Esempio n. 1
0
 def test_convert_strain_to_deformation(self):
     strain = Tensor(np.random.random((3, 3))).symmetrized
     while not (np.linalg.eigvals(strain) > 0).all():
         strain = Tensor(np.random.random((3, 3))).symmetrized
     upper = convert_strain_to_deformation(strain, shape="upper")
     symm = convert_strain_to_deformation(strain, shape="symmetric")
     self.assertArrayAlmostEqual(np.triu(upper), upper)
     self.assertTrue(Tensor(symm).is_symmetric())
     for defo in upper, symm:
         self.assertArrayAlmostEqual(defo.green_lagrange_strain, strain)
Esempio n. 2
0
def diff_fit(strains, stresses, eq_stress=None, order=2, tol=1e-10):
    """
    nth order elastic constant fitting function based on 
    central-difference derivatives with respect to distinct
    strain states.  The algorithm is summarized as follows:

    1. Identify distinct strain states as sets of indices 
       for which nonzero strain values exist, typically
       [(0), (1), (2), (3), (4), (5), (0, 1) etc.]
    2. For each strain state, find and sort strains and
       stresses by strain value.
    3. Find first, second .. nth derivatives of each stress
       with respect to scalar variable corresponding to
       the smallest perturbation in the strain.
    4. Use the pseudoinverse of a matrix-vector expression 
       corresponding to the parameterized stress-strain
       relationship and multiply that matrix by the respective 
       calculated first or second derivatives from the
       previous step.
    5. Place the calculated nth-order elastic 
       constants appropriately.

    Args:
        order (int): order of the elastic tensor set to return
        strains (nx3x3 array-like): Array of 3x3 strains
            to use in fitting of ECs
        stresses (nx3x3 array-like): Array of 3x3 stresses
            to use in fitting ECs.  These should be PK2 stresses.
        eq_stress (3x3 array-like): stress corresponding to
            equilibrium strain (i. e. "0" strain state).
            If not specified, function will try to find
            the state in the list of provided stresses
            and strains.  If not found, defaults to 0.
        tol (float): value for which strains below
            are ignored in identifying strain states.

    Returns:
        Set of tensors corresponding to nth order expansion of
        the stress/strain relation
    """
    strain_state_dict = get_strain_state_dict(
        strains, stresses, eq_stress=eq_stress, tol=tol,
        add_eq=True, sort=True)

    # Collect derivative data
    c_list = []
    dei_dsi = np.zeros((order - 1, 6, len(strain_state_dict)))
    for n, (strain_state, data) in enumerate(strain_state_dict.items()):
        hvec = data["strains"][:, strain_state.index(1)]
        for i in range(1, order):
            coef = get_diff_coeff(hvec, i)
            dei_dsi[i-1, :, n] = np.dot(coef, data["stresses"])

    m, absent = generate_pseudo(list(strain_state_dict.keys()), order)
    for i in range(1, order):
        cvec, carr = get_symbol_list(i+1)
        svec = np.ravel(dei_dsi[i-1].T)
        cmap = dict(zip(cvec, np.dot(m[i-1], svec)))
        c_list.append(v_subs(carr, cmap))
    return [Tensor.from_voigt(c) for c in c_list]
Esempio n. 3
0
def diff_fit(strains, stresses, eq_stress=None, order=2, tol=1e-10):
    """
    nth order elastic constant fitting function based on 
    central-difference derivatives with respect to distinct
    strain states.  The algorithm is summarized as follows:

    1. Identify distinct strain states as sets of indices 
       for which nonzero strain values exist, typically
       [(0), (1), (2), (3), (4), (5), (0, 1) etc.]
    2. For each strain state, find and sort strains and
       stresses by strain value.
    3. Find first, second .. nth derivatives of each stress
       with respect to scalar variable corresponding to
       the smallest perturbation in the strain.
    4. Use the pseudoinverse of a matrix-vector expression 
       corresponding to the parameterized stress-strain
       relationship and multiply that matrix by the respective 
       calculated first or second derivatives from the
       previous step.
    5. Place the calculated nth-order elastic 
       constants appropriately.

    Args:
        order (int): order of the elastic tensor set to return
        strains (nx3x3 array-like): Array of 3x3 strains
            to use in fitting of ECs
        stresses (nx3x3 array-like): Array of 3x3 stresses
            to use in fitting ECs.  These should be PK2 stresses.
        eq_stress (3x3 array-like): stress corresponding to
            equilibrium strain (i. e. "0" strain state).
            If not specified, function will try to find
            the state in the list of provided stresses
            and strains.  If not found, defaults to 0.
        tol (float): value for which strains below
            are ignored in identifying strain states.

    Returns:
        Set of tensors corresponding to nth order expansion of
        the stress/strain relation
    """
    strain_state_dict = get_strain_state_dict(
        strains, stresses, eq_stress=eq_stress, tol=tol,
        add_eq=True, sort=True)

    # Collect derivative data
    c_list = []
    dei_dsi = np.zeros((order - 1, 6, len(strain_state_dict)))
    for n, (strain_state, data) in enumerate(strain_state_dict.items()):
        hvec = data["strains"][:, strain_state.index(1)]
        for i in range(1, order):
            coef = get_diff_coeff(hvec, i)
            dei_dsi[i-1, :, n] = np.dot(coef, data["stresses"])

    m, absent = generate_pseudo(list(strain_state_dict.keys()), order)
    for i in range(1, order):
        cvec, carr = get_symbol_list(i+1)
        svec = np.ravel(dei_dsi[i-1].T)
        cmap = dict(zip(cvec, np.dot(m[i-1], svec)))
        c_list.append(v_subs(carr, cmap))
    return [Tensor.from_voigt(c) for c in c_list]
Esempio n. 4
0
    def get_symmetric_wallace_tensor(self, tau):
        """
        Gets the symmetrized wallace tensor for determining
        yield strength criteria.

        Args:
            tau (3x3 array-like): stress at which to evaluate
                the wallace tensor.
        """
        wallace = self.get_wallace_tensor(tau)
        return Tensor(0.5 * (wallace + np.transpose(wallace, [2, 3, 0, 1])))
Esempio n. 5
0
def generate_elastic_workflow(structure, tags=None):
    """
    Generates a standard production workflow.

    Notes:
        Uses a primitive structure transformed into
        the conventional basis (for equivalent deformations).

        Adds the "minimal" category to the minimal portion
        of the workflow necessary to generate the elastic tensor,
        and the "minimal_full_stencil" category to the portion that
        includes all of the strain stencil, but is symmetrically complete
    """
    if tags == None:
        tags = []
    # transform the structure
    ieee_rot = Tensor.get_ieee_rotation(structure)
    if not SquareTensor(ieee_rot).is_rotation(tol=0.005):
        raise ValueError("Rotation matrix does not satisfy rotation conditions")
    symm_op = SymmOp.from_rotation_and_translation(ieee_rot)
    ieee_structure = structure.copy()
    ieee_structure.apply_operation(symm_op)

    # construct workflow
    wf = wf_elastic_constant(ieee_structure)

    # Set categories, starting with optimization
    opt_fws = get_fws_and_tasks(wf, fw_name_constraint="optimization")
    wf.fws[opt_fws[0][0]].spec['elastic_category'] = "minimal"

    # find minimal set of fireworks using symmetry reduction
    fws_by_strain = {Strain(fw.tasks[-1]['pass_dict']['strain']): n
                     for n, fw in enumerate(wf.fws) if 'deformation' in fw.name}
    unique_tensors = symmetry_reduce(list(fws_by_strain.keys()), ieee_structure)
    for unique_tensor in unique_tensors:
        fw_index = get_tkd_value(fws_by_strain, unique_tensor)
        if np.isclose(unique_tensor, 0.005).any():
            wf.fws[fw_index].spec['elastic_category'] = "minimal"
        else:
            wf.fws[fw_index].spec['elastic_category'] = "minimal_full_stencil"

    # Add tags
    if tags:
        wf = add_tags(wf, tags)

    wf = add_modify_incar(wf)
    priority = 500 - structure.num_sites
    wf = add_priority(wf, priority)
    for fw in wf.fws:
        if fw.spec.get('elastic_category') == 'minimal':
            fw.spec['_priority'] += 2000
        elif fw.spec.get('elastic_category') == 'minimal_full_stencil':
            fw.spec['_priority'] += 1000
    return wf
Esempio n. 6
0
    def process_item(self, item):
        """
        Process the tasks and materials into a dielectrics collection

        Args:
            item dict: a dict of material_id, structure, and tasks

        Returns:
            dict: a dieletrics dictionary  
        """
        def poly(matrix):
            diags = np.diagonal(matrix)
            return np.prod(diags) / np.sum(
                np.prod(comb) for comb in combinations(diags, 2))

        d = {self.dielectric.key: item[self.materials.key]}

        structure = Structure.from_dict(item["structure"])

        if item.get("dielectric", False):
            ionic = Tensor(
                item["dielectric"]["ionic"]).symmetrized.fit_to_structure(
                    structure).convert_to_ieee(structure)
            static = Tensor(
                item["dielectric"]["static"]).symmetrized.fit_to_structure(
                    structure).convert_to_ieee(structure)
            total = ionic + static

            d["dielectric"] = {
                "total": total,
                "ionic": ionic,
                "static": static,
                "e_total": poly(total),
                "e_ionic": poly(ionic),
                "e_static": poly(static)
            }

        sga = SpacegroupAnalyzer(structure)
        # Update piezo if non_centrosymmetric
        if item.get("piezo", False) and not sga.is_laue():
            static = PiezoTensor.from_voigt(np.array(
                item['piezo']["static"])).symmetrized.fit_to_structure(
                    structure).convert_to_ieee(structure).voigt
            ionic = PiezoTensor.from_voigt(np.array(
                item['piezo']["ionic"])).symmetrized.fit_to_structure(
                    structure).convert_to_ieee(structure).voigt
            total = ionic + static

            directions, charges, strains = np.linalg.svd(total)

            max_index = np.argmax(np.abs(charges))
            d["piezo"] = {
                "total": total,
                "ionic": ionic,
                "static": static,
                "e_ij_max": charges[max_index],
                "max_direction": directions[max_index],
                "strain_for_max": strains[max_index]
            }

        if len(d) > 1:
            return d

        return None
Esempio n. 7
0
    def process_item(self, item):
        """
        Process the tasks and materials into a dielectrics collection

        Args:
            item dict: a dict of material_id, structure, and tasks

        Returns:
            dict: a dieletrics dictionary  
        """
        def poly(matrix):
            diags = np.diagonal(matrix)
            return np.prod(diags) / np.sum(
                np.prod(comb) for comb in combinations(diags, 2))

        d = {"material_id": item["material_id"]}

        structure = Structure.from_dict(item["structure"])

        if item.get("dielectric") is not None:
            ionic = Tensor(d["dielectric"]["ionic"])
            static = Tensor(d["dielectric"]["static"])
            total = ionic + static

            d["dielectric"] = {
                "total":
                total.symmetrized.fit_to_structure(structure).convert_to_ieee(
                    structure),
                "ionic":
                ionic.symmetrized.fit_to_structure(structure).convert_to_ieee(
                    structure),
                "static":
                static.symmetrized.fit_to_structure(structure).convert_to_ieee(
                    structure),
                "e_total":
                poly(total),
                "e_ionic":
                poly(ionic),
                "e_static":
                poly(static)
            }

        # Update piezo if non_centrosymmetric
        if item.get("piezo") is not None:
            static = PiezoTensor.from_voigt(
                np.array(item['piezo']["piezo_tensor"]))
            ionic = PiezoTensor.from_voigt(
                np.array(item['piezo']["piezo_ionic_tensor"]))
            total = ionic + static

            d["piezo"] = {
                "total":
                total.symmetrized.fit_to_structure(structure).convert_to_ieee(
                    structure).voigt,
                "ionic":
                ionic.symmetrized.fit_to_structure(structure).convert_to_ieee(
                    structure).voigt,
                "static":
                static.symmetrized.fit_to_structure(structure).convert_to_ieee(
                    structure).voigt,
                "e_ij_max":
                np.max(total.voigt)
            }

            # TODO Add in more analysis: v_max ?
            # TODO: Add in unstable phonon mode analysis of piezoelectric for potentially ferroelectric

        if len(d) > 1:
            return d

        return None