch (by giving the updates dictionary) 
	# and returning the corresponding training loss:
	train_fn = theano.function([input, target, LR], loss, updates=updates)
	val_fn = theano.function([input, target], [test_loss, test_err])

	print('Training...')
	
	lab.train(
			name, method,
			train_fn,val_fn,
			batch_size,
			LR_start,LR_decay,
			num_epochs,
			train_set.X,train_set.y,
			valid_set.X,valid_set.y,
			test_set.X,test_set.y)