Esempio n. 1
0
def legacy_annotate_mvf(args):
    """Main method"""
    args.qprint("Running LegacyAnnotateMVF")
    mvf = MultiVariantFile(args.mvf, 'read')
    args.qprint("Input MVF header processed.")
    args.qprint("MVF flavor: {}".format(mvf.flavor))
    gff, geneids = parse_gff_legacy_annotate(
        args.gff, mvf.contig_data, gene_pattern=args.gene_pattern)
    args.qprint("GFF processed.")
    outmvf = MultiVariantFile(args.out, 'write', overwrite=args.overwrite,
                              flavor=mvf.flavor)
    outmvf.copy_headers_from(mvf)
    if args.nongenic_mode is False:
        outmvf.contig_data = geneids.copy()
        outmvf.contig_indices = list(range(len(geneids)))
        outmvf.contig_ids = [geneids[x]['id'] for x in
                             outmvf.contig_indices]
        outmvf.contig_labels = [geneids[x]['label'] for x in
                                outmvf.contig_indices]
    outmvf.write_data(outmvf.get_header())
    args.qprint("Output MVF established.")
    entrybuffer = []
    nentry = 0
    args.qprint("Processing MVF entries.")
    for contigid, pos, allelesets in mvf.iterentries(decode=False):
        annotated_pos = None
        if contigid in gff:
            for (xgeneid, xstart, xstop) in gff[contigid]:
                if xstart < pos < xstop:
                    annotated_pos = xgeneid + 0
                    break
                if args.nongenic_mode is True and args.unmargin > 0:
                    for xpos in range(pos - args.unmargin,
                                      pos + args.unmargin + 1):
                        if xstart < xpos < xstop:
                            annotated_pos = xgeneid + 0
                            break
        if annotated_pos is not None and not args.nongenic_mode:
            entrybuffer.append((annotated_pos, pos, allelesets))
        elif args.nongenic_mode and annotated_pos is None:
            entrybuffer.append((contigid, pos, allelesets))
        if args.nongenic_mode or annotated_pos is not None:
            nentry += 1
            if nentry == args.line_buffer:
                args.qprint("Writing block of entries.")
                outmvf.write_entries(entrybuffer)
                entrybuffer = []
                nentry = 0
    if entrybuffer:
        outmvf.write_entries(entrybuffer)
        args.qprint("Writing final block of entries.")
        entrybuffer = []
        nentry = 0
    return ''
Esempio n. 2
0
def filter_mvf(args):
    """Main method"""
    args.qprint("Running FilterMVF")
    if args.more_help is True:
        modulehelp()
        sys.exit()
    if args.mvf is None and args.test is None:
        raise RuntimeError("No input file specified with --mvf")
    if args.out is None and args.test is None:
        raise RuntimeError("No output file specified with --out")
    # Establish Input MVF
    if args.test is not None:
        ncol = args.test_nchar or len(args.test.split()[1])
    else:
        mvf = MultiVariantFile(args.mvf, 'read')
        ncol = mvf.metadata['ncol']
    args.qprint("Input MVF read with {} columns.".format(ncol))
    # Create Actionset
    if args.labels:
        for i in range(len(args.actions)):
            action = args.actions[i]
            arr = action.split(':')
            if arr[0] in ('collapsepriority', 'collapsemerge'):
                arr[1] = ','.join([
                    str(mvf.sample_id_to_index[x])
                    for x in arr[1].split(',')])
            if arr[0] in ('columns', 'allelegroup', 
                          'notmultigroup', 'reqsample'):
                for j in range(1, len(arr)):
                    arr[j] = ','.join([
                        str(mvf.sample_id_to_index[x])
                        for x in arr[j].split(',')])
            args.actions[i] = ':'.join(arr)
    removed_columns = set([])
    for i in range(len(args.actions)):
        action = args.actions[i]
        arr = action.split(':')
        if arr[0] in ('collapsepriority', 'collapsemerge'):
            tmp_arr = arr[1][:]
            arr[1] = ','.join([
                str(int(x) - len([y for y in removed_columns if y < int(x)]))
                for x in arr[1].split(',')])
            removed_columns.update([int(x) for x in tmp_arr.split(',')[1:]])
            print(arr)
            print(removed_columns)
        if arr[0] in ('columns', 'allelegroup', 
                      'notmultigroup', 'reqsample'):
            for j in range(1, len(arr)):
                arr[j] = ','.join([
                    str(int(x) - len([y for y in removed_columns if y < int(x)]))
                    for x in arr[j].split(',')])
        args.actions[i] = ':'.join(arr)
            
            
    actionset = build_actionset(args.actions, ncol)
    args.qprint("Actions established.")
    args.qprint(actionset)
    # TESTING MODE
    if args.test:
        loc, alleles = args.test.split()
        linefail = False
        transformed = False
        # invar = invariant (single character)
        # refvar (all different than reference, two chars)
        # onecov (single coverage, + is second character)
        # onevar (one variable base, + is third character)
        # full = full alleles (all chars)
        if args.verbose:
            print(alleles)
        linetype = get_linetype(alleles)
        sys.stdout.write("MVF Encoding type '{}' detected\n".format(linetype))
        for actionname, actiontype, actionfunc, actionarg in actionset:
            sys.stdout.write("Applying action {} ({}): ".format(
                actionname, actiontype))
            if actiontype == 'filter':
                if not actionfunc(alleles, linetype):
                    linefail = True
                    sys.stdout.write("Filter Fail\n")
                    break
                sys.stdout.write("Filter Pass\n")
            elif actiontype == 'transform':
                transformed = True
                alleles = actionfunc(alleles, linetype)
                linetype = get_linetype(alleles)
                if linetype == 'empty':
                    linefail = True
                    sys.stdout.write("Transform removed all alleles\n")
                    break
                sys.stdout.write("Transform result {}\n".format(alleles))
            elif actiontype == 'location':
                loc = loc.split(':')
                loc[1] = int(loc[1])
                if actionfunc(loc) is False:
                    linefail = True
                    sys.stdout.write("Location Fail\n")
                    break
                sys.stdout.write("Location Pass\n")
        if linefail is False:
            if transformed:
                if linetype == 'full':
                    alleles = encode_mvfstring(alleles)
                if alleles:
                    test_output = "{}\t{}\n".format(loc, alleles)
                    sys.stdout.write("Final output = {}\n".format(
                        test_output))
                else:
                    sys.stdout.write("Transform removed all alleles\n")
            else:
                sys.stdout.write("No changes applied\n")
                sys.stdout.write("Final output = {}\n".format(args.test))
        sys.exit()
    # MAIN MODE
    # Set up file handler
    outmvf = MultiVariantFile(args.out, 'write', overwrite=args.overwrite)
    outmvf.copy_headers_from(mvf)

    removed_indices = set([])
    # reprocess header if actions are used that filter columns
    if any(x == y[0] for x in ('columns', 'collapsepriority', 'collapsemerge')
           for y in actionset):
        for actionname, actiontype, actionfunc, actionarg in actionset:
            if actionname == 'columns':
                if args.labels:
                    oldindices = [outmvf.sample_id_to_index[int(x)]
                                  for x in actionarg[0]]
                else:
                    oldindices = [int(x) for x in actionarg[0]]
            elif actionname in ('collapsepriority', 'collapsemerge'):
                actionarg[0] = [x - len([y for y in removed_indices if y < x])
                                 for x in actionarg[0]]
                oldindices = [x for x in outmvf.sample_indices
                              if x not in actionarg[0][1:]]
            outmvf.sample_ids = outmvf.get_sample_ids(oldindices)
            outmvf.sample_data = dict(
                (i, outmvf.sample_data[oldindices[i]])
                for i, _ in enumerate(oldindices))

            if actionname in ('collapsepriority', 'collapsemerge'):
                if len(actionarg) == 2:
                    outmvf.sample_data[actionarg[0][0]]['id'] = actionarg[1][0]
                    outmvf.sample_ids[actionarg[0][0]] = actionarg[1][0]
            outmvf.sample_indices = list(range(len(oldindices)))
    outmvf.metadata['ncol'] = len(outmvf.sample_indices)
    outmvf.notes.append(args.command_string)
    outmvf.write_data(outmvf.get_header())
    args.qprint("Output MVF established.")
    # End header editing
    linebuffer = []
    nbuffer = 0
    args.qprint("Processing Entries.")
    write_total = 0
    for chrom, pos, allelesets in mvf.iterentries(decode=False):
        linefail = False
        transformed = False
        # invar = invariant (single character)
        # refvar (all different than reference, two chars)
        # onecov (single coverage, + is second character)
        # onevar (one variable base, + is third character)
        # full = full alleles (all chars)
        alleles = allelesets[0]
        linetype = get_linetype(alleles)
        if linetype == 'empty':
            continue
        if args.verbose is True:
            sys.stdout.write(" {} {} ".format(alleles, linetype))
        for actionname, actiontype, actionfunc, _ in actionset:
            if actiontype == 'filter':
                linefail = not actionfunc(alleles, linetype)
            elif actiontype == 'transform':
                transformed = True
                alleles = actionfunc(alleles, linetype)
                linetype = get_linetype(alleles)
                linefail = linetype == 'empty'
            elif actiontype == 'location':
                linefail = not actionfunc([chrom, pos])
            if linefail:
                break
        if linefail is False:
            if transformed:
                if linetype == 'full':
                    alleles = mvf.encode(alleles)
                if not alleles:
                    linefail = True
            nbuffer += 1
            linebuffer.append((chrom, pos, (alleles,)))
            if args.verbose:
                sys.stdout.write("{}\n".format(alleles))
            if nbuffer == args.line_buffer:
                write_total += args.line_buffer
                args.qprint("{} entries written. Total written: {}.".format(
                    args.line_buffer, write_total))
                outmvf.write_entries(linebuffer)
                linebuffer = []
                nbuffer = 0
        elif args.verbose:
            sys.stdout.write("FAIL\n")
    if linebuffer:
        outmvf.write_entries(linebuffer)
        write_total += len(linebuffer)
        args.qprint("{} entries written. Total written: {}.".format(
            args.line_buffer, write_total))
        linebuffer = []
    return ''
Esempio n. 3
0
def translate_mvf(args):
    """Main method"""
    args.qprint("Running TranslateMVF")
    if args.gff:
        args.qprint("Reading and Indexing MVF.")
    else:
        args.qprint("Reading MVF.")
    mvf = MultiVariantFile(args.mvf, 'read', contigindex=bool(args.gff))
    if mvf.flavor != 'dna':
        raise RuntimeError("MVF must be flavor=dna to translate")
    if args.gff:
        args.qprint("Processing MVF Index File.")
        mvf.read_index_file()
        args.qprint("GFF processing start.")
        gff_genes, gene_order = parse_gff_exome(args)
        args.qprint("GFF processed.")
    outmvf = MultiVariantFile(args.out, 'write', overwrite=args.overwrite)
    outmvf.copy_headers_from(mvf)
    outmvf.contig_data = dict(
         (
                i, dict((y, z)
                                       for (y, z) in gff_genes[x].items()
                                       if y not in ('cds', )))
                              for (i, x) in enumerate(gene_order))
    outmvf.contig_indices = list(range(len(gene_order)))
    outmvf.contig_ids = [gff_genes[x]['id']
                         for x in gene_order]
    outmvf.contig_labels = [gff_genes[x]['label']
                            for x in gene_order]
    outmvf.flavor = args.output_data
    outmvf.metadata.notes.append(args.command_string)
    outmvf.write_data(outmvf.get_header())
    args.qprint("Output MVF Established.")
    entrybuffer = []
    nentry = 0
    pos = None
    if not args.gff:
        args.qprint("No GFF used, translating sequences as pre-aligned in "
                    "coding frame.")
        inputbuffer = []
        current_contig = ''
        for contigid, pos, allelesets in mvf.iterentries(decode=False):
            if current_contig == '':
                current_contig = contigid[:]
            if contigid == current_contig:
                inputbuffer.append((pos, allelesets))
            else:
                for _, amino_acids, alleles in iter_codons(
                        inputbuffer, mvf):
                    if all([x in '-X' for x in amino_acids]):
                        continue
                    if args.output_data == 'protein':
                        entrybuffer.append(
                            (current_contig, pos, (amino_acids,)))
                    else:
                        entrybuffer.append((
                            current_contig, pos, (
                                amino_acids, alleles[0],
                                alleles[1], alleles[2])))
                    nentry += 1
                    if nentry == args.line_buffer:
                        outmvf.write_entries(entrybuffer)
                        entrybuffer = []
                        nentry = 0
                inputbuffer = [(pos, allelesets)]
                current_contig = contigid[:]
        if inputbuffer:
            for _, amino_acids, alleles in iter_codons(
                    inputbuffer, outmvf):
                if all([x in '-X' for x in amino_acids]):
                    continue
                if args.output_data == 'protein':
                    entrybuffer.append(
                        (current_contig, pos, (amino_acids,)))
                else:
                    entrybuffer.append((
                        current_contig, pos, (
                            amino_acids, alleles[0],
                            alleles[1], alleles[2])))
                nentry += 1
                if nentry == args.line_buffer:
                    outmvf.write_entries(entrybuffer)
                    entrybuffer = []
                    nentry = 0
    else:
        running_gene_index = -1
        for igene, gene in enumerate(gene_order):
            xcontiglabel = gff_genes[gene]['contig']
            xcontig = mvf.get_contig_indices(
                labels=gff_genes[gene]['contig'])
            if xcontig is None:
                print("Warning: contig {} not found".format(
                    gff_genes[gene]['contig']))
            xcontigid = mvf.get_contig_ids(indices=xcontig)[0]
            min_gene_coord = gff_genes[gene]['cds'][0][0]
            max_gene_coord = gff_genes[gene]['cds'][-1][1]
            mvf_entries = {}
            if not igene % 100:
                args.qprint("Processing gene {} on {}".format(
                    gene, xcontiglabel))
            for contigid, pos, allelesets in mvf.itercontigentries(
                    xcontig, decode=False):
                if pos < min_gene_coord:
                    continue
                if pos > max_gene_coord:
                    break
                mvf_entries[pos] = allelesets[0]
            reverse_strand = gff_genes[gene]['strand'] == '-'
            coords = []
            running_gene_index += 1
            for elem in gff_genes[gene]['cds']:
                coords.extend(list(range(elem[0], elem[1] + 1)))
            if reverse_strand:
                coords = coords[::-1]
            for codoncoord in range(0, len(coords), 3):
                alleles = tuple(mvf_entries.get(x, '-')
                                for x in coords[codoncoord:codoncoord + 3])
                if len(alleles) < 3:
                    alleles = tuple(list(alleles) + ['-'] * (3 - len(alleles)))
                if all(len(x) == 1 for x in alleles):
                    if reverse_strand:
                        alleles = tuple(
                            MLIB.complement_bases[x] for x in alleles)
                    decoded_alleles = alleles
                    amino_acids = translate_single_codon(''.join(alleles))
                else:
                    if reverse_strand is True:
                        decoded_alleles = tuple(tuple(MLIB.complement_bases[y]
                                                      for y in mvf.decode(x))
                                                for x in alleles)
                        alleles = tuple(outmvf.encode(''.join(x))
                                        for x in decoded_alleles)
                    else:
                        decoded_alleles = tuple(mvf.decode(x) for x in alleles)
                    amino_acids = tuple(translate_single_codon(''.join(x))
                                        for x in zip(*decoded_alleles))
                    amino_acids = outmvf.encode(''.join(amino_acids))
                if args.output_data == 'protein':
                    entrybuffer.append((
                        (
                            xcontigid
                            if args.retain_contigs
                            else running_gene_index
                        ),
                        (
                            coords[codoncoord]
                            if args.retain_coords
                            else codoncoord
                        ),
                        (
                            amino_acids,
                        )
                    ))
                elif args.output_data == 'codon':
                    entrybuffer.append((
                        (
                            xcontigid
                            if args.retain_contigs
                            else running_gene_index
                        ),
                        (
                            coords[codoncoord]
                            if args.retain_coords
                            else codoncoord
                        ),
                        (
                            amino_acids,
                            alleles[0],
                            alleles[1],
                            alleles[2]
                        )
                    ))
                elif args.output_data == 'dna':
                    for j, elem in enumerate(
                            range(codoncoord,
                                  min(codoncoord + 3, len(coords)))):
                        entrybuffer.append((
                            (
                                xcontigid
                                if args.retain_contigs
                                else running_gene_index
                            ),
                            (
                                coords[elem]
                                if args.retain_coords
                                else elem + 1
                            ),
                            (
                                alleles[j],
                            )
                        ))
                nentry += 1
                if nentry >= args.line_buffer:
                    args.qprint("Writing a block of {} entries.".format(
                        args.line_buffer))
                    outmvf.write_entries(entrybuffer)
                    entrybuffer = []
                    nentry = 0
        if entrybuffer:
            outmvf.write_entries(entrybuffer)
            entrybuffer = []
            nentry = 0
    return ''
Esempio n. 4
0
def legacy_translate_mvf(args):
    """Main method"""
    args.qprint("Running LegacyTranslateMVF")
    if args.gff:
        args.qprint("Reading and Indexing MVF.")
    else:
        args.qprint("Reading MVF.")
    mvf = MultiVariantFile(args.mvf, 'read', contigindex=bool(args.gff))
    if mvf.flavor != 'dna':
        raise RuntimeError("MVF must be flavor=dna to translate")
    if args.gff:
        args.qprint("Processing MVF Index File.")
        mvf.read_index_file()
        args.qprint("GFF processing start.")
        gff = parse_gff_legacy_translate(
            args.gff, args,
            parent_gene_pattern=args.parent_gene_pattern)
        args.qprint("GFF processed.")
    outmvf = MultiVariantFile(args.out, 'write', overwrite=args.overwrite)
    outmvf.copy_headers_from(mvf)
    outmvf.flavor = args.output_data
    outmvf.write_data(outmvf.get_header())
    args.qprint("Output MVF Established.")
    entrybuffer = []
    nentry = 0
    pos = None
    if not args.gff:
        args.qprint("No GFF used, translating sequences as pre-aligned in "
                    "coding frame.")
        inputbuffer = []
        current_contig = ''
        for contigid, pos, allelesets in mvf.iterentries(decode=False):
            if current_contig == '':
                current_contig = contigid[:]
            if contigid == current_contig:
                inputbuffer.append((pos, allelesets))
            else:
                for _, amino_acids, alleles in iter_codons(
                        inputbuffer, mvf):
                    if all([x in '-X' for x in amino_acids]):
                        continue
                    if args.output_data == 'protein':
                        entrybuffer.append(
                            (current_contig, pos, (amino_acids,)))
                    else:
                        entrybuffer.append((
                            current_contig, pos, (
                                amino_acids, alleles[0],
                                alleles[1], alleles[2])))
                    nentry += 1
                    if nentry == args.line_buffer:
                        outmvf.write_entries(entrybuffer)
                        entrybuffer = []
                        nentry = 0
                inputbuffer = [(pos, allelesets)]
                current_contig = contigid[:]
        if inputbuffer:
            for _, amino_acids, alleles in iter_codons(
                    inputbuffer, outmvf):
                if all([x in '-X' for x in amino_acids]):
                    continue
                if args.output_data == 'protein':
                    entrybuffer.append(
                        (current_contig, pos, (amino_acids,)))
                else:
                    entrybuffer.append((
                        current_contig, pos, (
                            amino_acids, alleles[0],
                            alleles[1], alleles[2])))
                nentry += 1
                if nentry == args.line_buffer:
                    outmvf.write_entries(entrybuffer)
                    entrybuffer = []
                    nentry = 0
    else:
        args.qprint("Indexing GFF gene names.")
        # mvfid_to_gffname = outmvf.get_contig_reverse_dict()
        for xcontig in outmvf.get_contig_indices():
            mvf_entries = {}
            xcontiglabel = outmvf.get_contig_labels(indices=xcontig)[0]
            xcontigid = outmvf.get_contig_ids(indices=xcontig)[0]
            if xcontiglabel not in gff:
                if args.verbose:
                    print(
                        ("No entries in GFF, "
                         "skipping contig: index:{} id:{} label:{}").format(
                             xcontig, xcontigid, xcontiglabel))
                continue
            if not xcontig % 100:
                args.qprint("Processing contig: {} {}".format(
                    xcontigid, xcontiglabel))
            for contigid, pos, allelesets in mvf.itercontigentries(
                    xcontig, decode=False):
                mvf_entries[pos] = allelesets[0]
            for coords in sorted(gff[xcontiglabel]):
                reverse_strand = coords[3] == '-'
                alleles = (tuple(mvf_entries.get(x, '-')
                                 for x in coords[2::-1])
                           if reverse_strand is True
                           else tuple(mvf_entries.get(x, '-')
                                      for x in coords[0:3]))
                if all(len(x) == 1 for x in alleles):
                    if reverse_strand:
                        alleles = tuple(
                            MLIB.complement_bases[x] for x in alleles)
                    decoded_alleles = alleles
                    amino_acids = translate_single_codon(''.join(alleles))
                else:
                    if reverse_strand is True:
                        decoded_alleles = tuple(tuple(MLIB.complement_bases[y]
                                                      for y in mvf.decode(x))
                                                for x in alleles)
                        alleles = tuple(outmvf.encode(''.join(x))
                                        for x in decoded_alleles)
                    else:
                        decoded_alleles = tuple(mvf.decode(x) for x in alleles)
                    amino_acids = tuple(translate_single_codon(''.join(x))
                                        for x in zip(*decoded_alleles))
                    # print("aminx", amino_acids)
                    amino_acids = outmvf.encode(''.join(amino_acids))
                # if all(x in '-X' for x in amino_acids):
                #    continue
                # print("amino", amino_acids)
                # print("translated", amino_acids, alleles)
                if args.output_data == 'protein':
                    entrybuffer.append((xcontig, coords[0], (amino_acids,)))
                else:
                    entrybuffer.append((
                        xcontigid, coords[0], (
                            amino_acids, alleles[0], alleles[1], alleles[2])))
                nentry += 1
                if nentry >= args.line_buffer:
                    args.qprint("Writing a block of {} entries.".format(
                        args.line_buffer))
                    outmvf.write_entries(entrybuffer)
                    entrybuffer = []
                    nentry = 0
    if entrybuffer:
        outmvf.write_entries(entrybuffer)
        entrybuffer = []
        nentry = 0
    return ''