Esempio n. 1
0
def fruits_vs_chairs_L3(template=None):
    """

    :param template: Template of features to sample from
    :return: scope evaluation of fruits vs chair classification for dataset 1
    """
    dataset = dataset1()
    fruits_and_chairs_1 = lambda x: (x['category'] in frozenset(['fruits', 'chairs'])) and \
                                    (x['obj'] in frozenset(dataset.obj_set1)) and \
                                    (x['obj'] not in frozenset(Broken_objects))
    # fruits_and_chairs_1 = {'obj': dataset.obj_set1, 'category': ['Fruits', 'Chairs']}
    if template is None:
        template = devthor_new_new_params.l3_params
    eval_config = {
        'npc_train': 40,
        'npc_test': 40,
        'npc_validate': 0,
        'num_splits': 4,
        'split_by': 'category',
        'labelfunc': 'category',
        'train_q': fruits_and_chairs_1,
        'test_q': fruits_and_chairs_1,
        'metric_screen': 'classifier',
        'metric_kwargs': {'model_type': 'MCC2'}}
    return scope.dp_sym_loss(template, dataset, eval_config)
Esempio n. 2
0
def eight_way_imagenet_screen(template=None):
    dataset = Imagenet
    splits, labels = dataset.get_eight_way_splits()
    if template is None:
        template = devthor_new_new_params.l4_params
    eval_config = {
        'precomp_splits': splits,
        'validations': [],
        'labels': labels,
        'metric_screen': 'classifier',
        'metric_kwargs': {'model_type': 'MCC2'}
    }
    return scope.dp_sym_loss(template, dataset, eval_config)