def test_dog_patch_grating_response(): response_e = np.array([[0.1017374087, 0.2867197943, 0.5105320011, 0.1666709735], [0.3492268988, 0.3616052645, 0.4750891407, 0.1640082272], [0.4789040160, 0.4328530438, 0.3805594923, 0.1561941696], [0.2884185736, 0.3175258969, 0.2569232750, 0.1437369651], [0.1140384287, 0.1163952049, 0.1390511885, 0.1274369599], [0.0339383730, 0.0179229458, 0.0526124870, 0.1083213337], [0.0074631404, 0.0145706277, 0.0061438229, 0.0875612286], [0.0013737748, 0.0074470223, -0.0077840845, 0.0663789388]]) / pq.s k_max_id = 40 step = 5 patch_diameter = np.array([3, 1.5, 0.85, 0.3]) * pq.deg response = np.zeros([int(k_max_id/step), len(patch_diameter)]) / pq.s network = pylgn.Network() integrator = network.create_integrator(nt=1, nr=7, dt=1*pq.ms, dr=0.1*pq.deg) spatial_angular_freqs = integrator.spatial_angular_freqs[:k_max_id][::step] Wg_t = tpl.create_delta_ft() Wg_r = spl.create_dog_ft(A=1, a=0.3*pq.deg, B=0.9, b=0.6*pq.deg) ganglion = network.create_ganglion_cell(kernel=(Wg_r, Wg_t)) for j, d in enumerate(patch_diameter): for i, k_d in enumerate(spatial_angular_freqs): stimulus = pylgn.stimulus.create_patch_grating_ft(wavenumber=k_d, patch_diameter=d) network.set_stimulus(stimulus) network.compute_response(ganglion, recompute_ft=True) response[i, j] = ganglion.center_response[0] assert (abs(response - response_e) < 1e-10).all()
def test_G_patch_grating_response(nt, nr, dt, dr, A_g, a_g, B_g, b_g, delay_g, w_id, k_id, orient, C, patch_diameter, n): network = pylgn.Network() integrator = network.create_integrator(nt=nt, nr=nr, dt=dt, dr=dr) w_g = integrator.temporal_angular_freqs[w_id].rescale(1. / pq.ms) k_g = integrator.spatial_angular_freqs[k_id] Wg_r = spl.create_dog_ft(A=A_g, a=a_g, B=B_g, b=b_g) Wg_t = tpl.create_delta_ft(delay=delay_g) ganglion = network.create_ganglion_cell(kernel=(Wg_r, Wg_t)) stimulus = pylgn.stimulus.create_patch_grating_ft( angular_freq=w_g, wavenumber=k_g, orient=orient, contrast=C, patch_diameter=patch_diameter) network.set_stimulus(stimulus) network.compute_response(ganglion) Rg = C * (X(a_g / patch_diameter, a_g * k_g, n) - B_g / A_g * X(b_g / patch_diameter, b_g * k_g, n)) / pq.s assert abs(Rg - ganglion.center_response[0]) < complex(1e-10, 1e-10)
def test_nonlagged_x_cells(): R_g_e = np.array([36.8000000000, 105.5231755992, 80.5607155005, 60.1117829282, 56.7461598311, 56.5031395446, 56.4951231072, 56.4950008690, 56.4950000029, 56.4950000000])/pq.s R_r_e = np.array([9.1000000000, 48.9839667670, 20.1915848052, 11.3884937007, 13.2064761119, 13.9269478889, 14.0176607852, 14.0235290468, 14.0237452461, 14.0237499389])/pq.s patch_diameter = np.linspace(0, 14, 10) * pq.deg R_g = np.zeros(len(patch_diameter)) / pq.s R_r = np.zeros(len(patch_diameter)) / pq.s network = pylgn.Network() integrator = network.create_integrator(nt=1, nr=7, dt=1*pq.ms, dr=0.2*pq.deg) ganglion = network.create_ganglion_cell(background_response=36.8/pq.s) relay = network.create_relay_cell(background_response=9.1/pq.s) Wg_r = spl.create_dog_ft(A=-1, a=0.62*pq.deg, B=-0.85, b=1.26*pq.deg) Krig_r = spl.create_gauss_ft(A=1, a=0.88*pq.deg) Krg_r = spl.create_delta_ft() ganglion.set_kernel((Wg_r, tpl.create_delta_ft())) network.connect(ganglion, relay, (Krg_r, tpl.create_delta_ft()), weight=0.81) network.connect(ganglion, relay, (Krig_r, tpl.create_delta_ft()), weight=-0.56) for i, d in enumerate(patch_diameter): stimulus = pylgn.stimulus.create_patch_grating_ft(patch_diameter=d, contrast=-131.3) network.set_stimulus(stimulus) network.compute_response(ganglion, recompute_ft=True) network.compute_response(relay, recompute_ft=True) R_g[i] = ganglion.center_response[0] R_r[i] = relay.center_response[0] assert (abs(R_g - R_g_e) < 1e-9).all() assert (abs(R_r - R_r_e) < 1e-9).all()
def test_G_R_C_grating_response(nt, nr, dt, dr, A_g, a_g, B_g, b_g, delay_g, A_rc, a_rc, B_rc, b_rc, delay_rc, w_rc, a_rg, delay_rg, w_rg, w_id, k_id, orient, C): network = pylgn.Network() integrator = network.create_integrator(nt=nt, nr=nr, dt=dt, dr=dr) w_g = integrator.temporal_angular_freqs[w_id].rescale(1. / pq.ms) k_g = integrator.spatial_angular_freqs[k_id] kx_g = k_g * np.cos(orient.rescale(pq.rad)) ky_g = k_g * np.sin(orient.rescale(pq.rad)) t, y, x = integrator.meshgrid() Wg_r = spl.create_dog_ft(A=A_g, a=a_g, B=B_g, b=b_g) Wg_t = tpl.create_delta_ft(delay=delay_g) Krg_r = spl.create_gauss_ft(a=a_rg) Krg_t = tpl.create_delta_ft(delay=delay_rg) Krc_r = spl.create_dog_ft(A=A_rc, a=a_rc, B=B_rc, b=b_rc) Krc_t = tpl.create_delta_ft(delay=delay_rc) Kcr_r = spl.create_delta_ft() Kcr_t = tpl.create_delta_ft() ganglion = network.create_ganglion_cell(kernel=(Wg_r, Wg_t)) relay = network.create_relay_cell() cortical = network.create_cortical_cell() network.connect(ganglion, relay, (Krg_r, Krg_t), weight=w_rg) network.connect(cortical, relay, (Krc_r, Krc_t), weight=w_rc) network.connect(relay, cortical, (Kcr_r, Kcr_t), weight=1) stimulus = pylgn.stimulus.create_fullfield_grating_ft(angular_freq=w_g, wavenumber=k_g, orient=orient, contrast=C) network.set_stimulus(stimulus) network.compute_response(ganglion) network.compute_response(relay) network.compute_response(cortical) Wg = ganglion.evaluate_irf_ft(w=w_g, kx=kx_g, ky=ky_g) Wr = relay.evaluate_irf_ft(w=w_g, kx=kx_g, ky=ky_g) Wc = cortical.evaluate_irf_ft(w=w_g, kx=kx_g, ky=ky_g) Rg = C * abs(Wg) * np.cos(kx_g * x + ky_g * y - w_g * t + np.angle(Wg)) / pq.s Rr = C * abs(Wr) * np.cos(kx_g * x + ky_g * y - w_g * t + np.angle(Wr)) / pq.s Rc = C * abs(Wc) * np.cos(kx_g * x + ky_g * y - w_g * t + np.angle(Wc)) / pq.s assert (abs(Rg - ganglion.response) < complex(1e-12, 1e-12)).all() assert (abs(Rr - relay.response) < complex(1e-12, 1e-12)).all() assert (abs(Rc.clip(min=0 / pq.s) - cortical.response) < complex( 1e-12, 1e-12)).all()
def test_fullfield_grating_with_fft(): network = pylgn.Network() integrator = network.create_integrator(nt=2, nr=7, dt=1 * pq.ms, dr=0.1 * pq.deg) t, y, x = integrator.meshgrid() stimulus = pylgn.stimulus.create_fullfield_grating(angular_freq=0, wavenumber=2, orient=33, contrast=1) network.set_stimulus(stimulus, compute_fft=True) assert (abs( integrator.compute_inverse_fft(network.stimulus.ft) - stimulus(t, x, y)) < 1e-12).all()
def test_edog_spot_response(): response_e = np.array([[0.0000000000, 0.0000000000], [0.5255489103, 0.3077428042], [0.1824324695, 0.0174985410], [0.1505469275, 0.0632031066], [0.1500017999, 0.0601939846]]) / pq.s fb_weights = [0, -1.5] patch_diameter = np.linspace(0, 6, 5) * pq.deg response = np.zeros([len(patch_diameter), len(fb_weights)]) / pq.s for j, w_c in enumerate(fb_weights): network = pylgn.Network() integrator = network.create_integrator(nt=1, nr=7, dt=1*pq.ms, dr=0.1*pq.deg) delta_t = tpl.create_delta_ft() delta_s = spl.create_delta_ft() Wg_r = spl.create_dog_ft(A=1, a=0.25*pq.deg, B=0.85, b=0.83*pq.deg) Krc_r = spl.create_gauss_ft(A=1, a=0.83*pq.deg) ganglion = network.create_ganglion_cell(kernel=(Wg_r, delta_t)) relay = network.create_relay_cell() cortical = network.create_cortical_cell() network.connect(ganglion, relay, (delta_s, delta_t), 1.0) network.connect(cortical, relay, (Krc_r, delta_t), w_c) network.connect(relay, cortical, (delta_s, delta_t), 1.0) for i, d in enumerate(patch_diameter): stimulus = pylgn.stimulus.create_patch_grating_ft(wavenumber=0./pq.deg, patch_diameter=d) network.set_stimulus(stimulus) network.compute_response(relay, recompute_ft=True) response[i, j] = relay.center_response[0] network.clear() assert (abs(response - response_e) < 1e-10).all()
def test_edog_patch_grating_response(): response_e = np.array([[0.0000000000, 0.0000000000], [0.5694814680, 0.3933539871], [0.4933473520, 0.3005140715], [0.5038172723, 0.2842527074], [0.5039615741, 0.2843698815]]) / pq.s fb_weights = [0, -1.5] patch_diameter = np.linspace(0, 6, 5) * pq.deg response = np.zeros([len(patch_diameter), len(fb_weights)]) / pq.s for j, w_c in enumerate(fb_weights): network = pylgn.Network() integrator = network.create_integrator(nt=1, nr=7, dt=1*pq.ms, dr=0.1*pq.deg) delta_t = tpl.create_delta_ft() delta_s = spl.create_delta_ft() Wg_r = spl.create_dog_ft(A=1, a=0.25*pq.deg, B=0.85, b=0.83*pq.deg) Krc_r = spl.create_gauss_ft(A=1, a=0.83*pq.deg) ganglion = network.create_ganglion_cell(kernel=(Wg_r, delta_t)) relay = network.create_relay_cell() cortical = network.create_cortical_cell() network.connect(ganglion, relay, (delta_s, delta_t), 1.0) network.connect(cortical, relay, (Krc_r, delta_t), w_c) network.connect(relay, cortical, (delta_s, delta_t), 1.0) for i, d in enumerate(patch_diameter): stimulus = pylgn.stimulus.create_patch_grating_ft(wavenumber=integrator.spatial_angular_freqs[4], patch_diameter=d) network.set_stimulus(stimulus) network.compute_response(relay, recompute_ft=True) response[i, j] = relay.center_response[0] network.clear() assert (abs(response - response_e) < 1e-10).all()
import pylgn import pylgn.kernels.spatial as spl import pylgn.kernels.temporal as tpl import quantities as pq # create network network = pylgn.Network() # create integrator integrator = network.create_integrator(nt=8, nr=9, dt=1 * pq.ms, dr=0.1 * pq.deg) # create kernels Wg_r = spl.create_dog_ft() Wg_t = tpl.create_biphasic_ft() # create neurons ganglion = network.create_ganglion_cell(kernel=(Wg_r, Wg_t)) # create stimulus stimulus = pylgn.stimulus.create_natural_image(filenames="natural_scene.png", delay=40 * pq.ms, duration=80 * pq.ms) network.set_stimulus(stimulus, compute_fft=True) # compute network.compute_response(ganglion) # visulize
def create_dynamicnetwork(params=None): """ Create PyLGN network with temporal kernels. Parameters ---------- params : None, dict, str passed to util._parse_parameters """ params = util.parse_parameters(params) # network network = pylgn.Network() integrator = network.create_integrator(nt=params['nt'], nr=params['nr'], dt=params['dt'], dr=params['dr']) # neurons ganglion = network.create_ganglion_cell() relay = network.create_relay_cell() cortical = network.create_cortical_cell() # RGC impulse-response function Wg_r = spl.create_dog_ft(A=params['A_g'], a=params['a_g'], B=params['B_g'], b=params['b_g']) Wg_t = tpl.create_biphasic_ft(phase=params['phase_g'], damping=params['damping_g']) ganglion.set_kernel((Wg_r, Wg_t)) # excitatory FF connection Krg_r = spl.create_gauss_ft(A=params['A_rg_ex'], a=params['a_rg_ex']) Krg_t = tpl.create_exp_decay_ft(tau=params['tau_rg_ex'], delay=params['delay_rg_ex']) network.connect(ganglion, relay, (Krg_r, Krg_t), weight=params['w_rg_ex']) # inhibitory FF Krig_r = spl.create_gauss_ft(A=params['A_rg_in'], a=params['a_rg_in']) Krig_t = tpl.create_exp_decay_ft(tau=params['tau_rg_in'], delay=params['delay_rg_in']) network.connect(ganglion, relay, (Krig_r, Krig_t), weight=params['w_rg_in']) # excitatory FB Krc_ex_r = spl.create_gauss_ft(A=params['A_rc_ex'], a=params['a_rc_ex']) Krc_ex_t = tpl.create_exp_decay_ft(tau=params['tau_rc_ex'], delay=params['delay_rc_ex']) network.connect(cortical, relay, (Krc_ex_r, Krc_ex_t), weight=params['w_rc_ex']) # inhibitory FB Krc_in_r = spl.create_gauss_ft(A=params['A_rc_in'], a=params['a_rc_in']) Krc_in_t = tpl.create_exp_decay_ft(tau=params['tau_rc_in'], delay=params['delay_rc_in']) network.connect(cortical, relay, (Krc_in_r, Krc_in_t), weight=params['w_rc_in']) # TC feed-forward Kcr_r = spl.create_delta_ft() Kcr_t = tpl.create_delta_ft() network.connect(relay, cortical, (Kcr_r, Kcr_t), weight=params['w_cr']) return network
def create_staticnetwork(params=None): """ Create a PyLGN network where all temporal kernels are delta functions. Parameters ---------- params : None, dict, str passed to util._parse_parameters """ params = util.parse_parameters(params) # network network = pylgn.Network() integrator = network.create_integrator(nt=0, nr=params['nr'], dt=params['dt'], dr=params['dr']) # neurons ganglion = network.create_ganglion_cell() relay = network.create_relay_cell() cortical = network.create_cortical_cell() # RGC impulse-response function delta_t = tpl.create_delta_ft() Wg_r = spl.create_dog_ft(A=params['A_g'], a=params['a_g'], B=params['B_g'], b=params['b_g']) ganglion.set_kernel((Wg_r, delta_t)) # excitatory FF connection Krg_r = spl.create_gauss_ft(A=params['A_rg_ex'], a=params['a_rg_ex']) network.connect(ganglion, relay, (Krg_r, delta_t), weight=params['w_rg_ex']) # inhibitory FF Krig_r = spl.create_gauss_ft(A=params['A_rg_in'], a=params['a_rg_in']) network.connect(ganglion, relay, (Krig_r, delta_t), weight=params['w_rg_in']) # excitatory FB Krc_ex_r = spl.create_gauss_ft(A=params['A_rc_ex'], a=params['a_rc_ex']) network.connect(cortical, relay, (Krc_ex_r, delta_t), weight=params['w_rc_ex']) # inhibitory FB Krc_in_r = spl.create_gauss_ft(A=params['A_rc_in'], a=params['a_rc_in']) network.connect(cortical, relay, (Krc_in_r, delta_t), weight=params['w_rc_in']) # TC feed-forward Kcr_r = spl.create_delta_ft() network.connect(relay, cortical, (Kcr_r, delta_t), weight=1) return network
def test_core(): dt = 5 * pq.ms dr = 0.1 * pq.deg # create network network = pylgn.Network() # create integrator integrator = network.create_integrator(nt=10, nr=7, dt=dt, dr=dr) # create neurons ganglion = network.create_ganglion_cell() relay = network.create_relay_cell(2. / pq.s) cortical = network.create_cortical_cell(0 / pq.s) # connect neurons Wg_r = spl.create_dog_ft(A=1, a=0.62 * pq.deg, B=0.83, b=1.26 * pq.deg) Wg_t = tpl.create_biphasic_ft(phase=43 * pq.ms, damping=0.38, delay=0 * pq.ms) Krg_r = spl.create_delta_ft(shift_x=0 * pq.deg, shift_y=0 * pq.deg) Krg_t = tpl.create_delta_ft(delay=0 * pq.ms) Krc_r = spl.create_dog_ft(A=1 * 0.9, a=0.1 * pq.deg, B=2 * 0.9, b=0.9 * pq.deg) Krc_t = tpl.create_delta_ft(delay=20 * pq.ms) Kcr_r = spl.create_delta_ft(shift_x=0 * pq.deg, shift_y=0 * pq.deg) Kcr_t = tpl.create_delta_ft(delay=0 * pq.ms) ganglion.set_kernel((Wg_r, Wg_t)) network.connect(ganglion, relay, (Krg_r, Krg_t)) network.connect(cortical, relay, (Krc_r, Krc_t)) network.connect(relay, cortical, (Kcr_r, Kcr_t)) print(ganglion.annotations["kernel"], "\n") # create stimulus k_g = integrator.spatial_angular_freqs[2] w_g = -integrator.temporal_angular_freqs[40] # stimulus = pylgn.stimulus.create_patch_grating_ft(angular_freq=w_g, # wavenumber=k_g, # orient=0.0, # patch_diameter=3, # contrast=4) stimulus = pylgn.stimulus.create_flashing_spot_ft(patch_diameter=4 * pq.deg, contrast=4, delay=4 * pq.ms, duration=20 * pq.ms) network.set_stimulus(stimulus, compute_fft=False) # network.set_stimulus(stimulus) # print(pylgn.closure_params(stimulus)) # # # compute # network.compute_irf(relay) network.compute_response(relay) # network.compute_response(ganglion) # # # write # print("shape cube: ", relay.irf_ft.shape) # print("Unit irf:", relay.irf.units) # # print("Units irf_ft: ", relay.irf_ft.units) # print("Units resp: ", relay.response.units) # visulize # import matplotlib.pyplot as plt # # import matplotlib.animation as animation # # plt.imshow(relay.irf[0, :, :].real) # # plt.figure() # # plt.plot(integrator.times, relay.response[:, 64, 64]) # w_g = w_g.rescale(pq.Hz) * integrator.times/integrator.times.max() # plt.plot(w_g/2./np.pi, relay.response[:, 64, 64]) # plt.show() # pylgn.plot.animate_cube(relay.response) # clear network network.clear()