Esempio n. 1
0
    def test_init(self):
        filepath = self.TEST_FILES_DIR / "POSCAR"
        poscar = Poscar.from_file(filepath, check_for_POTCAR=False)
        comp = poscar.structure.composition
        self.assertEqual(comp, Composition("Fe4P4O16"))

        # Vasp 4 type with symbols at the end.
        poscar_string = """Test1
1.0
3.840198 0.000000 0.000000
1.920099 3.325710 0.000000
0.000000 -2.217138 3.135509
1 1
direct
0.000000 0.000000 0.000000 Si
0.750000 0.500000 0.750000 F
"""
        poscar = Poscar.from_string(poscar_string)
        self.assertEqual(poscar.structure.composition, Composition("SiF"))

        poscar_string = ""
        self.assertRaises(ValueError, Poscar.from_string, poscar_string)

        # Vasp 4 tyle file with default names, i.e. no element symbol found.
        poscar_string = """Test2
1.0
3.840198 0.000000 0.000000
1.920099 3.325710 0.000000
0.000000 -2.217138 3.135509
1 1
direct
0.000000 0.000000 0.000000
0.750000 0.500000 0.750000
"""
        with warnings.catch_warnings():
            warnings.simplefilter("ignore")
            poscar = Poscar.from_string(poscar_string)
        self.assertEqual(poscar.structure.composition, Composition("HHe"))
        # Vasp 4 tyle file with default names, i.e. no element symbol found.
        poscar_string = """Test3
1.0
3.840198 0.000000 0.000000
1.920099 3.325710 0.000000
0.000000 -2.217138 3.135509
1 1
Selective dynamics
direct
0.000000 0.000000 0.000000 T T T Si
0.750000 0.500000 0.750000 F F F O
"""
        poscar = Poscar.from_string(poscar_string)
        self.assertEqual(
            poscar.selective_dynamics, [[True, True, True], [False, False, False]]
        )
        self.selective_poscar = poscar
Esempio n. 2
0
    def test_init(self):
        filepath = os.path.join(test_dir, 'POSCAR')
        poscar = Poscar.from_file(filepath,check_for_POTCAR=False)
        comp = poscar.structure.composition
        self.assertEqual(comp, Composition("Fe4P4O16"))

        # Vasp 4 type with symbols at the end.
        poscar_string = """Test1
1.0
3.840198 0.000000 0.000000
1.920099 3.325710 0.000000
0.000000 -2.217138 3.135509
1 1
direct
0.000000 0.000000 0.000000 Si
0.750000 0.500000 0.750000 F
"""
        poscar = Poscar.from_string(poscar_string)
        self.assertEqual(poscar.structure.composition, Composition("SiF"))

        poscar_string = ""
        self.assertRaises(ValueError, Poscar.from_string, poscar_string)

        # Vasp 4 tyle file with default names, i.e. no element symbol found.
        poscar_string = """Test2
1.0
3.840198 0.000000 0.000000
1.920099 3.325710 0.000000
0.000000 -2.217138 3.135509
1 1
direct
0.000000 0.000000 0.000000
0.750000 0.500000 0.750000
"""
        with warnings.catch_warnings():
            warnings.simplefilter("ignore")
            poscar = Poscar.from_string(poscar_string)
        self.assertEqual(poscar.structure.composition, Composition("HHe"))
        # Vasp 4 tyle file with default names, i.e. no element symbol found.
        poscar_string = """Test3
1.0
3.840198 0.000000 0.000000
1.920099 3.325710 0.000000
0.000000 -2.217138 3.135509
1 1
Selective dynamics
direct
0.000000 0.000000 0.000000 T T T Si
0.750000 0.500000 0.750000 F F F O
"""
        poscar = Poscar.from_string(poscar_string)
        self.assertEqual(poscar.selective_dynamics, [[True, True, True],
                                                     [False, False, False]])
        self.selective_poscar = poscar
Esempio n. 3
0
def load_dielectric_constant(include_metadata=False):
    """
    References:
        Petousis, I., Mrdjenovich, D., Ballouz, E., Liu, M., Winston, D.,
        Chen, W., Graf, T., Schladt, T. D., Persson, K. A. & Prinz, F. B.
        High-throughput screening of inorganic compounds for the discovery of
        novel dielectric and optical materials. Sci. Data 4, 160134 (2017).

    Args:
        include_metadata (bool): whether to return cif, meta, poscar

    Returns (pd.DataFrame)
    """
    df = pandas.read_csv(os.path.join(module_dir, "dielectric_constant.csv"),
                         comment="#")
    df['cif'] = df['structure']
    df['structure'] = pandas.Series(
        [Poscar.from_string(s).structure for s in df['poscar']])
    new_columns = [
        'material_id', 'formula', 'nsites', 'space_group', 'volume',
        'structure', 'band_gap', 'e_electronic', 'e_total', 'n',
        'poly_electronic', 'poly_total', 'pot_ferroelectric'
    ]
    if include_metadata:
        new_columns += ['cif', 'meta', 'poscar']
    return df[new_columns]
Esempio n. 4
0
 def __init__(self, structure, data, dos=None, vbm=None, cbm=None):
     """
     Arguments:
             structure (pymatgen.core.structure.Structure): crystal structure
             data: Whatever data is stored
             dos (pymatgen.electronic_structure.dos.DOS or list, None): A pymatgen
                     density of states or a list containing: 1) energies, 2) density
                     of states values at those energies, 3) the Fermi level.
             vbm (float, None): valence band maximum
             cbm (float, None): conduction band minimum
     """
     if type(structure) == str:
         structure = Poscar.from_string(structure).structure
     if dos is None:
         self.energies = None
         self.densities = None
         self.efermi = None
     elif type(dos) == list:
         self.energies = dos[0]
         self.densities = dos[1]
         self.efermi = dos[2]
     else:
         self.energies = dos.energies
         self.densities = (dos.densities[Spin.up] +
                           dos.densities[Spin.down]) / 2
         self.efermi = dos.efermi
     self.structure = structure
     self.data = data
     self.cbm = cbm
     self.vbm = vbm
     if (not (cbm is None)) and (not (vbm is None)):
         self.bandgap = max(0, cbm - vbm)
     else:
         self.bandgap = None
Esempio n. 5
0
def Read_POSCARS(filename):
    """
    Read POSCARS in a single file and convert it to Pymatgen structure object
    """
    # Read INPUT  file
    Struc = []
    f = open(filename, 'rb')
    input_content = f.readlines()
    f.close()

    POSCAR_content = []
    N_atom = 0
    for str1 in input_content:
        POSCAR_content.append(str(str1, 'utf-8'))
        if len(POSCAR_content) == 7:
            N_atom = sum(int(f) for f in str1.split())
        elif len(POSCAR_content) == 8 + N_atom:
            pos_str = ''.join(POSCAR_content)
            try:
                p = Poscar.from_string(pos_str)
                Struc.append(p.structure)
            except:
                print('strucuture is wrong', pos_str)
                raise
            POSCAR_content = []
    return Struc
Esempio n. 6
0
def load_elastic_tensor(include_metadata=False):
    # ref: Jong, M. De, Chen, W., Angsten, T., Jain, A., Notestine, R., Gamst,
    # A., Sluiter, M., Ande, C. K., Zwaag, S. Van Der, Plata, J. J., Toher,
    # C., Curtarolo, S., Ceder, G., Persson, K. a & Asta, M. Charting the
    # complete elastic properties of inorganic crystalline compounds. Sci.
    # Data 2, 150009 (2015).
    df = pandas.read_csv(os.path.join(module_dir, "elastic_tensor.csv"),
                         comment="#")
    for i in list(df.index):
        for c in [
                'compliance_tensor', 'elastic_tensor',
                'elastic_tensor_original'
        ]:
            df.at[(i, c)] = np.array(ast.literal_eval(df.at[(i, c)]))
    df['cif'] = df['structure']
    df['structure'] = pandas.Series(
        [Poscar.from_string(s).structure for s in df['poscar']])
    new_columns = [
        'material_id', 'formula', 'nsites', 'space_group', 'volume',
        'structure', 'elastic_anisotropy', 'G_Reuss', 'G_VRH', 'G_Voigt',
        'K_Reuss', 'K_VRH', 'K_Voigt', 'poisson_ratio', 'compliance_tensor',
        'elastic_tensor', 'elastic_tensor_original'
    ]
    if include_metadata:
        new_columns += ['cif', 'kpoint_density', 'poscar']
    return df[new_columns]
Esempio n. 7
0
def load_piezoelectric_tensor(include_metadata=False):
    """
    References:
        de Jong, M., Chen, W., Geerlings, H., Asta, M. & Persson, K. A.
        A database to enable discovery and design of piezoelectric materials.
        Sci. Data 2, 150053 (2015)

    Args:
        include_metadata (bool): whether to return cif, meta, poscar

    Returns (pd.DataFrame)
    """
    df = pandas.read_csv(os.path.join(module_dir, "piezoelectric_tensor.csv"),
                         comment="#")
    for i in list(df.index):
        c = 'piezoelectric_tensor'
        df.at[(i, c)] = np.array(ast.literal_eval(df.at[(i, c)]))
    df['cif'] = df['structure']
    df['structure'] = pandas.Series(
        [Poscar.from_string(s).structure for s in df['poscar']])
    new_columns = [
        'material_id', 'formula', 'nsites', 'point_group', 'space_group',
        'volume', 'structure', 'eij_max', 'v_max', 'piezoelectric_tensor'
    ]
    if include_metadata:
        new_columns += ['cif', 'meta', 'poscar']
    return df[new_columns]
Esempio n. 8
0
def get_prim_struct(structure):
    """
    Get standard primitive
    """
    output = run_aconvasp_command(["aconvasp", "--std_prim"], structure)
    if "ERROR" in output[1]:
        raise AconvaspError(output[1])
    tmp = Poscar.from_string(output[0])
    return {'struct': tmp.structure, 'comm': tmp.comment}
Esempio n. 9
0
def get_prim_struct(structure):
    """
    Get standard primitive
    """
    output = run_aconvasp_command(["aconvasp", "--std_prim"], structure)
    if "ERROR" in output[1]:
        raise AconvaspError(output[1])
    tmp = Poscar.from_string(output[0])
    return {"struct": tmp.structure, "comm": tmp.comment}
Esempio n. 10
0
def get_conv_struct(structure):
    """
    Get a minkowski reduced structure
    """
    output = run_aconvasp_command(["aconvasp", "--std_conv"], structure)
    if "ERROR" in output[1]:
        raise AconvaspError(output[1])
    tmp = Poscar.from_string(output[0])
    return {"struct": tmp.structure, "comm": tmp.comment}
Esempio n. 11
0
def get_conv_struct(structure):
    """
    Get a minkowski reduced structure
    """
    output = run_aconvasp_command(["aconvasp", "--std_conv"], structure)
    if "ERROR" in output[1]:
        raise AconvaspError(output[1])
    tmp = Poscar.from_string(output[0])
    return {'struct': tmp.structure, 'comm': tmp.comment}
Esempio n. 12
0
    def _get_structures(self, num_structs):
        structs = []
        rs = subprocess.Popen(
            [makestr_cmd, "struct_enum.out",
             str(0),
             str(num_structs - 1)],
            stdout=subprocess.PIPE,
            stdin=subprocess.PIPE,
            close_fds=True)
        rs.communicate()
        if len(self.ordered_sites) > 0:
            original_latt = self.ordered_sites[0].lattice
            # Need to strip sites of site_properties, which would otherwise
            # result in an index error. Hence Structure is reconstructed in
            # the next step.
            ordered_structure = Structure(
                original_latt,
                [site.species_and_occu for site in self.ordered_sites],
                [site.frac_coords for site in self.ordered_sites])
            inv_org_latt = np.linalg.inv(original_latt.matrix)

        for n in range(1, num_structs + 1):
            with open("vasp.{:06d}".format(n)) as f:
                data = f.read()
                data = re.sub(r'scale factor', "1", data)
                data = re.sub(r'(\d+)-(\d+)', r'\1 -\2', data)
                poscar = Poscar.from_string(data, self.index_species)
                sub_structure = poscar.structure
                # Enumeration may have resulted in a super lattice. We need to
                # find the mapping from the new lattice to the old lattice, and
                # perform supercell construction if necessary.
                new_latt = sub_structure.lattice

                sites = []

                if len(self.ordered_sites) > 0:
                    transformation = np.dot(new_latt.matrix, inv_org_latt)
                    transformation = [[int(round(cell)) for cell in row]
                                      for row in transformation]
                    logger.debug("Supercell matrix: {}".format(transformation))
                    s = ordered_structure * transformation
                    sites.extend([site.to_unit_cell for site in s])
                    super_latt = sites[-1].lattice
                else:
                    super_latt = new_latt

                for site in sub_structure:
                    if site.specie.symbol != "X":  # We exclude vacancies.
                        sites.append(
                            PeriodicSite(site.species_and_occu,
                                         site.frac_coords,
                                         super_latt).to_unit_cell)
                structs.append(Structure.from_sites(sorted(sites)))

        logger.debug("Read in a total of {} structures.".format(num_structs))
        return structs
Esempio n. 13
0
    def _get_structures(self, num_structs):
        structs = []
        rs = subprocess.Popen(["makestr.x",
                               "struct_enum.out", str(0),
                               str(num_structs - 1)],
                              stdout=subprocess.PIPE,
                              stdin=subprocess.PIPE, close_fds=True)
        rs.communicate()
        if len(self.ordered_sites) > 0:
            original_latt = self.ordered_sites[0].lattice
            # Need to strip sites of site_properties, which would otherwise
            # result in an index error. Hence Structure is reconstructed in
            # the next step.
            ordered_structure = Structure(
                original_latt,
                [site.species_and_occu for site in self.ordered_sites],
                [site.frac_coords for site in self.ordered_sites])
            inv_org_latt = np.linalg.inv(original_latt.matrix)

        for n in range(1, num_structs + 1):
            with open("vasp.{:06d}".format(n)) as f:
                data = f.read()
                data = re.sub("scale factor", "1", data)
                data = re.sub("(\d+)-(\d+)", r"\1 -\2", data)
                poscar = Poscar.from_string(data, self.index_species)
                sub_structure = poscar.structure
                #Enumeration may have resulted in a super lattice. We need to
                #find the mapping from the new lattice to the old lattice, and
                #perform supercell construction if necessary.
                new_latt = sub_structure.lattice

                sites = []

                if len(self.ordered_sites) > 0:
                    transformation = np.dot(new_latt.matrix, inv_org_latt)
                    transformation = [[int(round(cell)) for cell in row]
                                      for row in transformation]
                    logger.debug("Supercell matrix: {}".format(transformation))
                    s = Structure.from_sites(ordered_structure)
                    s.make_supercell(transformation)
                    sites.extend([site.to_unit_cell for site in s])
                    super_latt = sites[-1].lattice
                else:
                    super_latt = new_latt

                for site in sub_structure:
                    if site.specie.symbol != "X":  # We exclude vacancies.
                        sites.append(PeriodicSite(site.species_and_occu,
                                                  site.frac_coords,
                                                  super_latt).to_unit_cell)
                structs.append(Structure.from_sites(sorted(sites)))

        logger.debug("Read in a total of {} structures.".format(num_structs))
        return structs
Esempio n. 14
0
    def test_str(self):
        si = 14
        coords = list()
        coords.append([0, 0, 0])
        coords.append([0.75, 0.5, 0.75])

        # Silicon structure for testing.
        latt = [
            [3.8401979337, 0.00, 0.00],
            [1.9200989668, 3.3257101909, 0.00],
            [0.00, -2.2171384943, 3.1355090603],
        ]
        struct = Structure(latt, [si, si], coords)
        poscar = Poscar(struct)
        expected_str = """Si2
1.0
3.840198 0.000000 0.000000
1.920099 3.325710 0.000000
0.000000 -2.217138 3.135509
Si
2
direct
0.000000 0.000000 0.000000 Si
0.750000 0.500000 0.750000 Si
"""

        self.assertEqual(str(poscar), expected_str, "Wrong POSCAR output!")

        # Vasp 4 type with symbols at the end.
        poscar_string = """Test1
1.0
-3.840198 0.000000 0.000000
1.920099 3.325710 0.000000
0.000000 -2.217138 3.135509
1 1
direct
0.000000 0.000000 0.000000 Si
0.750000 0.500000 0.750000 F
"""

        expected = """Test1
1.0
3.840198 -0.000000 -0.000000
-1.920099 -3.325710 -0.000000
-0.000000 2.217138 -3.135509
Si F
1 1
direct
0.000000 0.000000 0.000000 Si
0.750000 0.500000 0.750000 F
"""
        poscar = Poscar.from_string(poscar_string)
        self.assertEqual(str(poscar), expected)
Esempio n. 15
0
    def test_automatic_kpoint(self):
        # s = PymatgenTest.get_structure("Li2O")
        p = Poscar.from_string("""Al1
1.0
2.473329 0.000000 1.427977
0.824443 2.331877 1.427977
0.000000 0.000000 2.855955
Al
1
direct
0.000000 0.000000 0.000000 Al""")
        kpoints = Kpoints.automatic_density(p.structure, 1000)
        self.assertArrayAlmostEqual(kpoints.kpts[0], [10, 10, 10])
Esempio n. 16
0
    def test_automatic_kpoint(self):
        # s = PymatgenTest.get_structure("Li2O")
        p = Poscar.from_string("""Al1
1.0
2.473329 0.000000 1.427977
0.824443 2.331877 1.427977
0.000000 0.000000 2.855955
Al
1
direct
0.000000 0.000000 0.000000 Al""")
        kpoints = Kpoints.automatic_density(p.structure, 1000)
        self.assertArrayAlmostEqual(kpoints.kpts[0], [10, 10, 10])
Esempio n. 17
0
    def test_str(self):
        si = 14
        coords = list()
        coords.append([0, 0, 0])
        coords.append([0.75, 0.5, 0.75])

        # Silicon structure for testing.
        latt = [[3.8401979337, 0.00, 0.00],
                [1.9200989668, 3.3257101909, 0.00],
                [0.00, -2.2171384943, 3.1355090603]]
        struct = Structure(latt, [si, si], coords)
        poscar = Poscar(struct)
        expected_str = '''Si2
1.0
3.840198 0.000000 0.000000
1.920099 3.325710 0.000000
0.000000 -2.217138 3.135509
Si
2
direct
0.000000 0.000000 0.000000 Si
0.750000 0.500000 0.750000 Si
'''

        self.assertEqual(str(poscar), expected_str, "Wrong POSCAR output!")

        # Vasp 4 type with symbols at the end.
        poscar_string = """Test1
1.0
-3.840198 0.000000 0.000000
1.920099 3.325710 0.000000
0.000000 -2.217138 3.135509
1 1
direct
0.000000 0.000000 0.000000 Si
0.750000 0.500000 0.750000 F
"""

        expected = """Test1
1.0
3.840198 -0.000000 -0.000000
-1.920099 -3.325710 -0.000000
-0.000000 2.217138 -3.135509
Si F
1 1
direct
0.000000 0.000000 0.000000 Si
0.750000 0.500000 0.750000 F
"""
        poscar = Poscar.from_string(poscar_string)
        self.assertEqual(str(poscar), expected)
Esempio n. 18
0
    def test_cart_scale(self):
        poscar_string = """Test1
1.1
3.840198 0.000000 0.000000
1.920099 3.325710 0.000000
0.000000 -2.217138 3.135509
Si F
1 1
cart
0.000000   0.00000000   0.00000000
3.840198   1.50000000   2.35163175
"""
        p = Poscar.from_string(poscar_string)
        site = p.structure[1]
        self.assertArrayAlmostEqual(site.coords, np.array([3.840198, 1.5, 2.35163175]) * 1.1)
Esempio n. 19
0
    def test_cart_scale(self):
        poscar_string = """Test1
1.1
3.840198 0.000000 0.000000
1.920099 3.325710 0.000000
0.000000 -2.217138 3.135509
Si F
1 1
cart
0.000000   0.00000000   0.00000000
3.840198   1.50000000   2.35163175
"""
        p = Poscar.from_string(poscar_string)
        site = p.structure[1]
        self.assertArrayAlmostEqual(site.coords, np.array([3.840198, 1.5, 2.35163175]) * 1.1)
Esempio n. 20
0
def get_minkowski_red(structure):
    """
    Get a minkowski reduced structure
    """
    output = run_aconvasp_command(["aconvasp", "--kpath"], structure)
    started = False
    poscar_string = ""
    if "ERROR" in output[1]:
        raise AconvaspError(output[1])
    for line in output[0].split("\n"):
        if started or line.find("KPOINTS TO RUN") != -1:
            poscar_string = poscar_string + line + "\n"
        if line.find("STRUCTURE TO RUN") != -1:
            started = True
        if line.find("KPOINTS TO RUN") != -1:
            started = False
    return Poscar.from_string(poscar_string).structure
Esempio n. 21
0
def get_minkowski_red(structure):
    """
    Get a minkowski reduced structure
    """
    output = run_aconvasp_command(["aconvasp", "--kpath"], structure)
    started = False
    poscar_string = ""
    if "ERROR" in output[1]:
        raise AconvaspError(output[1])
    for line in output[0].split("\n"):
        if started or line.find("KPOINTS TO RUN") != -1:
            poscar_string = poscar_string + line + "\n"
        if line.find("STRUCTURE TO RUN") != -1:
            started = True
        if line.find("KPOINTS TO RUN") != -1:
            started = False
    return Poscar.from_string(poscar_string).structure
Esempio n. 22
0
    def test_to_from_dict(self):
        poscar_string = """Test3
1.0
3.840198 0.000000 0.000000
1.920099 3.325710 0.000000
0.000000 -2.217138 3.135509
1 1
Selective dynamics
direct
0.000000 0.000000 0.000000 T T T Si
0.750000 0.500000 0.750000 F F F O
"""
        poscar = Poscar.from_string(poscar_string)
        d = poscar.as_dict()
        poscar2 = Poscar.from_dict(d)
        self.assertEqual(poscar2.comment, "Test3")
        self.assertTrue(all(poscar2.selective_dynamics[0]))
        self.assertFalse(all(poscar2.selective_dynamics[1]))
Esempio n. 23
0
def _preprocess_dielectric_constant(df):
    """
    Preprocessor used to convert the dielectric_constant dataset to the
    dataframe desired for JSON conversion

    Args:
        df (pandas.DataFrame)

    Returns: (pandas.DataFrame)
    """
    df['cif'] = df['structure']
    df['structure'] = pandas.Series([Poscar.from_string(s).structure
                                     for s in df['poscar']])
    new_columns = ['material_id', 'formula', 'nsites', 'space_group',
                   'volume', 'structure', 'band_gap', 'e_electronic',
                   'e_total', 'n', 'poly_electronic', 'poly_total',
                   'pot_ferroelectric', 'cif', 'meta', 'poscar']
    return df[new_columns]
Esempio n. 24
0
    def test_to_from_dict(self):
        poscar_string = """Test3
1.0
3.840198 0.000000 0.000000
1.920099 3.325710 0.000000
0.000000 -2.217138 3.135509
1 1
Selective dynamics
direct
0.000000 0.000000 0.000000 T T T Si
0.750000 0.500000 0.750000 F F F O
"""
        poscar = Poscar.from_string(poscar_string)
        d = poscar.as_dict()
        poscar2 = Poscar.from_dict(d)
        self.assertEqual(poscar2.comment, "Test3")
        self.assertTrue(all(poscar2.selective_dynamics[0]))
        self.assertFalse(all(poscar2.selective_dynamics[1]))
Esempio n. 25
0
    def from_poscar_string(poscar_string, transformations=None):
        """
        Generates TransformedStructure from a poscar string.

        Args:
            poscar_string (str): Input POSCAR string.
            transformations ([Transformations]): Sequence of transformations
                to be applied to the input structure.
        """
        p = Poscar.from_string(poscar_string)
        if not p.true_names:
            raise ValueError("Transformation can be craeted only from POSCAR "
                             "strings with proper VASP5 element symbols.")
        raw_string = re.sub("'", "\"", poscar_string)
        s = p.structure
        source_info = {"source": "POSCAR",
                       "datetime": str(datetime.datetime.now()),
                       "original_file": raw_string}
        return TransformedStructure(s, transformations, history=[source_info])
Esempio n. 26
0
    def from_poscar_string(poscar_string, transformations=None):
        """
        Generates TransformedStructure from a poscar string.

        Args:
            poscar_string (str): Input POSCAR string.
            transformations ([Transformations]): Sequence of transformations
                to be applied to the input structure.
        """
        p = Poscar.from_string(poscar_string)
        if not p.true_names:
            raise ValueError("Transformation can be craeted only from POSCAR "
                             "strings with proper VASP5 element symbols.")
        raw_string = re.sub(r"'", "\"", poscar_string)
        s = p.structure
        source_info = {"source": "POSCAR",
                       "datetime": str(datetime.datetime.now()),
                       "original_file": raw_string}
        return TransformedStructure(s, transformations, history=[source_info])
Esempio n. 27
0
def _preprocess_piezoelectric_tensor(df):
    """
    Preprocessor used to convert the piezoelectric_constant dataset to the
    dataframe desired for JSON conversion

    Args:
        df (pandas.DataFrame)

    Returns: (pandas.DataFrame)
    """
    for i in list(df.index):
        c = 'piezoelectric_tensor'
        df.at[(i, c)] = np.array(ast.literal_eval(df.at[(i, c)]))
    df['cif'] = df['structure']
    df['structure'] = pandas.Series([Poscar.from_string(s).structure
                                     for s in df['poscar']])
    new_columns = ['material_id', 'formula', 'nsites', 'point_group',
                   'space_group', 'volume', 'structure', 'eij_max', 'v_max',
                   'piezoelectric_tensor', 'cif', 'meta', 'poscar']
    return df[new_columns]
Esempio n. 28
0
def test_poscar_string(kind):
    base_structure = get_lattice(kind)
    num_type = 2
    index = 4
    species = [Element("Cu"), Element("Au")]

    se = StructureEnumerator(
        base_structure,
        index,
        num_type,
        species,
        color_exchange=True,
        remove_superperiodic=True,
    )
    list_ds_mg = se.generate(output="pymatgen")
    list_ds_pc = se.generate(output="poscar")

    assert len(list_ds_mg) == len(list_ds_pc)
    for expect, poscar_str in zip(list_ds_mg, list_ds_pc):
        actual = Poscar.from_string(poscar_str).structure
        assert expect == actual
Esempio n. 29
0
def _preprocess_elastic_tensor_2015(df):
    """
    Preprocessor used to convert the elastic_tensor_2015 dataset to the
    dataframe desired for JSON conversion

    Args:
        df (pandas.DataFrame)

    Returns: (pandas.DataFrame)
    """
    for i in list(df.index):
        for c in ['compliance_tensor', 'elastic_tensor',
                  'elastic_tensor_original']:
            df.at[(i, c)] = np.array(ast.literal_eval(df.at[(i, c)]))
    df['cif'] = df['structure']
    df['structure'] = pandas.Series([Poscar.from_string(s).structure
                                     for s in df['poscar']])
    new_columns = ['material_id', 'formula', 'nsites', 'space_group',
                   'volume', 'structure', 'elastic_anisotropy',
                   'G_Reuss', 'G_VRH', 'G_Voigt', 'K_Reuss', 'K_VRH',
                   'K_Voigt', 'poisson_ratio', 'compliance_tensor',
                   'elastic_tensor', 'elastic_tensor_original',
                   'cif', 'kpoint_density', 'poscar']
    return df[new_columns]
Esempio n. 30
0
    def _get_structures(self, num_structs):
        structs = []

        if ".py" in makestr_cmd:
            options = ["-input", "struct_enum.out", str(1), str(num_structs)]
        else:
            options = ["struct_enum.out", str(0), str(num_structs - 1)]

        rs = subprocess.Popen([makestr_cmd] + options,
                              stdout=subprocess.PIPE,
                              stdin=subprocess.PIPE, close_fds=True)
        stdout, stderr = rs.communicate()
        if stderr:
            logger.warning(stderr.decode())
        if len(self.ordered_sites) > 0:
            original_latt = self.ordered_sites[0].lattice
            # Need to strip sites of site_properties, which would otherwise
            # result in an index error. Hence Structure is reconstructed in
            # the next step.
            site_properties = {}
            for site in self.ordered_sites:
                for k, v in site.properties.items():
                    if k in site_properties:
                        site_properties[k].append(v)
                    else:
                        site_properties[k] = [v]
            ordered_structure = Structure(
                original_latt,
                [site.species_and_occu for site in self.ordered_sites],
                [site.frac_coords for site in self.ordered_sites],
                site_properties=site_properties
            )
            inv_org_latt = np.linalg.inv(original_latt.matrix)

        for file in glob.glob('vasp.*'):
            with open(file) as f:
                data = f.read()
                data = re.sub(r'scale factor', "1", data)
                data = re.sub(r'(\d+)-(\d+)', r'\1 -\2', data)
                poscar = Poscar.from_string(data, self.index_species)
                sub_structure = poscar.structure
                # Enumeration may have resulted in a super lattice. We need to
                # find the mapping from the new lattice to the old lattice, and
                # perform supercell construction if necessary.
                new_latt = sub_structure.lattice

                sites = []

                if len(self.ordered_sites) > 0:
                    transformation = np.dot(new_latt.matrix, inv_org_latt)
                    transformation = [[int(round(cell)) for cell in row]
                                      for row in transformation]
                    logger.debug("Supercell matrix: {}".format(transformation))
                    s = ordered_structure * transformation
                    sites.extend([site.to_unit_cell for site in s])
                    super_latt = sites[-1].lattice
                else:
                    super_latt = new_latt

                for site in sub_structure:
                    if site.specie.symbol != "X":  # We exclude vacancies.
                        sites.append(PeriodicSite(site.species_and_occu,
                                                  site.frac_coords,
                                                  super_latt).to_unit_cell)
                    else:
                        warnings.warn("Skipping sites that include species X.")
                structs.append(Structure.from_sites(sorted(sites)))

        logger.debug("Read in a total of {} structures.".format(num_structs))
        return structs
Esempio n. 31
0
def _getStruct(system_data,space_data,structure_data,args):
    """Writes a vasp POSCAR style file for the input structure and system
    data.
    :arg system_data: a dictionary of the system_data
    :arg space_data: a dictionary containing the spacial data
    :arg structure_data: a dictionary of the data for this structure
    :arg args: Dictionary of user supplied input.
    """

    from numpy import array
    from random import uniform

    # Get the labeling, group index, structure number and arrow labels
    # from the input data structure.
    labeling = structure_data["labeling"]
    gIndx = space_data["gIndx"]
    arrows = structure_data["directions"]
    struct_n = structure_data["strN"]

    # The arrow basis.
    arrow_directions = [[1,0,0],[-1,0,0],[0,1,0],[0,-1,0],[0,0,1],[0,0,-1]]
    directions = []

    # Construct the concentrations of the atoms from the labeling by
    # counting the number of each type of atom present in the
    # labeling.
    concs = {}
    for i in args["id_mapping"].keys():
        this_conc = 0
        for atom in range(structure_data["n"]*system_data["nD"]):
            if labeling[gIndx[atom]] == str(i):
                this_conc += 1
        concs[i] = this_conc
    def_title = "{} str #: {}\n".format(str(system_data["title"]),str(structure_data["strN"]))

    # Get the lattice parameter for the atomic species provided by the
    # user.
    num_vac = 0
    if args["vacancy"] != None:
        num_vac = 1
    lattice_parameter, title = _get_lattice_parameter(args["id_mapping"],concs,system_data["plattice"],
                                                      system_data["nD"],def_title,args["scale_factor"],
                                                      args["remove_zeros"],args["vegards"])

    # Find out the directions for each arrow.
    for arrow in arrows:
        directions.append(array(arrow_directions[int(arrow)]))

    sLV = space_data["sLV"]

    # First write the title and the lattice parameter.
    poscar = title
    poscar += "{0:.3f}\n".format(lattice_parameter)
    # Then write out the lattice vectors.
    for i in range(3):
        poscar += " {}\n".format(" ".join(
             ["{0: .9f}".format(j) for j in sLV[i]]))

    # Write the concentrations to the output file. If the species
    # strings were passed in by the user and the user requests
    # there be no zeros in the concentration string then we should
    # remove them from the file. Otherwise we default to leaving
    # them in.
    if (args["remove_zeros"] and args["id_mapping"] is not None):
        types = ""
        amounts = ""
        for ic in concs.keys():
            if concs[ic] != 0:
                types += "{}  ".format(args["id_mapping"][ic])
                amounts += "{}   ".format(str(concs[ic]))
        poscar += "  {}\n".format(types)
        poscar += "  {}".format(amounts)
    else:
        keys = concs.keys()
        poscar += "  {}\n".format("   ".join([args["id_mapping"][key] for key in keys]))
        poscar += "  "
        for ic in keys:
            poscar += "{}   ".format(str(concs[ic]))

    poscar += "\n"
    poscar += "D\n"
    # Now write out the atomic positions to the file.
    for ilab in args["id_mapping"].keys():
        for iAt in range(structure_data["n"]*system_data["nD"]):
            rattle = uniform(-args["rattle"],args["rattle"])
            displace = directions[iAt]*args["displace"]*lattice_parameter
            # If the displacement is non zero and we're `rattling`
            # the system then we need to modify the displacement
            # by the amount being rattled.
            displace += displace*rattle
            if labeling[gIndx[iAt]] == str(ilab):
                # The final atomic position is the position from
                # the basis plus the total displacement.
                out_array = array(space_data["aBas"][iAt]) + displace
                poscar += " {}\n".format(
                    "  ".join(["{0: .9f}".format(i) for i in out_array.tolist()]))
    return Poscar.from_string(poscar).structure
Esempio n. 32
0
    def _get_structures(self, num_structs):
        structs = []

        if ".py" in makestr_cmd:
            options = ["-input", "struct_enum.out", str(1), str(num_structs)]
        else:
            options = ["struct_enum.out", str(0), str(num_structs - 1)]

        rs = subprocess.Popen([makestr_cmd] + options,
                              stdout=subprocess.PIPE,
                              stdin=subprocess.PIPE,
                              close_fds=True)
        stdout, stderr = rs.communicate()
        if stderr:
            logger.warning(stderr.decode())

        # sites retrieved from enumlib will lack site properties
        # to ensure consistency, we keep track of what site properties
        # are missing and set them to None
        # TODO: improve this by mapping ordered structure to original
        # disorded structure, and retrieving correct site properties
        disordered_site_properties = {}

        if len(self.ordered_sites) > 0:
            original_latt = self.ordered_sites[0].lattice
            # Need to strip sites of site_properties, which would otherwise
            # result in an index error. Hence Structure is reconstructed in
            # the next step.
            site_properties = {}
            for site in self.ordered_sites:
                for k, v in site.properties.items():
                    disordered_site_properties[k] = None
                    if k in site_properties:
                        site_properties[k].append(v)
                    else:
                        site_properties[k] = [v]
            ordered_structure = Structure(
                original_latt, [site.species for site in self.ordered_sites],
                [site.frac_coords for site in self.ordered_sites],
                site_properties=site_properties)
            inv_org_latt = np.linalg.inv(original_latt.matrix)

        for file in glob.glob('vasp.*'):
            with open(file) as f:
                data = f.read()
                data = re.sub(r'scale factor', "1", data)
                data = re.sub(r'(\d+)-(\d+)', r'\1 -\2', data)
                poscar = Poscar.from_string(data, self.index_species)
                sub_structure = poscar.structure
                # Enumeration may have resulted in a super lattice. We need to
                # find the mapping from the new lattice to the old lattice, and
                # perform supercell construction if necessary.
                new_latt = sub_structure.lattice

                sites = []

                if len(self.ordered_sites) > 0:
                    transformation = np.dot(new_latt.matrix, inv_org_latt)
                    transformation = [[int(round(cell)) for cell in row]
                                      for row in transformation]
                    logger.debug("Supercell matrix: {}".format(transformation))
                    s = ordered_structure * transformation
                    sites.extend([site.to_unit_cell() for site in s])
                    super_latt = sites[-1].lattice
                else:
                    super_latt = new_latt

                for site in sub_structure:
                    if site.specie.symbol != "X":  # We exclude vacancies.
                        sites.append(
                            PeriodicSite(
                                site.species,
                                site.frac_coords,
                                super_latt,
                                to_unit_cell=True,
                                properties=disordered_site_properties))
                    else:
                        logger.debug("Skipping sites that include species X.")
                structs.append(Structure.from_sites(sorted(sites)))

        logger.debug("Read in a total of {} structures.".format(num_structs))
        return structs