Esempio n. 1
0
    def test_all_nn_classes(self):
        self.assertEqual(MinimumDistanceNN(cutoff=5, get_all_sites=True).get_cn(
            self.cscl, 0), 14)
        self.assertEqual(MinimumDistanceNN().get_cn(self.diamond, 0), 4)
        self.assertEqual(MinimumDistanceNN().get_cn(self.nacl, 0), 6)
        self.assertEqual(MinimumDistanceNN().get_cn(self.lifepo4, 0), 6)
        self.assertEqual(MinimumDistanceNN(tol=0.01).get_cn(self.cscl, 0), 8)
        self.assertEqual(MinimumDistanceNN(tol=0.1).get_cn(self.mos2, 0), 6)

        for image in MinimumDistanceNN(tol=0.1).get_nn_images(self.mos2, 0):
            self.assertTrue(image in [(0, 0, 0), (0, 1, 0), (-1, 0, 0),
                                      (0, 0, 0), (0, 1, 0), (-1, 0, 0)])

        okeeffe = MinimumOKeeffeNN(tol=0.01)
        self.assertEqual(okeeffe.get_cn(self.diamond, 0), 4)
        self.assertEqual(okeeffe.get_cn(self.nacl, 0), 6)
        self.assertEqual(okeeffe.get_cn(self.cscl, 0), 8)
        self.assertEqual(okeeffe.get_cn(self.lifepo4, 0), 2)

        virenn = MinimumVIRENN(tol=0.01)
        self.assertEqual(virenn.get_cn(self.diamond, 0), 4)
        self.assertEqual(virenn.get_cn(self.nacl, 0), 6)
        self.assertEqual(virenn.get_cn(self.cscl, 0), 8)
        self.assertEqual(virenn.get_cn(self.lifepo4, 0), 2)

        brunner_recip = BrunnerNN_reciprocal(tol=0.01)
        self.assertEqual(brunner_recip.get_cn(self.diamond, 0), 4)
        self.assertEqual(brunner_recip.get_cn(self.nacl, 0), 6)
        self.assertEqual(brunner_recip.get_cn(self.cscl, 0), 14)
        self.assertEqual(brunner_recip.get_cn(self.lifepo4, 0), 6)

        brunner_rel = BrunnerNN_relative(tol=0.01)
        self.assertEqual(brunner_rel.get_cn(self.diamond, 0), 4)
        self.assertEqual(brunner_rel.get_cn(self.nacl, 0), 6)
        self.assertEqual(brunner_rel.get_cn(self.cscl, 0), 14)
        self.assertEqual(brunner_rel.get_cn(self.lifepo4, 0), 6)

        brunner_real = BrunnerNN_real(tol=0.01)
        self.assertEqual(brunner_real.get_cn(self.diamond, 0), 4)
        self.assertEqual(brunner_real.get_cn(self.nacl, 0), 6)
        self.assertEqual(brunner_real.get_cn(self.cscl, 0), 14)
        self.assertEqual(brunner_real.get_cn(self.lifepo4, 0), 30)

        econn = EconNN()
        self.assertEqual(econn.get_cn(self.diamond, 0), 4)
        self.assertEqual(econn.get_cn(self.nacl, 0), 6)
        self.assertEqual(econn.get_cn(self.cscl, 0), 14)
        self.assertEqual(econn.get_cn(self.lifepo4, 0), 6)

        voroinn = VoronoiNN(tol=0.5)
        self.assertEqual(voroinn.get_cn(self.diamond, 0), 4)
        self.assertEqual(voroinn.get_cn(self.nacl, 0), 6)
        self.assertEqual(voroinn.get_cn(self.cscl, 0), 8)
        self.assertEqual(voroinn.get_cn(self.lifepo4, 0), 6)

        crystalnn = CrystalNN()
        self.assertEqual(crystalnn.get_cn(self.diamond, 0), 4)
        self.assertEqual(crystalnn.get_cn(self.nacl, 0), 6)
        self.assertEqual(crystalnn.get_cn(self.cscl, 0), 8)
        self.assertEqual(crystalnn.get_cn(self.lifepo4, 0), 6)
Esempio n. 2
0
    def test_all_nn_classes(self):
        self.assertAlmostEqual(MinimumDistanceNN().get_cn(self.diamond, 0), 4)
        self.assertAlmostEqual(MinimumDistanceNN().get_cn(self.nacl, 0), 6)
        self.assertAlmostEqual(
            MinimumDistanceNN(tol=0.01).get_cn(self.cscl, 0), 8)
        self.assertAlmostEqual(
            MinimumDistanceNN(tol=0.1).get_cn(self.mos2, 0), 6)
        for image in MinimumDistanceNN(tol=0.1).get_nn_images(self.mos2, 0):
            self.assertTrue(image in [(0, 0, 0), (0, 1,
                                                  0), (-1, 0,
                                                       0), (0, 0,
                                                            0), (0, 1,
                                                                 0), (-1, 0,
                                                                      0)])

        self.assertAlmostEqual(
            MinimumOKeeffeNN(tol=0.01).get_cn(self.diamond, 0), 4)
        self.assertAlmostEqual(
            MinimumOKeeffeNN(tol=0.01).get_cn(self.nacl, 0), 6)
        self.assertAlmostEqual(
            MinimumOKeeffeNN(tol=0.01).get_cn(self.cscl, 0), 8)

        self.assertAlmostEqual(
            MinimumVIRENN(tol=0.01).get_cn(self.diamond, 0), 4)
        self.assertAlmostEqual(MinimumVIRENN(tol=0.01).get_cn(self.nacl, 0), 6)
        self.assertAlmostEqual(MinimumVIRENN(tol=0.01).get_cn(self.cscl, 0), 8)

        self.assertAlmostEqual(
            BrunnerNN_reciprocal(tol=0.01).get_cn(self.diamond, 0), 4)
        self.assertAlmostEqual(
            BrunnerNN_reciprocal(tol=0.01).get_cn(self.nacl, 0), 6)
        self.assertAlmostEqual(
            BrunnerNN_reciprocal(tol=0.01).get_cn(self.cscl, 0), 14)

        self.assertAlmostEqual(
            BrunnerNN_relative(tol=0.01).get_cn(self.diamond, 0), 16)
        self.assertAlmostEqual(
            BrunnerNN_relative(tol=0.01).get_cn(self.nacl, 0), 18)
        self.assertAlmostEqual(
            BrunnerNN_relative(tol=0.01).get_cn(self.cscl, 0), 8)

        self.assertAlmostEqual(
            BrunnerNN_real(tol=0.01).get_cn(self.diamond, 0), 16)
        self.assertAlmostEqual(
            BrunnerNN_real(tol=0.01).get_cn(self.nacl, 0), 18)
        self.assertAlmostEqual(
            BrunnerNN_real(tol=0.01).get_cn(self.cscl, 0), 8)

        self.assertAlmostEqual(EconNN(tol=0.01).get_cn(self.diamond, 0), 4)
        self.assertAlmostEqual(EconNN(tol=0.01).get_cn(self.nacl, 0), 6)
        self.assertAlmostEqual(EconNN(tol=0.01).get_cn(self.cscl, 0), 14)

        self.assertAlmostEqual(VoronoiNN(tol=0.5).get_cn(self.diamond, 0), 4)
        self.assertAlmostEqual(VoronoiNN(tol=0.5).get_cn(self.nacl, 0), 6)
        self.assertAlmostEqual(VoronoiNN(tol=0.5).get_cn(self.cscl, 0), 8)
Esempio n. 3
0
    def test_all_nn_classes(self):
        self.assertAlmostEqual(MinimumDistanceNN().get_cn(self.diamond, 0), 4)
        self.assertAlmostEqual(MinimumDistanceNN().get_cn(self.nacl, 0), 6)
        self.assertAlmostEqual(
            MinimumDistanceNN(tol=0.01).get_cn(self.cscl, 0), 8)
        self.assertAlmostEqual(
            MinimumDistanceNN(tol=0.1).get_cn(self.mos2, 0), 6)
        for image in MinimumDistanceNN(tol=0.1).get_nn_images(self.mos2, 0):
            self.assertTrue(image in [[0, 0, 0], [0, 1, 0], [-1, 0, 0], \
                    [0, 0, 0], [0, 1, 0], [-1, 0, 0]])

        self.assertAlmostEqual(
            MinimumOKeeffeNN(tol=0.01).get_cn(self.diamond, 0), 4)
        self.assertAlmostEqual(
            MinimumOKeeffeNN(tol=0.01).get_cn(self.nacl, 0), 6)
        self.assertAlmostEqual(
            MinimumOKeeffeNN(tol=0.01).get_cn(self.cscl, 0), 8)

        self.assertAlmostEqual(
            MinimumVIRENN(tol=0.01).get_cn(self.diamond, 0), 4)
        self.assertAlmostEqual(MinimumVIRENN(tol=0.01).get_cn(self.nacl, 0), 6)
        self.assertAlmostEqual(MinimumVIRENN(tol=0.01).get_cn(self.cscl, 0), 8)

        self.assertAlmostEqual(BrunnerNN(tol=0.01).get_cn(self.diamond, 0), 4)
        self.assertAlmostEqual(BrunnerNN(tol=0.01).get_cn(self.nacl, 0), 6)
        self.assertAlmostEqual(BrunnerNN(tol=0.01).get_cn(self.cscl, 0), 14)

        self.assertAlmostEqual(
            BrunnerNN(mode="real", tol=0.01).get_cn(self.diamond, 0), 16)
        self.assertAlmostEqual(
            BrunnerNN(mode="real", tol=0.01).get_cn(self.nacl, 0), 18)
        self.assertAlmostEqual(
            BrunnerNN(mode="real", tol=0.01).get_cn(self.cscl, 0), 8)

        self.assertAlmostEqual(
            BrunnerNN(mode="relative", tol=0.01).get_cn(self.diamond, 0), 16)
        self.assertAlmostEqual(
            BrunnerNN(mode="relative", tol=0.01).get_cn(self.nacl, 0), 18)
        self.assertAlmostEqual(
            BrunnerNN(mode="relative", tol=0.01).get_cn(self.cscl, 0), 8)

        self.assertAlmostEqual(EconNN(tol=0.01).get_cn(self.diamond, 0), 4)
        self.assertAlmostEqual(EconNN(tol=0.01).get_cn(self.nacl, 0), 6)
        self.assertAlmostEqual(EconNN(tol=0.01).get_cn(self.cscl, 0), 14)

        self.assertAlmostEqual(VoronoiNN_modified().get_cn(self.diamond, 0), 4)
        self.assertAlmostEqual(VoronoiNN_modified().get_cn(self.nacl, 0), 6)
        self.assertAlmostEqual(VoronoiNN_modified().get_cn(self.cscl, 0), 8)
    def test_all_nn_classes(self):
        self.assertAlmostEqual(MinimumDistanceNN().get_cn(self.diamond, 0), 4)
        self.assertAlmostEqual(MinimumDistanceNN().get_cn(self.nacl, 0), 6)
        self.assertAlmostEqual(
            MinimumDistanceNN(tol=0.01).get_cn(self.cscl, 0), 8)
        self.assertAlmostEqual(
            MinimumDistanceNN(tol=0.1).get_cn(self.mos2, 0), 6)
        for image in MinimumDistanceNN(tol=0.1).get_nn_images(self.mos2, 0):
            self.assertTrue(image in [[0, 0, 0], [0, 1, 0], [-1, 0, 0], \
                    [0, 0, 0], [0, 1, 0], [-1, 0, 0]])

        self.assertAlmostEqual(
            MinimumOKeeffeNN(tol=0.01).get_cn(self.diamond, 0), 4)
        self.assertAlmostEqual(
            MinimumOKeeffeNN(tol=0.01).get_cn(self.nacl, 0), 6)
        self.assertAlmostEqual(
            MinimumOKeeffeNN(tol=0.01).get_cn(self.cscl, 0), 8)

        self.assertAlmostEqual(
            MinimumVIRENN(tol=0.01).get_cn(self.diamond, 0), 4)
        self.assertAlmostEqual(MinimumVIRENN(tol=0.01).get_cn(self.nacl, 0), 6)
        self.assertAlmostEqual(MinimumVIRENN(tol=0.01).get_cn(self.cscl, 0), 8)
Esempio n. 5
0
    def test_from_local_env_and_equality_and_diff(self):
        nn = MinimumDistanceNN()
        sg = StructureGraph.with_local_env_strategy(self.structure, nn)
        
        self.assertEqual(sg.graph.number_of_edges(), 6)

        nn2 = MinimumOKeeffeNN()
        sg2 = StructureGraph.with_local_env_strategy(self.structure, nn2)

        self.assertTrue(sg == sg2)
        self.assertTrue(sg == self.mos2_sg)

        # TODO: find better test case where graphs are different
        diff = sg.diff(sg2)
        self.assertEqual(diff['dist'], 0)
Esempio n. 6
0
    def test_extract_molecules(self):

        structure_file = os.path.join(os.path.dirname(__file__), "..", "..", "..",
                                      'test_files/C26H16BeN2O2S2.cif')

        s = Structure.from_file(structure_file)

        nn = MinimumOKeeffeNN()
        sg = StructureGraph.with_local_env_strategy(s, nn)

        molecules = sg.get_subgraphs_as_molecules()

        self.assertEqual(molecules[0].composition.formula, "Be1 H16 C26 S2 N2 O2")
        self.assertEqual(len(molecules), 1)

        molecules = self.mos2_sg.get_subgraphs_as_molecules()
        self.assertEqual(len(molecules), 0)
Esempio n. 7
0
def get_neighbors_of_site_with_index_future(struct, n, approach="min_dist", \
                                            delta=0.1, cutoff=10.0):
    """
    Returns the neighbors of a given site using a specific neighbor-finding
    method.

    Args:
        struct (Structure): input structure.
        n (int): index of site in Structure object for which motif type
                is to be determined.
        approach (str): type of neighbor-finding approach, where
              "min_dist" will use the MinimumDistanceNN class,
              "voronoi" the VoronoiNN class, "min_OKeeffe" the
              MinimumOKeeffe class, and "min_VIRE" the MinimumVIRENN class.
        delta (float): tolerance involved in neighbor finding.
        cutoff (float): (large) radius to find tentative neighbors.

    Returns: neighbor sites.
    """

    warnings.warn('This function will go into Pymatgen very soon.')

    if approach == "min_dist":
        return MinimumDistanceNN(tol=delta, cutoff=cutoff).get_nn(
            struct, n)
    elif approach == "voronoi":
        return VoronoiNN(tol=delta, cutoff=cutoff).get_nn(
            struct, n)
    elif approach == "min_OKeeffe":
        return MinimumOKeeffeNN(tol=delta, cutoff=cutoff).get_nn(
            struct, n)
    elif approach == "min_VIRE":
        return MinimumVIRENN(tol=delta, cutoff=cutoff).get_nn(
            struct, n)
    else:
        raise RuntimeError("unsupported neighbor-finding method ({}).".format(
            approach))
Esempio n. 8
0
def get_NNs_pm(atoms, site_idx, NN_method):
    """
	Get coordinating atoms to the adsorption site

	Args:
		atoms (Atoms object): atoms object of MOF

		site_idx (int): ASE index of adsorption site
		
		NN_method (string): string representing the desired Pymatgen
		nearest neighbor algorithm:
		refer to http://pymatgen.org/_modules/pymatgen/analysis/local_env.html
	
	Returns:
		neighbors_idx (list of ints): ASE indices of coordinating atoms
	"""
    #Convert ASE Atoms object to Pymatgen Structure object
    bridge = pm_ase.AseAtomsAdaptor()
    struct = bridge.get_structure(atoms)

    #Select Pymatgen NN algorithm
    NN_method = NN_method.lower()
    if NN_method == 'vire':
        nn_object = MinimumVIRENN()
    elif NN_method == 'voronoi':
        nn_object = VoronoiNN()
    elif NN_method == 'jmol':
        nn_object = JmolNN()
    elif NN_method == 'min_dist':
        nn_object = MinimumDistanceNN()
    elif NN_method == 'okeeffe':
        nn_object = MinimumOKeeffeNN()
    elif NN_method == 'brunner_real':
        nn_object = BrunnerNN_real()
    elif NN_method == 'brunner_recpirocal':
        nn_object = BrunnerNN_reciprocal()
    elif NN_method == 'brunner_relative':
        nn_object = BrunnerNN_relative()
    elif NN_method == 'econ':
        nn_object = EconNN()
    elif NN_method == 'dict':
        #requires a cutoff dictionary located in the pwd
        nn_object = CutOffDictNN(cut_off_dict='cut_off_dict.txt')
    elif NN_method == 'critic2':
        nn_object = Critic2NN()
    elif NN_method == 'openbabel':
        nn_object = OpenBabelNN()
    elif NN_method == 'covalent':
        nn_object = CovalentBondNN()
    elif NN_method == 'crystal':
        nn_object = CrystalNN(porous_adjustment=True)
    elif NN_method == 'crystal_nonporous':
        nn_object = CrystalNN(porous_adjustment=False)
    else:
        raise ValueError('Invalid NN algorithm specified')

    #Find coordinating atoms
    with warnings.catch_warnings():
        warnings.simplefilter('ignore')
        neighbors = nn_object.get_nn_info(struct, site_idx)
    neighbors_idx = []
    for neighbor in neighbors:
        neighbors_idx.append(neighbor['site_index'])

    return neighbors_idx