Esempio n. 1
0
def get_ae_pretrainer(layer, data, batch_size, epochs=30):
    init_lr = 0.05

    train_algo = SGD(
        batch_size=batch_size,
        learning_rate=init_lr,
        learning_rule=Momentum(init_momentum=0.5),
        monitoring_batches=batch_size,
        monitoring_dataset=data,
        # for ContractiveAutoencoder:
        # cost=cost.SumOfCosts(costs=[[1., MeanSquaredReconstructionError()],
        #                             [0.5, cost.MethodCost(method='contraction_penalty')]]),
        # for HigherOrderContractiveAutoencoder:
        # cost=cost.SumOfCosts(costs=[[1., MeanSquaredReconstructionError()],
        #                             [0.5, cost.MethodCost(method='contraction_penalty')],
        #                             [0.5, cost.MethodCost(method='higher_order_penalty')]]),
        # for DenoisingAutoencoder:
        cost=MeanSquaredReconstructionError(),
        termination_criterion=EpochCounter(epochs))
    return Train(model=layer,
                 algorithm=train_algo,
                 dataset=data,
                 extensions=[
                     MomentumAdjustor(final_momentum=0.9, start=0,
                                      saturate=25),
                     LinearDecayOverEpoch(start=1,
                                          saturate=25,
                                          decay_factor=.02)
                 ])
Esempio n. 2
0
    def create_adjustors(self):
        initial_momentum = .5
        final_momentum = .99
        start = 1
        saturate = self.max_epochs
        self.momentum_adjustor = learning_rule.MomentumAdjustor(
            final_momentum, start, saturate)
        self.momentum_rule = learning_rule.Momentum(initial_momentum,
                                                    nesterov_momentum=True)

        if self.lr_monitor_decay:
            self.learning_rate_adjustor = MonitorBasedLRAdjuster(
                high_trigger=1., shrink_amt=0.9,
                low_trigger=.95, grow_amt=1.1, channel_name='train_objective')
        elif self.lr_lin_decay:
            self.learning_rate_adjustor = LinearDecayOverEpoch(
                start, saturate, self.lr_lin_decay)
Esempio n. 3
0
    def create_adjustors(self):
        initial_momentum = .5
        final_momentum = .99
        start = 1
        saturate = self.max_epochs
        self.momentum_adjustor = learning_rule.MomentumAdjustor(
            final_momentum, start, saturate)
        self.momentum_rule = learning_rule.Momentum(initial_momentum,
                                                    nesterov_momentum=True)

        if self.lr_monitor_decay:
            self.learning_rate_adjustor = MonitorBasedLRAdjuster(
                high_trigger=1.,
                shrink_amt=0.9,
                low_trigger=.95,
                grow_amt=1.1,
                channel_name='train_objective')
        elif self.lr_lin_decay:
            self.learning_rate_adjustor = LinearDecayOverEpoch(
                start, saturate, self.lr_lin_decay)
Esempio n. 4
0
def get_finetuner(model, trainset, batch_size=100, epochs=100):
    train_algo = SGD(batch_size=batch_size,
                     learning_rule=Momentum(init_momentum=0.5),
                     learning_rate=0.5,
                     monitoring_batches=batch_size,
                     monitoring_dataset=trainset,
                     cost=Dropout(input_include_probs={'h0': .5},
                                  input_scales={'h0': 2.}),
                     termination_criterion=EpochCounter(epochs))
    path = DATA_DIR + 'model' + str(SUBMODEL) + 'saved_daex.pkl'
    return Train(model=model,
                 algorithm=train_algo,
                 dataset=trainset,
                 save_path=path,
                 save_freq=10,
                 extensions=[
                     MomentumAdjustor(final_momentum=0.9,
                                      start=0,
                                      saturate=int(epochs * 0.8)),
                     LinearDecayOverEpoch(start=1,
                                          saturate=int(epochs * 0.7),
                                          decay_factor=.02)
                 ])
Esempio n. 5
0
def get_trainer2(model, trainset, epochs=50):
    train_algo = SGD(
        batch_size=bsize,
        learning_rate=0.5,
        learning_rule=Momentum(init_momentum=0.5),
        monitoring_batches=bsize,
        monitoring_dataset=trainset,
        cost=Dropout(input_include_probs={'h0': .8}, input_scales={'h0': 1.}),
        termination_criterion=EpochCounter(epochs),
    )
    path = DATA_DIR + 'model2saved_conv.pkl'
    return Train(model=model,
                 algorithm=train_algo,
                 dataset=trainset,
                 save_path=path,
                 save_freq=1,
                 extensions=[
                     MomentumAdjustor(final_momentum=0.7,
                                      start=0,
                                      saturate=int(epochs * 0.5)),
                     LinearDecayOverEpoch(start=1,
                                          saturate=int(epochs * 0.8),
                                          decay_factor=.01)
                 ])
Esempio n. 6
0
def get_trainer(model, trainset, validset, save_path):
  
  monitoring  = dict(valid=validset, train=trainset)
  termination = MonitorBased(channel_name='valid_y_misclass', prop_decrease=.001, N=100)
  extensions  = [MonitorBasedSaveBest(channel_name='valid_y_misclass', save_path=save_path),
                #MomentumAdjustor(start=1, saturate=100, final_momentum=.9),
                LinearDecayOverEpoch(start=1, saturate=200, decay_factor=0.01)]

  config = {
  'learning_rate': .01,
  #'learning_rule': Momentum(0.5),
  'learning_rule': RMSProp(),
  'train_iteration_mode': 'shuffled_sequential',
  'batch_size': 1200,#250,
  #'batches_per_iter' : 100,
  'monitoring_dataset': monitoring,
  'monitor_iteration_mode' : 'shuffled_sequential',
  'termination_criterion' : termination,
  }

  return Train(model=model, 
      algorithm=SGD(**config),
      dataset=trainset,
      extensions=extensions)
Esempio n. 7
0
def test_linear_decay_over_epoch():

    # tests that the class LinearDecayOverEpoch in sgd.py
    # gets the learning rate properly over the training epochs
    # it runs a small softmax and at the end checks the learning values.
    # the learning rates are expected to start changing at epoch 'start' by an amount of 'step' specified below.
    # the decrease of the learning rate should continue linearly untill we reach epoch 'saturate' at which the learning rate equals 'learning_rate * decay_factor'

    dim = 3
    m = 10

    rng = np.random.RandomState([25, 9, 2012])

    X = rng.randn(m, dim)

    dataset = DenseDesignMatrix(X=X)

    m = 15
    X = rng.randn(m, dim)

    # including a monitoring datasets lets us test that
    # the monitor works with supervised data
    monitoring_dataset = DenseDesignMatrix(X=X)

    model = SoftmaxModel(dim)

    learning_rate = 1e-1
    batch_size = 5

    # We need to include this so the test actually stops running at some point
    epoch_num = 15
    termination_criterion = EpochCounter(epoch_num)

    cost = DummyCost()

    algorithm = SGD(learning_rate,
                    cost,
                    batch_size=5,
                    monitoring_batches=3,
                    monitoring_dataset=monitoring_dataset,
                    termination_criterion=termination_criterion,
                    update_callbacks=None,
                    init_momentum=None,
                    set_batch_size=False)

    start = 5
    saturate = 10
    decay_factor = 0.1
    linear_decay = LinearDecayOverEpoch(start=start,
                                        saturate=saturate,
                                        decay_factor=decay_factor)

    train = Train(dataset,
                  model,
                  algorithm,
                  save_path=None,
                  save_freq=0,
                  extensions=[linear_decay])

    train.main_loop()

    lr = model.monitor.channels['learning_rate']
    step = (learning_rate - learning_rate * decay_factor) / (saturate - start +
                                                             1)

    for i in xrange(epoch_num + 1):
        actual = lr.val_record[i]
        if i < start:
            expected = learning_rate
        elif i >= saturate:
            expected = learning_rate * decay_factor
        elif (start <= i) and (i < saturate):
            expected = decay_factor * learning_rate + (saturate - i) * step
        if not np.allclose(actual, expected):
            raise AssertionError(
                "After %d epochs, expected learning rate to be %f, but it is %f."
                % (i, actual, expected))
Esempio n. 8
0
def main():

    #creating layers
    #2 convolutional rectified layers, border mode valid
    batch_size = 64
    lr = 0.1 / 20
    finMomentum = 0.9
    maxout_units = 2000
    num_pcs = 4
    lay1_reg = lay2_reg = maxout_reg = None
    #save_path = './models/no_maxout/titan_lr_0.1_btch_64_momFinal_0.9_maxout_2000_4.joblib'
    #best_path = '/models/no_maxout/titan_bart10_gpu2_best.joblib'
    #save_path = './models/'+params.host+'_'+params.device+'_'+sys.argv[1]+'.joblib'
    #best_path = './models/'+params.host+'_'+params.device+'_'+sys.argv[1]+'best.joblib'
    save_path = '/Tmp/zumerjer/eos1_sumcost_nodrop_noada_small_ema.joblib'
    best_path = '/Tmp/zumerjer/eos1_sumcost_nodrop_noada_small_ema_best.joblib'

    #numBatches = 400000/batch_size
    '''
    print 'Applying preprocessing'
    ddmTrain = EmotiwKeypoints(start=0, stop =40000)
    ddmValid = EmotiwKeypoints(start=40000, stop = 44000)
    ddmTest = EmotiwKeypoints(start=44000)

    stndrdz = preprocessing.Standardize()
    stndrdz.applyLazily(ddmTrain, can_fit=True, name = 'train')
    stndrdz.applyLazily(ddmValid, can_fit=False, name = 'val')
    stndrdz.applyLazily(ddmTest, can_fit=False, name = 'test')

    GCN = preprocessing.GlobalContrastNormalization(batch_size = 1000)
    GCN.apply(ddmTrain, can_fit =True, name = 'train')
    GCN.apply(ddmValid, can_fit =False, name = 'val')
    GCN.apply(ddmTest, can_fit = False, name = 'test')
    return
    '''

    ddmTrain = ComboDatasetPyTable('/Tmp/zumerjer/all_', which_set='train')
    ddmValid = ComboDatasetPyTable('/Tmp/zumerjer/all_', which_set='valid')
    ddmSmallTrain = ComboDatasetPyTable('/Tmp/zumerjer/all_',
                                        which_set='small_train')

    layer1 = ConvRectifiedLinear(layer_name='convRect1',
                                 output_channels=64,
                                 irange=.05,
                                 kernel_shape=[5, 5],
                                 pool_shape=[4, 4],
                                 pool_stride=[2, 2],
                                 W_lr_scale=0.1,
                                 max_kernel_norm=lay1_reg)
    layer2 = ConvRectifiedLinear(layer_name='convRect2',
                                 output_channels=128,
                                 irange=.05,
                                 kernel_shape=[5, 5],
                                 pool_shape=[3, 3],
                                 pool_stride=[2, 2],
                                 W_lr_scale=0.1,
                                 max_kernel_norm=lay2_reg)

    # Rectified linear units
    #layer3 = RectifiedLinear(dim = 3000,
    #                         sparse_init = 15,
    #                 layer_name = 'RectLin3')

    #Maxout layer
    maxout = Maxout(layer_name='maxout',
                    irange=.005,
                    num_units=maxout_units,
                    num_pieces=num_pcs,
                    W_lr_scale=0.1,
                    max_col_norm=maxout_reg)

    #multisoftmax
    n_groups = 196
    n_classes = 96
    layer_name = 'multisoftmax'
    layerMS = MultiSoftmax(n_groups=n_groups,
                           irange=0.05,
                           n_classes=n_classes,
                           layer_name=layer_name)

    #setting up MLP0
    MLPerc = MLP(batch_size=batch_size,
                 input_space=Conv2DSpace(shape=[96, 96],
                                         num_channels=3,
                                         axes=('b', 0, 1, 'c')),
                 layers=[layer1, layer2, maxout, layerMS])

    #mlp_cost
    missing_target_value = -1
    mlp_cost = MLPCost(cost_type='default',
                       missing_target_value=missing_target_value)
    #mlp_cost.setup_dropout(input_include_probs= { 'convRect1' : 0.8 }, input_scales= { 'convRect1': 1. })

    #dropout_cost = Dropout(input_include_probs= { 'convRect1' : .8 },
    #                      input_scales= { 'convRect1': 1. })

    #algorithm
    monitoring_dataset = {'validation': ddmValid, 'mini-train': ddmSmallTrain}

    term_crit = MonitorBased(prop_decrease=1e-7,
                             N=100,
                             channel_name='validation_objective')

    kpSGD = KeypointSGD(learning_rate=lr,
                        init_momentum=0.5,
                        monitoring_dataset=monitoring_dataset,
                        batch_size=batch_size,
                        termination_criterion=term_crit,
                        cost=mlp_cost)

    #train extension
    #train_ext = ExponentialDecayOverEpoch(decay_factor = 0.998, min_lr_scale = 0.001)
    train_ext = LinearDecayOverEpoch(start=1, saturate=250, decay_factor=.01)
    #train_ext = ADADELTA(0.95)

    #train object
    train = Train(dataset=ddmTrain,
                  save_path=save_path,
                  save_freq=10,
                  model=MLPerc,
                  algorithm=kpSGD,
                  extensions=[
                      train_ext,
                      MonitorBasedSaveBest(channel_name='validation_objective',
                                           save_path=best_path),
                      MomentumAdjustor(start=1,
                                       saturate=25,
                                       final_momentum=finMomentum)
                  ])
    train.main_loop()
    train.save()
Esempio n. 9
0
class SequenceTaggerNetwork(Model):
    def __init__(self,
                 dataset,
                 w2i,
                 t2i,
                 featurizer,
                 edim=None,
                 hdims=None,
                 fedim=None,
                 max_epochs=100,
                 use_momentum=False,
                 lr=.01,
                 lr_lin_decay=None,
                 lr_scale=False,
                 lr_monitor_decay=False,
                 valid_stop=False,
                 reg_factors=None,
                 dropout=False,
                 dropout_params=None,
                 embedding_init=None,
                 embedded_model=None,
                 monitor_train=True,
                 plot_monitor=None,
                 num=False):
        super(SequenceTaggerNetwork, self).__init__()
        self.vocab_size = dataset.vocab_size
        self.window_size = dataset.window_size
        self.total_feats = dataset.total_feats
        self.feat_num = dataset.feat_num
        self.n_classes = dataset.n_classes
        self.max_epochs = max_epochs
        if edim is None:
            edim = 50
        if hdims is None:
            hdims = [100]
        if fedim is None:
            fedim = 5
        self.edim = edim
        self.fedim = fedim
        self.hdims = hdims

        self.w2i = w2i
        self.t2i = t2i
        self.featurizer = featurizer

        self._create_tagger()

        A_value = numpy.random.uniform(low=-.1,
                                       high=.1,
                                       size=(self.n_classes + 2,
                                             self.n_classes))
        self.A = sharedX(A_value, name='A')
        self.use_momentum = use_momentum
        self.lr = lr
        self.lr_lin_decay = lr_lin_decay
        self.lr_monitor_decay = lr_monitor_decay
        self.lr_scale = lr_scale
        self.valid_stop = valid_stop
        self.reg_factors = reg_factors
        self.close_cache = {}
        self.dropout_params = dropout_params
        self.dropout = dropout or self.dropout_params is not None
        self.hdims = hdims
        self.monitor_train = monitor_train
        self.num = num
        self.plot_monitor = plot_monitor
        if embedding_init is not None:
            self.set_embedding_weights(embedding_init)

    def _create_tagger(self):
        self.tagger = WordTaggerNetwork(self.vocab_size, self.window_size,
                                        self.total_feats, self.feat_num,
                                        self.hdims, self.edim, self.fedim,
                                        self.n_classes)

    def _create_data_specs(self, dataset):
        self.input_space = CompositeSpace([
            dataset.data_specs[0].components[i]
            for i in xrange(len(dataset.data_specs[0].components) - 1)
        ])
        self.output_space = dataset.data_specs[0].components[-1]

        self.input_source = dataset.data_specs[1][:-1]
        self.target_source = dataset.data_specs[1][-1]

    def __getstate__(self):
        d = {}
        d['vocab_size'] = self.vocab_size
        d['window_size'] = self.window_size
        d['feat_num'] = self.feat_num
        d['total_feats'] = self.total_feats
        d['n_classes'] = self.n_classes
        d['input_space'] = self.input_space
        d['output_space'] = self.output_space
        d['input_source'] = self.input_source
        d['target_source'] = self.target_source
        d['A'] = self.A
        d['tagger'] = self.tagger
        d['w2i'] = self.w2i
        d['t2i'] = self.t2i
        d['featurizer'] = self.featurizer
        d['max_epochs'] = self.max_epochs
        d['use_momentum'] = self.use_momentum
        d['lr'] = self.lr
        d['lr_lin_decay'] = self.lr_lin_decay
        d['lr_monitor_decay'] = self.lr_monitor_decay
        d['lr_scale'] = self.lr_scale
        d['valid_stop'] = self.valid_stop
        d['reg_factors'] = self.reg_factors
        d['dropout'] = self.dropout
        d['dropout_params'] = self.dropout_params
        d['monitor_train'] = self.monitor_train
        d['num'] = self.num
        d['plot_monitor'] = self.plot_monitor
        return d

    def fprop(self, data):
        tagger_out = self.tagger.fprop(data)
        probs = T.concatenate([self.A, tagger_out])
        return probs

    def dropout_fprop(self,
                      data,
                      default_input_include_prob=0.5,
                      input_include_probs=None,
                      default_input_scale=2.0,
                      input_scales=None,
                      per_example=True):
        if input_scales is None:
            input_scales = {'input': 1.0}
        if input_include_probs is None:
            input_include_probs = {'input': 1.0}
        if self.dropout_params is not None:
            if len(self.dropout_params) == len(self.tagger.layers) - 1:
                input_include_probs['tagger_out'] = self.dropout_params[-1]
                input_scales['tagger_out'] = 1.0 / self.dropout_params[-1]
                for i, p in enumerate(self.dropout_params[:-1]):
                    input_include_probs['h{0}'.format(i)] = p
                    input_scales['h{0}'.format(i)] = 1.0 / p
        tagger_out = self.tagger.dropout_fprop(data,
                                               default_input_include_prob,
                                               input_include_probs,
                                               default_input_scale,
                                               input_scales, per_example)
        probs = T.concatenate([self.A, tagger_out])
        return probs

    @functools.wraps(Model.get_lr_scalers)
    def get_lr_scalers(self):
        if not self.lr_scale:
            return {}
        d = self.tagger.get_lr_scalers()
        d[self.A] = 1. / self.n_classes
        return d

    @functools.wraps(Model.get_params)
    def get_params(self):
        return self.tagger.get_params() + [self.A]

    def create_adjustors(self):
        initial_momentum = .5
        final_momentum = .99
        start = 1
        saturate = self.max_epochs
        self.momentum_adjustor = learning_rule.MomentumAdjustor(
            final_momentum, start, saturate)
        self.momentum_rule = learning_rule.Momentum(initial_momentum,
                                                    nesterov_momentum=True)

        if self.lr_monitor_decay:
            self.learning_rate_adjustor = MonitorBasedLRAdjuster(
                high_trigger=1.,
                shrink_amt=0.9,
                low_trigger=.95,
                grow_amt=1.1,
                channel_name='train_objective')
        elif self.lr_lin_decay:
            self.learning_rate_adjustor = LinearDecayOverEpoch(
                start, saturate, self.lr_lin_decay)

    def compute_used_inputs(self):
        seen = {'words': set(), 'feats': set()}
        for sen_w in self.dataset['train'].X1:
            seen['words'] |= reduce(lambda x, y: set(x) | set(y), sen_w, set())
        for sen_f in self.dataset['train'].X2:
            seen['feats'] |= reduce(lambda x, y: set(x) | set(y), sen_f, set())
        words = set(xrange(len(self.w2i)))
        feats = set(xrange(self.total_feats))
        self.notseen = {
            'words': numpy.array(sorted(words - seen['words'])),
            'feats': numpy.array(sorted(feats - seen['feats']))
        }

    def set_dataset(self, data):
        self._create_data_specs(data['train'])
        self.dataset = data
        self.compute_used_inputs()
        self.tagger.notseen = self.notseen

    def create_algorithm(self, data, save_best_path=None):
        self.set_dataset(data)
        self.create_adjustors()
        term = EpochCounter(max_epochs=self.max_epochs)
        if self.valid_stop:
            cost_crit = MonitorBased(channel_name='valid_objective',
                                     prop_decrease=.0,
                                     N=3)
            term = And(criteria=[cost_crit, term])

        #(layers, A_weight_decay)
        coeffs = None
        if self.reg_factors:
            rf = self.reg_factors
            lhdims = len(self.tagger.hdims)
            l_inputlayer = len(self.tagger.layers[0].layers)
            coeffs = ([[rf] * l_inputlayer] + ([rf] * lhdims) + [rf], rf)
        cost = SeqTaggerCost(coeffs, self.dropout)
        self.cost = cost

        self.mbsb = MonitorBasedSaveBest(channel_name='valid_objective',
                                         save_path=save_best_path)
        mon_dataset = dict(self.dataset)
        if not self.monitor_train:
            del mon_dataset['train']

        _learning_rule = (self.momentum_rule if self.use_momentum else None)
        self.algorithm = SGD(
            batch_size=1,
            learning_rate=self.lr,
            termination_criterion=term,
            monitoring_dataset=mon_dataset,
            cost=cost,
            learning_rule=_learning_rule,
        )

        self.algorithm.setup(self, self.dataset['train'])
        if self.plot_monitor:
            cn = ["valid_objective", "test_objective"]
            if self.monitor_train:
                cn.append("train_objective")
            plots = Plots(channel_names=cn, save_path=self.plot_monitor)
            self.pm = PlotManager([plots], freq=1)
            self.pm.setup(self, None, self.algorithm)

    def train(self):
        while True:
            if not self.algorithm.continue_learning(self):
                break
            self.algorithm.train(dataset=self.dataset['train'])
            self.monitor.report_epoch()
            self.monitor()
            self.mbsb.on_monitor(self, self.dataset['valid'], self.algorithm)
            if self.use_momentum:
                self.momentum_adjustor.on_monitor(self, self.dataset['valid'],
                                                  self.algorithm)
            if hasattr(self, 'learning_rate_adjustor'):
                self.learning_rate_adjustor.on_monitor(self,
                                                       self.dataset['valid'],
                                                       self.algorithm)
            if hasattr(self, 'pm'):
                self.pm.on_monitor(self, self.dataset['valid'], self.algorithm)

    def prepare_tagging(self):
        X = self.get_input_space().make_theano_batch(batch_size=1)
        Y = self.fprop(X)
        self.f = theano.function([X[0], X[1]], Y)
        self.start = self.A.get_value()[0]
        self.end = self.A.get_value()[1]
        self.A_value = self.A.get_value()[2:]

    def process_input(self, words, feats):
        return self.f(words, feats)

    def tag_sen(self, words, feats, debug=False, return_probs=False):
        if not hasattr(self, 'f'):
            self.prepare_tagging()
        y = self.process_input(words, feats)
        tagger_out = y[2 + self.n_classes:]
        res = viterbi(self.start, self.A_value, self.end, tagger_out,
                      self.n_classes, return_probs)
        if return_probs:
            return res / res.sum(axis=1)[:, numpy.newaxis]
            #return res.reshape((1, len(res)))

        if debug:
            return numpy.array([[e] for e in res[1]]), tagger_out
        return numpy.array([[e] for e in res[1]])

    def get_score(self, dataset, mode='pwp'):
        self.prepare_tagging()
        tagged = (self.tag_sen(w, f) for w, f in izip(dataset.X1, dataset.X2))
        gold = dataset.y
        good, bad = 0., 0.
        if mode == 'pwp':
            for t, g in izip(tagged, gold):
                g = g.argmax(axis=1)
                t = t.flatten()
                good += sum(t == g)
                bad += sum(t != g)
            return [good / (good + bad)]
        elif mode == 'f1':
            i2t = [t for t, i in sorted(self.t2i.items(), key=lambda x: x[1])]
            f1c = FScCounter(i2t, binary_input=False)
            gold = map(lambda x: x.argmax(axis=1), gold)
            tagged = map(lambda x: x.flatten(), tagged)
            return f1c.count_score(gold, tagged)

    def set_embedding_weights(self, embedding_init):
        # load embedding with gensim
        from gensim.models import Word2Vec
        try:
            m = Word2Vec.load_word2vec_format(embedding_init, binary=False)
            edim = m.layer1_size
        except UnicodeDecodeError:
            try:
                m = Word2Vec.load_word2vec_format(embedding_init, binary=True)
                edim = m.layer1_size
            except UnicodeDecodeError:
                # not in word2vec format
                m = Word2Vec.load(embedding_init)
                edim = m.layer1_size
        except ValueError:
            # glove model
            m = {}
            if embedding_init.endswith('gz'):
                fp = gzip.open(embedding_init)
            else:
                fp = open(embedding_init)
            for l in fp:
                le = l.split()
                m[le[0].decode('utf-8')] = numpy.array(
                    [float(e) for e in le[1:]], dtype=theano.config.floatX)
                edim = len(le) - 1

        if edim != self.edim:
            raise Exception("Embedding dim and edim doesn't match")
        m_lower = {}
        vocab = (m.vocab if hasattr(m, 'vocab') else m)
        for k in vocab:
            if k in ['UNKNOWN', 'PADDING']:
                continue
            if self.num:
                m_lower[replace_numerals(k.lower())] = m[k]
            else:
                m_lower[k.lower()] = m[k]
        # transform weight matrix with using self.w2i
        params = numpy.zeros(
            self.tagger.layers[0].layers[0].get_param_vector().shape,
            dtype=theano.config.floatX)
        e = self.edim
        for w in self.w2i:
            if w in m_lower:
                v = m_lower[w]
                i = self.w2i[w]
                params[i * e:(i + 1) * e] = v
        if 'UNKNOWN' in vocab:
            params[-1 * e:] = vocab['UNKNOWN']
        if 'PADDING' in vocab:
            params[-2 * e:-1 * e] = vocab['PADDING']
        self.tagger.layers[0].layers[0].set_param_vector(params)
Esempio n. 10
0
class SequenceTaggerNetwork(Model):
    def __init__(self, dataset, w2i, t2i, featurizer,
                 edim=None, hdims=None, fedim=None,
                 max_epochs=100, use_momentum=False, lr=.01, lr_lin_decay=None,
                 lr_scale=False, lr_monitor_decay=False,
                 valid_stop=False, reg_factors=None, dropout=False,
                 dropout_params=None, embedding_init=None,
                 embedded_model=None, monitor_train=True, plot_monitor=None,
                 num=False):
        super(SequenceTaggerNetwork, self).__init__()
        self.vocab_size = dataset.vocab_size
        self.window_size = dataset.window_size
        self.total_feats = dataset.total_feats
        self.feat_num = dataset.feat_num
        self.n_classes = dataset.n_classes
        self.max_epochs = max_epochs
        if edim is None:
            edim = 50
        if hdims is None:
            hdims = [100]
        if fedim is None:
            fedim = 5
        self.edim = edim
        self.fedim = fedim
        self.hdims = hdims

        self.w2i = w2i
        self.t2i = t2i
        self.featurizer = featurizer

        self._create_tagger()

        A_value = numpy.random.uniform(low=-.1, high=.1,
                                       size=(self.n_classes + 2,
                                             self.n_classes))
        self.A = sharedX(A_value, name='A')
        self.use_momentum = use_momentum
        self.lr = lr
        self.lr_lin_decay = lr_lin_decay
        self.lr_monitor_decay = lr_monitor_decay
        self.lr_scale = lr_scale
        self.valid_stop = valid_stop
        self.reg_factors = reg_factors
        self.close_cache = {}
        self.dropout_params = dropout_params
        self.dropout = dropout or self.dropout_params is not None
        self.hdims = hdims
        self.monitor_train = monitor_train
        self.num = num
        self.plot_monitor = plot_monitor
        if embedding_init is not None:
            self.set_embedding_weights(embedding_init)

    def _create_tagger(self):
        self.tagger = WordTaggerNetwork(
            self.vocab_size, self.window_size, self.total_feats,
            self.feat_num, self.hdims, self.edim, self.fedim, self.n_classes)

    def _create_data_specs(self, dataset):
        self.input_space = CompositeSpace([
            dataset.data_specs[0].components[i]
            for i in xrange(len(dataset.data_specs[0].components) - 1)])
        self.output_space = dataset.data_specs[0].components[-1]

        self.input_source = dataset.data_specs[1][:-1]
        self.target_source = dataset.data_specs[1][-1]

    def __getstate__(self):
        d = {}
        d['vocab_size'] = self.vocab_size
        d['window_size'] = self.window_size
        d['feat_num'] = self.feat_num
        d['total_feats'] = self.total_feats
        d['n_classes'] = self.n_classes
        d['input_space'] = self.input_space
        d['output_space'] = self.output_space
        d['input_source'] = self.input_source
        d['target_source'] = self.target_source
        d['A'] = self.A
        d['tagger'] = self.tagger
        d['w2i'] = self.w2i
        d['t2i'] = self.t2i
        d['featurizer'] = self.featurizer
        d['max_epochs'] = self.max_epochs
        d['use_momentum'] = self.use_momentum
        d['lr'] = self.lr
        d['lr_lin_decay'] = self.lr_lin_decay
        d['lr_monitor_decay'] = self.lr_monitor_decay
        d['lr_scale'] = self.lr_scale
        d['valid_stop'] = self.valid_stop
        d['reg_factors'] = self.reg_factors
        d['dropout'] = self.dropout
        d['dropout_params'] = self.dropout_params
        d['monitor_train'] = self.monitor_train
        d['num'] = self.num
        d['plot_monitor'] = self.plot_monitor
        return d

    def fprop(self, data):
        tagger_out = self.tagger.fprop(data)
        probs = T.concatenate([self.A, tagger_out])
        return probs

    def dropout_fprop(self, data, default_input_include_prob=0.5,
                      input_include_probs=None, default_input_scale=2.0,
                      input_scales=None, per_example=True):
        if input_scales is None:
            input_scales = {'input': 1.0}
        if input_include_probs is None:
            input_include_probs = {'input': 1.0}
        if self.dropout_params is not None:
            if len(self.dropout_params) == len(self.tagger.layers) - 1:
                input_include_probs['tagger_out'] = self.dropout_params[-1]
                input_scales['tagger_out'] = 1.0/self.dropout_params[-1]
                for i, p in enumerate(self.dropout_params[:-1]):
                    input_include_probs['h{0}'.format(i)] = p
                    input_scales['h{0}'.format(i)] = 1.0/p
        tagger_out = self.tagger.dropout_fprop(
            data, default_input_include_prob, input_include_probs,
            default_input_scale, input_scales, per_example)
        probs = T.concatenate([self.A, tagger_out])
        return probs

    @functools.wraps(Model.get_lr_scalers)
    def get_lr_scalers(self):
        if not self.lr_scale:
            return {}
        d = self.tagger.get_lr_scalers()
        d[self.A] = 1. / self.n_classes
        return d

    @functools.wraps(Model.get_params)
    def get_params(self):
        return self.tagger.get_params() + [self.A]

    def create_adjustors(self):
        initial_momentum = .5
        final_momentum = .99
        start = 1
        saturate = self.max_epochs
        self.momentum_adjustor = learning_rule.MomentumAdjustor(
            final_momentum, start, saturate)
        self.momentum_rule = learning_rule.Momentum(initial_momentum,
                                                    nesterov_momentum=True)

        if self.lr_monitor_decay:
            self.learning_rate_adjustor = MonitorBasedLRAdjuster(
                high_trigger=1., shrink_amt=0.9,
                low_trigger=.95, grow_amt=1.1, channel_name='train_objective')
        elif self.lr_lin_decay:
            self.learning_rate_adjustor = LinearDecayOverEpoch(
                start, saturate, self.lr_lin_decay)

    def compute_used_inputs(self):
        seen = {'words': set(), 'feats': set()}
        for sen_w in self.dataset['train'].X1:
            seen['words'] |= reduce(
                lambda x, y: set(x) | set(y),
                sen_w, set())
        for sen_f in self.dataset['train'].X2:
            seen['feats'] |= reduce(
                lambda x, y: set(x) | set(y),
                sen_f, set())
        words = set(xrange(len(self.w2i)))
        feats = set(xrange(self.total_feats))
        self.notseen = {
            'words': numpy.array(sorted(words - seen['words'])),
            'feats': numpy.array(sorted(feats - seen['feats']))
        }

    def set_dataset(self, data):
        self._create_data_specs(data['train'])
        self.dataset = data
        self.compute_used_inputs()
        self.tagger.notseen = self.notseen

    def create_algorithm(self, data, save_best_path=None):
        self.set_dataset(data)
        self.create_adjustors()
        term = EpochCounter(max_epochs=self.max_epochs)
        if self.valid_stop:
            cost_crit = MonitorBased(channel_name='valid_objective',
                                     prop_decrease=.0, N=3)
            term = And(criteria=[cost_crit, term])

        #(layers, A_weight_decay)
        coeffs = None
        if self.reg_factors:
            rf = self.reg_factors
            lhdims = len(self.tagger.hdims)
            l_inputlayer = len(self.tagger.layers[0].layers)
            coeffs = ([[rf] * l_inputlayer] + ([rf] * lhdims) + [rf], rf)
        cost = SeqTaggerCost(coeffs, self.dropout)
        self.cost = cost

        self.mbsb = MonitorBasedSaveBest(channel_name='valid_objective',
                                         save_path=save_best_path)
        mon_dataset = dict(self.dataset)
        if not self.monitor_train:
            del mon_dataset['train']

        _learning_rule = (self.momentum_rule if self.use_momentum else None)
        self.algorithm = SGD(batch_size=1, learning_rate=self.lr,
                             termination_criterion=term,
                             monitoring_dataset=mon_dataset,
                             cost=cost,
                             learning_rule=_learning_rule,
                             )

        self.algorithm.setup(self, self.dataset['train'])
        if self.plot_monitor:
            cn = ["valid_objective", "test_objective"]
            if self.monitor_train:
                cn.append("train_objective")
            plots = Plots(channel_names=cn, save_path=self.plot_monitor)
            self.pm = PlotManager([plots], freq=1)
            self.pm.setup(self, None, self.algorithm)

    def train(self):
        while True:
            if not self.algorithm.continue_learning(self):
                break
            self.algorithm.train(dataset=self.dataset['train'])
            self.monitor.report_epoch()
            self.monitor()
            self.mbsb.on_monitor(self, self.dataset['valid'], self.algorithm)
            if self.use_momentum:
                self.momentum_adjustor.on_monitor(self, self.dataset['valid'],
                                                  self.algorithm)
            if hasattr(self, 'learning_rate_adjustor'):
                self.learning_rate_adjustor.on_monitor(
                    self, self.dataset['valid'], self.algorithm)
            if hasattr(self, 'pm'):
                self.pm.on_monitor(
                    self, self.dataset['valid'], self.algorithm)

    def prepare_tagging(self):
        X = self.get_input_space().make_theano_batch(batch_size=1)
        Y = self.fprop(X)
        self.f = theano.function([X[0], X[1]], Y)
        self.start = self.A.get_value()[0]
        self.end = self.A.get_value()[1]
        self.A_value = self.A.get_value()[2:]

    def process_input(self, words, feats):
        return self.f(words, feats)

    def tag_sen(self, words, feats, debug=False, return_probs=False):
        if not hasattr(self, 'f'):
            self.prepare_tagging()
        y = self.process_input(words, feats)
        tagger_out = y[2 + self.n_classes:]
        res = viterbi(self.start, self.A_value, self.end, tagger_out,
                               self.n_classes, return_probs)
        if return_probs:
            return res / res.sum(axis=1)[:,numpy.newaxis]
            #return res.reshape((1, len(res)))
        
        if debug:
            return numpy.array([[e] for e in res[1]]), tagger_out
        return numpy.array([[e] for e in res[1]])

    def get_score(self, dataset, mode='pwp'):
        self.prepare_tagging()
        tagged = (self.tag_sen(w, f) for w, f in
                  izip(dataset.X1, dataset.X2))
        gold = dataset.y
        good, bad = 0., 0.
        if mode == 'pwp':
            for t, g in izip(tagged, gold):
                g = g.argmax(axis=1)
                t = t.flatten()
                good += sum(t == g)
                bad += sum(t != g)
            return [good / (good + bad)]
        elif mode == 'f1':
            i2t = [t for t, i in sorted(self.t2i.items(), key=lambda x: x[1])]
            f1c = FScCounter(i2t, binary_input=False)
            gold = map(lambda x:x.argmax(axis=1), gold)
            tagged = map(lambda x:x.flatten(), tagged)
            return f1c.count_score(gold, tagged)

    def set_embedding_weights(self, embedding_init):
        # load embedding with gensim
        from gensim.models import Word2Vec
        try:
            m = Word2Vec.load_word2vec_format(embedding_init, binary=False)
            edim = m.layer1_size
        except UnicodeDecodeError:
            try:
                m = Word2Vec.load_word2vec_format(embedding_init, binary=True)
                edim = m.layer1_size
            except UnicodeDecodeError:
                # not in word2vec format
                m = Word2Vec.load(embedding_init)
                edim = m.layer1_size
        except ValueError:
            # glove model
            m = {}
            if embedding_init.endswith('gz'):
                fp = gzip.open(embedding_init)
            else:
                fp = open(embedding_init)
            for l in fp:
                le = l.split()
                m[le[0].decode('utf-8')] = numpy.array(
                    [float(e) for e in le[1:]], dtype=theano.config.floatX)
                edim = len(le) - 1

        if edim != self.edim:
            raise Exception("Embedding dim and edim doesn't match")
        m_lower = {}
        vocab = (m.vocab if hasattr(m, 'vocab') else m)
        for k in vocab:
            if k in ['UNKNOWN', 'PADDING']:
                continue
            if self.num:
                m_lower[replace_numerals(k.lower())] = m[k]
            else:
                m_lower[k.lower()] = m[k]
        # transform weight matrix with using self.w2i
        params = numpy.zeros(
            self.tagger.layers[0].layers[0].get_param_vector().shape, dtype=theano.config.floatX)
        e = self.edim
        for w in self.w2i:
            if w in m_lower:
                v = m_lower[w]
                i = self.w2i[w]
                params[i*e:(i+1)*e] = v
        if 'UNKNOWN' in vocab:
            params[-1*e:] = vocab['UNKNOWN']
        if 'PADDING' in vocab:
            params[-2*e:-1*e] = vocab['PADDING']
        self.tagger.layers[0].layers[0].set_param_vector(params)
Esempio n. 11
0
def train(d=None):
    train_X = np.array(d.train_X)
    train_y = np.array(d.train_Y)
    valid_X = np.array(d.valid_X)
    valid_y = np.array(d.valid_Y)
    test_X = np.array(d.test_X)
    test_y = np.array(d.test_Y)
    nb_classes = len(np.unique(train_y))
    train_y = convert_one_hot(train_y)
    valid_y = convert_one_hot(valid_y)
    # train_set = RotationalDDM(X=train_X, y=train_y)
    train_set = DenseDesignMatrix(X=train_X, y=train_y)
    valid_set = DenseDesignMatrix(X=valid_X, y=valid_y)
    print 'Setting up'
    batch_size = 100
    c0 = mlp.ConvRectifiedLinear(
        layer_name='c0',
        output_channels=64,
        irange=.05,
        kernel_shape=[5, 5],
        pool_shape=[4, 4],
        pool_stride=[2, 2],
        # W_lr_scale=0.25,
        max_kernel_norm=1.9365)
    c1 = mlp.ConvRectifiedLinear(
        layer_name='c1',
        output_channels=64,
        irange=.05,
        kernel_shape=[5, 5],
        pool_shape=[4, 4],
        pool_stride=[2, 2],
        # W_lr_scale=0.25,
        max_kernel_norm=1.9365)
    c2 = mlp.ConvRectifiedLinear(
        layer_name='c2',
        output_channels=64,
        irange=.05,
        kernel_shape=[5, 5],
        pool_shape=[4, 4],
        pool_stride=[5, 4],
        W_lr_scale=0.25,
        # max_kernel_norm=1.9365
    )
    sp0 = mlp.SoftmaxPool(
        detector_layer_dim=16,
        layer_name='sp0',
        pool_size=4,
        sparse_init=512,
    )
    sp1 = mlp.SoftmaxPool(
        detector_layer_dim=16,
        layer_name='sp1',
        pool_size=4,
        sparse_init=512,
    )
    r0 = mlp.RectifiedLinear(
        layer_name='r0',
        dim=512,
        sparse_init=512,
    )
    r1 = mlp.RectifiedLinear(
        layer_name='r1',
        dim=512,
        sparse_init=512,
    )
    s0 = mlp.Sigmoid(
        layer_name='s0',
        dim=500,
        # max_col_norm=1.9365,
        sparse_init=15,
    )
    out = mlp.Softmax(
        n_classes=nb_classes,
        layer_name='output',
        irange=.0,
        # max_col_norm=1.9365,
        # sparse_init=nb_classes,
    )
    epochs = EpochCounter(100)
    layers = [s0, out]
    decay_coeffs = [.00005, .00005, .00005]
    in_space = Conv2DSpace(
        shape=[d.size, d.size],
        num_channels=1,
    )
    vec_space = VectorSpace(d.size**2)
    nn = mlp.MLP(
        layers=layers,
        # input_space=in_space,
        nvis=d.size**2,
        # batch_size=batch_size,
    )
    trainer = sgd.SGD(
        learning_rate=0.01,
        # cost=SumOfCosts(costs=[
        # dropout.Dropout(),
        #     MethodCost(method='cost_from_X'),
        # WeightDecay(decay_coeffs),
        # ]),
        # cost=MethodCost(method='cost_from_X'),
        batch_size=batch_size,
        # train_iteration_mode='even_shuffled_sequential',
        termination_criterion=epochs,
        # learning_rule=learning_rule.Momentum(init_momentum=0.5),
    )
    trainer = bgd.BGD(
        batch_size=10000,
        line_search_mode='exhaustive',
        conjugate=1,
        updates_per_batch=10,
        termination_criterion=epochs,
    )
    lr_adjustor = LinearDecayOverEpoch(
        start=1,
        saturate=10,
        decay_factor=.1,
    )
    momentum_adjustor = learning_rule.MomentumAdjustor(
        final_momentum=.99,
        start=1,
        saturate=10,
    )
    trainer.setup(nn, train_set)
    print 'Learning'
    test_X = vec_space.np_format_as(test_X, nn.get_input_space())
    train_X = vec_space.np_format_as(train_X, nn.get_input_space())
    i = 0
    X = nn.get_input_space().make_theano_batch()
    Y = nn.fprop(X)
    predict = theano.function([X], Y)
    best = -40
    best_iter = -1
    while trainer.continue_learning(nn):
        print '--------------'
        print 'Training Epoch ' + str(i)
        trainer.train(dataset=train_set)
        nn.monitor()
        print 'Evaluating...'
        predictions = convert_categorical(predict(train_X[:2000]))
        score = accuracy_score(convert_categorical(train_y[:2000]),
                               predictions)
        print 'Score on train: ' + str(score)
        predictions = convert_categorical(predict(test_X))
        score = accuracy_score(test_y, predictions)
        print 'Score on test: ' + str(score)
        best, best_iter = (best, best_iter) if best > score else (score, i)
        print 'Current best: ' + str(best) + ' at iter ' + str(best_iter)
        print classification_report(test_y, predictions)
        print 'Adjusting parameters...'
        # momentum_adjustor.on_monitor(nn, valid_set, trainer)
        # lr_adjustor.on_monitor(nn, valid_set, trainer)
        i += 1
        print ' '