def test_init(self): matrix = np.array( [ [-3.0, 3.0, 4.0, -0.0, 3.0, 3.0, 1.0, 14.0, 9.0, -4.0], [1.0, -3.0, -3.0, 12.0, -4.0, -1.0, 5.0, 11.0, 1.0, 12.0], [14.0, 7.0, 13.0, 15.0, 13.0, 5.0, -5.0, 10.0, 14.0, -2.0], [9.0, 13.0, 4.0, 1.0, 3.0, -4.0, 7.0, 0.0, 6.0, -4.0], [4.0, -4.0, 6.0, 1.0, 12.0, -4.0, -2.0, 13.0, 0.0, 6.0], [13.0, 7.0, -4.0, 12.0, -2.0, 9.0, 8.0, -5.0, 3.0, 1.0], [8.0, 1.0, 10.0, -4.0, -2.0, 4.0, 13.0, 12.0, -3.0, 13.0], [2.0, 11.0, 8.0, 1.0, -1.0, 5.0, -3.0, 4.0, 5.0, 0.0], [-0.0, 14.0, 4.0, 3.0, -1.0, -5.0, 7.0, -1.0, -1.0, 3.0], [2.0, -2.0, 10.0, 1.0, 6.0, -5.0, -3.0, 12.0, 0.0, 13.0], ] ) m_list = [[0.9, 4, [1, 2, 3, 4, 8], "a"], [-1, 2, [5, 6, 7], "b"]] e_min = EwaldMinimizer(matrix, m_list, 50) self.assertEqual( len(e_min.output_lists), 15, "Wrong number of permutations returned" ) self.assertAlmostEqual( e_min.minimized_sum, 111.63, 3, "Returned wrong minimum value" ) self.assertEqual( len(e_min.best_m_list), 6, "Returned wrong number of permutations" )
def _fast_ordering(self, structure, num_remove_dict, num_to_return=1): """ This method uses the matrix form of ewaldsum to calculate the ewald sums of the potential structures. This is on the order of 4 orders of magnitude faster when there are large numbers of permutations to consider. There are further optimizations possible (doing a smarter search of permutations for example), but this wont make a difference until the number of permutations is on the order of 30,000. """ self.logger.debug("Performing fast ordering") starttime = time.time() self.logger.debug("Performing initial ewald sum...") ewaldmatrix = EwaldSummation(structure).total_energy_matrix self.logger.debug("Ewald sum took {} seconds.".format(time.time() - starttime)) starttime = time.time() m_list = [] for indices, num in num_remove_dict.items(): m_list.append([0, num, list(indices), None]) self.logger.debug("Calling EwaldMinimizer...") minimizer = EwaldMinimizer( ewaldmatrix, m_list, num_to_return, PartialRemoveSitesTransformation.ALGO_FAST, ) self.logger.debug( "Minimizing Ewald took {} seconds.".format(time.time() - starttime)) all_structures = [] lowest_energy = minimizer.output_lists[0][0] num_atoms = sum(structure.composition.values()) for output in minimizer.output_lists: s = structure.copy() del_indices = [] for manipulation in output[1]: if manipulation[1] is None: del_indices.append(manipulation[0]) else: s.replace(manipulation[0], manipulation[1]) s.remove_sites(del_indices) struct = s.get_sorted_structure() all_structures.append({ "energy": output[0], "energy_above_minimum": (output[0] - lowest_energy) / num_atoms, "structure": struct, }) return all_structures
def test_init(self): matrix = np.array([[-3., 3., 4., -0., 3., 3., 1., 14., 9., -4.], [1., -3., -3., 12., -4., -1., 5., 11., 1., 12.], [14., 7., 13., 15., 13., 5., -5., 10., 14., -2.], [9., 13., 4., 1., 3., -4., 7., 0., 6., -4.], [4., -4., 6., 1., 12., -4., -2., 13., 0., 6.], [13., 7., -4., 12., -2., 9., 8., -5., 3., 1.], [8., 1., 10., -4., -2., 4., 13., 12., -3., 13.], [2., 11., 8., 1., -1., 5., -3., 4., 5., 0.], [-0., 14., 4., 3., -1., -5., 7., -1., -1., 3.], [2., -2., 10., 1., 6., -5., -3., 12., 0., 13.]]) m_list = [[.9, 4, [1, 2, 3, 4, 8], 'a'], [-1, 2, [5, 6, 7], 'b']] e_min = EwaldMinimizer(matrix, m_list, 50) self.assertEqual(len(e_min.output_lists), 15, "Wrong number of permutations returned") self.assertAlmostEqual(e_min.minimized_sum, 111.63, 3, "Returned wrong minimum value") self.assertEqual(len(e_min.best_m_list), 6, "Returned wrong number of permutations")
def apply_transformation(self, structure, return_ranked_list=False): """ For this transformation, the apply_transformation method will return only the ordered structure with the lowest Ewald energy, to be consistent with the method signature of the other transformations. However, all structures are stored in the all_structures attribute in the transformation object for easy access. Args: structure: Oxidation state decorated disordered structure to order return_ranked_list (bool): Whether or not multiple structures are returned. If return_ranked_list is a number, that number of structures is returned. Returns: Depending on returned_ranked list, either a transformed structure or a list of dictionaries, where each dictionary is of the form {"structure" = .... , "other_arguments"} the key "transformation" is reserved for the transformation that was actually applied to the structure. This transformation is parsed by the alchemy classes for generating a more specific transformation history. Any other information will be stored in the transformation_parameters dictionary in the transmuted structure class. """ try: num_to_return = int(return_ranked_list) except ValueError: num_to_return = 1 num_to_return = max(1, num_to_return) if self.no_oxi_states: structure = Structure.from_sites(structure) for i, site in enumerate(structure): structure[i] = {"%s0+" % k.symbol: v for k, v in site.species.items()} equivalent_sites = [] exemplars = [] # generate list of equivalent sites to order # equivalency is determined by sp_and_occu and symmetry # if symmetrized structure is true for i, site in enumerate(structure): if site.is_ordered: continue for j, ex in enumerate(exemplars): sp = ex.species if not site.species.almost_equals(sp): continue if self.symmetrized_structures: sym_equiv = structure.find_equivalent_sites(ex) sym_test = site in sym_equiv else: sym_test = True if sym_test: equivalent_sites[j].append(i) break else: equivalent_sites.append([i]) exemplars.append(site) # generate the list of manipulations and input structure s = Structure.from_sites(structure) m_list = [] for g in equivalent_sites: total_occupancy = sum((structure[i].species for i in g), Composition()) total_occupancy = dict(total_occupancy.items()) # round total occupancy to possible values for k, v in total_occupancy.items(): if abs(v - round(v)) > 0.25: raise ValueError("Occupancy fractions not consistent with size of unit cell") total_occupancy[k] = int(round(v)) # start with an ordered structure initial_sp = max(total_occupancy.keys(), key=lambda x: abs(x.oxi_state)) for i in g: s[i] = initial_sp # determine the manipulations for k, v in total_occupancy.items(): if k == initial_sp: continue m = [ k.oxi_state / initial_sp.oxi_state if initial_sp.oxi_state else 0, v, list(g), k, ] m_list.append(m) # determine the number of empty sites empty = len(g) - sum(total_occupancy.values()) if empty > 0.5: m_list.append([0, empty, list(g), None]) matrix = EwaldSummation(s).total_energy_matrix ewald_m = EwaldMinimizer(matrix, m_list, num_to_return, self.algo) self._all_structures = [] lowest_energy = ewald_m.output_lists[0][0] num_atoms = sum(structure.composition.values()) for output in ewald_m.output_lists: s_copy = s.copy() # do deletions afterwards because they screw up the indices of the # structure del_indices = [] for manipulation in output[1]: if manipulation[1] is None: del_indices.append(manipulation[0]) else: s_copy[manipulation[0]] = manipulation[1] s_copy.remove_sites(del_indices) if self.no_oxi_states: s_copy.remove_oxidation_states() self._all_structures.append( { "energy": output[0], "energy_above_minimum": (output[0] - lowest_energy) / num_atoms, "structure": s_copy.get_sorted_structure(), } ) if return_ranked_list: return self._all_structures[:num_to_return] return self._all_structures[0]["structure"]