def map_subscript(self, expr, type_context): from loopy.kernel.data import TemporaryVariable ary = self.find_array(expr) if (isinstance(ary, TemporaryVariable) and ary.address_space == AddressSpace.PRIVATE): # generate access code for acccess to private-index temporaries gsize, lsize = self.kernel.get_grid_size_upper_bounds_as_exprs() if lsize: lsize, = lsize from loopy.kernel.array import get_access_info from pymbolic import evaluate access_info = get_access_info(self.kernel.target, ary, expr.index, lambda expr: evaluate(expr, self.codegen_state.var_subst_map), self.codegen_state.vectorization_info) subscript, = access_info.subscripts result = var(access_info.array_name)[ var("programIndex") + self.rec(lsize*subscript, 'i')] if access_info.vector_index is not None: return self.kernel.target.add_vector_access( result, access_info.vector_index) else: return result return super(ExprToISPCExprMapper, self).map_subscript( expr, type_context)
def map_planned_flux(self, expr): try: return self.expr_to_var[expr] except KeyError: for fb in self.flux_batches: try: idx = fb.flux_exprs.index(expr) except ValueError: pass else: # found at idx mapped_fluxes = [ self.internal_map_flux(f) for f in fb.flux_exprs] names = [self.get_var_name() for f in mapped_fluxes] self.code.append( self.make_flux_batch_assign( names, mapped_fluxes, fb.repr_op)) from pymbolic import var for n, f in zip(names, fb.flux_exprs): self.expr_to_var[f] = var(n) return var(names[idx]) raise RuntimeError("flux '%s' not in any flux batch" % expr)
def map_Assignment(self, node): lhs = self.parse_expr(node.variable) from pymbolic.primitives import Subscript if isinstance(lhs, Subscript): lhs_name = lhs.aggregate.name else: lhs_name = lhs.name scope = self.scope_stack[-1] scope.use_name(lhs_name) infer_type = scope.get_type_inference_mapper() rhs = self.parse_expr(node.expr) lhs_dtype = infer_type(lhs) rhs_dtype = infer_type(rhs) # check for silent truncation of complex if lhs_dtype.kind != 'c' and rhs_dtype.kind == 'c': from pymbolic import var rhs = var("real")(rhs) # check for silent widening of real if lhs_dtype.kind == 'c' and rhs_dtype.kind != 'c': from pymbolic import var rhs = var("fromreal")(rhs) return cgen.Assign(self.gen_expr(lhs), self.gen_expr(rhs))
def get_kernel(): from sumpy.symbolic import pymbolic_real_norm_2 from pymbolic.primitives import make_sym_vector from pymbolic import var d = make_sym_vector("d", 3) r = pymbolic_real_norm_2(d[:-1]) # r3d = pymbolic_real_norm_2(d) #expr = var("log")(r3d) log = var("log") sqrt = var("sqrt") a = d[-1] expr = log(r) expr = log(sqrt(r**2 + a**2)) expr = log(sqrt(r + a**2)) #expr = log(sqrt(r**2 + a**2))-a**2/2/(r**2+a**2) #expr = 2*log(sqrt(r**2 + a**2)) scaling = 1/(2*var("pi")) from sumpy.kernel import ExpressionKernel return ExpressionKernel( dim=3, expression=expr, global_scaling_const=scaling, is_complex_valued=False)
def map_substitution(self, name, tag, arguments, expn_state): if not ( name == self.subst_name and self.within( expn_state.kernel, expn_state.instruction, expn_state.stack) and (self.subst_tag is None or self.subst_tag == tag)): return super(RuleInvocationReplacer, self).map_substitution( name, tag, arguments, expn_state) # {{{ check if in footprint rule = self.rule_mapping_context.old_subst_rules[name] arg_context = self.make_new_arg_context( name, rule.arguments, arguments, expn_state.arg_context) args = [arg_context[arg_name] for arg_name in rule.arguments] accdesc = AccessDescriptor( storage_axis_exprs=storage_axis_exprs( self.storage_axis_sources, args)) if not self.array_base_map.is_access_descriptor_in_footprint(accdesc): return super(RuleInvocationReplacer, self).map_substitution( name, tag, arguments, expn_state) # }}} assert len(arguments) == len(rule.arguments) abm = self.array_base_map stor_subscript = [] for sax_name, sax_source, sax_base_idx in zip( self.storage_axis_names, self.storage_axis_sources, abm.storage_base_indices): if sax_name not in self.non1_storage_axis_names: continue if isinstance(sax_source, int): # an argument ax_index = arguments[sax_source] else: # an iname ax_index = var(sax_source) from loopy.isl_helpers import simplify_via_aff ax_index = simplify_via_aff(ax_index - sax_base_idx) stor_subscript.append(ax_index) new_outer_expr = var(self.temporary_name) if stor_subscript: new_outer_expr = new_outer_expr.index(tuple(stor_subscript)) # Can't possibly be nested, and no need to traverse # further as compute expression has already been seen # by rule_mapping_context. return new_outer_expr
def map_reduction(expr, rec, nresults=1): if frozenset(expr.inames) != inames_set: return type(expr)( operation=expr.operation, inames=expr.inames, expr=rec(expr.expr), allow_simultaneous=expr.allow_simultaneous) if subst_rule_name is None: subst_rule_prefix = "red_%s_arg" % "_".join(inames) my_subst_rule_name = var_name_gen(subst_rule_prefix) else: my_subst_rule_name = subst_rule_name if my_subst_rule_name in substs: raise LoopyError("substitution rule '%s' already exists" % my_subst_rule_name) from loopy.kernel.data import SubstitutionRule substs[my_subst_rule_name] = SubstitutionRule( name=my_subst_rule_name, arguments=tuple(inames), expression=expr.expr) from pymbolic import var iname_vars = [var(iname) for iname in inames] return type(expr)( operation=expr.operation, inames=expr.inames, expr=var(my_subst_rule_name)(*iname_vars), allow_simultaneous=expr.allow_simultaneous)
def transform_access(self, index, expn_state): my_insn_id = expn_state.insn_id if my_insn_id in self.definition_insn_ids: return None my_def_id = self.usage_to_definition[my_insn_id] if not self.within( expn_state.kernel, expn_state.instruction, expn_state.stack): self.saw_unmatched_usage_sites[my_def_id] = True return None subst_name = self.get_subst_name(my_def_id) if self.extra_arguments: if index is None: index = self.extra_arguments else: index = index + self.extra_arguments from pymbolic import var if index is None: return var(subst_name) elif not isinstance(index, tuple): return var(subst_name)(index) else: return var(subst_name)(*index)
def test_func_dep_consistency(): from pymbolic import var from pymbolic.mapper.dependency import DependencyMapper f = var('f') x = var('x') dep_map = DependencyMapper(include_calls="descend_args") assert dep_map(f(x)) == set([x]) assert dep_map(f(x=x)) == set([x])
def get_kernel_exprs(self, result_names): isrc_sym = var("isrc") exprs = [var(name) * self.get_strength_or_not(isrc_sym, i) for i, name in enumerate(result_names)] return [lp.Assignment(id=None, assignee="pair_result_%d" % i, expression=expr, temp_var_type=lp.auto) for i, expr in enumerate(exprs)]
def test_child_invalid_type_cast(): from pymbolic import var knl = lp.make_kernel( "{[i]: 0<=i<n}", ["<> ctr = make_uint2(0, 0)", lp.Assignment("a[i]", lp.TypeCast(np.int64, var("ctr")) << var("i"))] ) with pytest.raises(lp.LoopyError): knl = lp.preprocess_kernel(knl)
def test_is_expression_equal(): from loopy.symbolic import is_expression_equal from pymbolic import var x = var("x") y = var("y") assert is_expression_equal(x+2, 2+x) assert is_expression_equal((x+2)**2, x**2 + 4*x + 4) assert is_expression_equal((x+y)**2, x**2 + 2*x*y + y**2)
def apply_offset(sub): import loopy as lp if ary.offset: if ary.offset is lp.auto: return var(array_name+"_offset") + sub elif isinstance(ary.offset, str): return var(ary.offset) + sub else: # assume it's an expression return ary.offset + sub else: return sub
def map_field_component(self, expr): if expr.is_interior: where = "int_side" else: where = "ext_side" arg_name = self.flux_var_info.flux_idx_and_dep_to_arg_name[ self.flux_idx, expr] if not arg_name: return 0 else: from pymbolic import var return var(arg_name+"_it")[var(where+"_idx")]
def get_kernel_exprs(self, result_names): from pymbolic import var isrc_sym = var("isrc") exprs = [var(name) * self.get_strength_or_not(isrc_sym, i) for i, name in enumerate(result_names)] if self.exclude_self: from pymbolic.primitives import If, Variable exprs = [If(Variable("is_self"), 0, expr) for expr in exprs] return [lp.Assignment(id=None, assignee="pair_result_%d" % i, expression=expr, temp_var_type=lp.auto) for i, expr in enumerate(exprs)]
def __init__(self, dim=None, icomp=None, jcomp=None, viscosity_mu_name="mu", stresslet_vector_name="stresslet_vec"): """ :arg viscosity_mu_name: The argument name to use for dynamic viscosity :math:`\mu` the then generating functions to evaluate this kernel. """ # Mu is unused but kept for consistency with the stokeslet. if dim == 2: d = make_sym_vector("d", dim) n = make_sym_vector(stresslet_vector_name, dim) r = pymbolic_real_norm_2(d) expr = ( sum(n[axis]*d[axis] for axis in range(dim)) * d[icomp]*d[jcomp]/r**4 ) scaling = 1/(var("pi")) elif dim == 3: d = make_sym_vector("d", dim) n = make_sym_vector(stresslet_vector_name, dim) r = pymbolic_real_norm_2(d) expr = ( sum(n[axis]*d[axis] for axis in range(dim)) * d[icomp]*d[jcomp]/r**5 ) scaling = -3/(4*var("pi")) elif dim is None: expr = None scaling = None else: raise RuntimeError("unsupported dimensionality") self.viscosity_mu_name = viscosity_mu_name self.stresslet_vector_name = stresslet_vector_name self.icomp = icomp self.jcomp = jcomp ExpressionKernel.__init__( self, dim, expression=expr, scaling=scaling, is_complex_valued=False)
def handle_alloc(self, gen, arg, kernel_arg, strify, skip_arg_checks): """ Handle allocation of non-specified arguements for pyopencl execution """ from pymbolic import var num_axes = len(arg.strides) for i in range(num_axes): gen("_lpy_shape_%d = %s" % (i, strify(arg.unvec_shape[i]))) itemsize = kernel_arg.dtype.numpy_dtype.itemsize for i in range(num_axes): gen("_lpy_strides_%d = %s" % (i, strify( itemsize*arg.unvec_strides[i]))) if not skip_arg_checks: for i in range(num_axes): gen("assert _lpy_strides_%d > 0, " "\"'%s' has negative stride in axis %d\"" % (i, arg.name, i)) sym_strides = tuple( var("_lpy_strides_%d" % i) for i in range(num_axes)) sym_shape = tuple( var("_lpy_shape_%d" % i) for i in range(num_axes)) alloc_size_expr = (sum(astrd*(alen-1) for alen, astrd in zip(sym_shape, sym_strides)) + itemsize) gen("_lpy_alloc_size = %s" % strify(alloc_size_expr)) gen("%(name)s = _lpy_cl_array.Array(queue, %(shape)s, " "%(dtype)s, strides=%(strides)s, " "data=allocator(_lpy_alloc_size), allocator=allocator)" % dict( name=arg.name, shape=strify(sym_shape), strides=strify(sym_strides), dtype=self.python_dtype_str(kernel_arg.dtype.numpy_dtype))) if not skip_arg_checks: for i in range(num_axes): gen("del _lpy_shape_%d" % i) gen("del _lpy_strides_%d" % i) gen("del _lpy_alloc_size") gen("")
def emit_call_insn(self, insn, target, expression_to_code_mapper): # reorder arguments, e.g. a,c = f(b,d) to f(a,b,c,d) parameters = [] reads = iter(insn.expression.parameters) writes = iter(insn.assignees) for ac in self.access: if ac is READ: parameters.append(next(reads)) else: parameters.append(next(writes)) # pass layer argument if needed for layer in reads: parameters.append(layer) par_dtypes = tuple(expression_to_code_mapper.infer_type(p) for p in parameters) from loopy.expression import dtype_to_type_context from pymbolic.mapper.stringifier import PREC_NONE from pymbolic import var c_parameters = [ expression_to_code_mapper( par, PREC_NONE, dtype_to_type_context(target, par_dtype), par_dtype).expr for par, par_dtype in zip(parameters, par_dtypes)] assignee_is_returned = False return var(self.name_in_target)(*c_parameters), assignee_is_returned
def __init__(self, dim=None): r = pymbolic_real_norm_2(make_sym_vector("d", dim)) if dim == 2: expr = r**2 * var("log")(r) scaling = 1/(8*var("pi")) elif dim == 3: expr = r scaling = 1 # FIXME: Unknown else: raise RuntimeError("unsupported dimensionality") super(BiharmonicKernel, self).__init__( dim, expression=expr, global_scaling_const=scaling, is_complex_valued=False)
def map_ref_diff_op_binding(self, expr): try: return self.expr_to_var[expr] except KeyError: all_diffs = [diff for diff in self.diff_ops if diff.op.equal_except_for_axis(expr.op) and diff.field == expr.field] names = [self.get_var_name() for d in all_diffs] from pytools import single_valued op_class=single_valued(type(d.op) for d in all_diffs) from hedge.optemplate.operators import \ ReferenceQuadratureStiffnessTOperator if isinstance(op_class, ReferenceQuadratureStiffnessTOperator): assign_class = QuadratureDiffBatchAssign else: assign_class = DiffBatchAssign self.code.append( assign_class( names=names, op_class=op_class, operators=[d.op for d in all_diffs], field=self.rec( single_valued(d.field for d in all_diffs)), dep_mapper_factory=self.dep_mapper_factory)) from pymbolic import var for n, d in zip(names, all_diffs): self.expr_to_var[d] = var(n) return self.expr_to_var[expr]
def realize_conditional(self, node, context_cond=None): scope = self.scope_stack[-1] cond_name = intern("loopy_cond%d" % self.condition_id_counter) self.condition_id_counter += 1 assert cond_name not in scope.type_map scope.type_map[cond_name] = np.int32 from pymbolic import var cond_var = var(cond_name) self.add_expression_instruction( cond_var, self.parse_expr(node, node.expr)) cond_expr = cond_var if context_cond is not None: from pymbolic.primitives import LogicalAnd cond_expr = LogicalAnd((cond_var, context_cond)) self.conditions_data.append((context_cond, cond_var)) else: self.conditions_data.append((None, cond_var)) self.conditions.append(cond_expr)
def _compile(self, expression, variables): import pymbolic.primitives as primi self._Expression = expression self._Variables = [primi.make_variable(v) for v in variables] ctx = self.context().copy() try: import numpy except ImportError: pass else: ctx["numpy"] = numpy from pymbolic.mapper.dependency import DependencyMapper used_variables = DependencyMapper( composite_leaves=False)(self._Expression) used_variables -= set(self._Variables) used_variables -= set(pymbolic.var(key) for key in list(ctx.keys())) used_variables = list(used_variables) used_variables.sort() all_variables = self._Variables + used_variables expr_s = CompileMapper()(self._Expression, PREC_NONE) func_s = "lambda %s: %s" % (",".join(str(v) for v in all_variables), expr_s) self._code = eval(func_s, ctx)
def test_kill_trivial_assignments(): from pymbolic import var x, y, t0, t1, t2 = [var(s) for s in "x y t0 t1 t2".split()] assignments = ( ("t0", 6), ("t1", -t0), ("t2", 6*x), ("nt", x**y), # users of trivial assignments ("u0", t0 + 1), ("u1", t1 + 1), ("u2", t2 + 1), ) from sumpy.codegen import kill_trivial_assignments result = kill_trivial_assignments( assignments, retain_names=("u0", "u1", "u2")) from pymbolic.primitives import Sum def _s(*vals): return Sum(vals) assert result == [ ('nt', x**y), ('u0', _s(6, 1)), ('u1', _s(-6, 1)), ('u2', _s(6*x, 1))]
def get_loopy_instructions_as_maxima(kernel, prefix): """Sample use for code comparison:: load("knl-optFalse.mac"); load("knl-optTrue.mac"); vname: bessel_j_8; un_name : concat(''un_, vname); opt_name : concat(''opt_, vname); print(ratsimp(ev(un_name - opt_name))); """ from loopy.preprocess import add_boostability_and_automatic_dependencies kernel = add_boostability_and_automatic_dependencies(kernel) my_variable_names = ( avn for insn in kernel.instructions for avn, _ in insn.assignees_and_indices() ) from pymbolic import var subst_dict = dict( (vn, var(prefix+vn)) for vn in my_variable_names) mstr = MaximaStringifyMapper() from loopy.symbolic import SubstitutionMapper from pymbolic.mapper.substitutor import make_subst_func substitute = SubstitutionMapper(make_subst_func(subst_dict)) result = ["ratprint:false;"] written_insn_ids = set() from loopy.kernel import InstructionBase, ExpressionInstruction def write_insn(insn): if not isinstance(insn, InstructionBase): insn = kernel.id_to_insn[insn] if not isinstance(insn, ExpressionInstruction): raise RuntimeError("non-expression instructions not supported " "in maxima export") for dep in insn.insn_deps: if dep not in written_insn_ids: write_insn(dep) (aname, _), = insn.assignees_and_indices() result.append("%s%s : %s;" % ( prefix, aname, mstr(substitute(insn.expression)))) written_insn_ids.add(insn.id) for insn in kernel.instructions: if insn.id not in written_insn_ids: write_insn(insn) return "\n".join(result)
def get_ge_neutral(dtype): """Return a number y that satisfies (x >= y) for all y.""" if dtype.numpy_dtype.kind == "f": # OpenCL 1.1, section 6.11.2 return -var("INFINITY") elif dtype.numpy_dtype.kind == "i": # OpenCL 1.1, section 6.11.3 if dtype.numpy_dtype.itemsize == 4: #32 bit integer return var("INT_MIN") elif dtype.numpy_dtype.itemsize == 8: #64 bit integer return var('LONG_MIN') else: raise NotImplementedError("less")
def map_flux_exchange(self, expr): try: return self.expr_to_var[expr] except KeyError: from hedge.tools import is_field_equal all_flux_xchgs = [fe for fe in self.flux_exchange_ops if is_field_equal(fe.arg_fields, expr.arg_fields)] assert len(all_flux_xchgs) > 0 from pytools import single_valued names = [self.get_var_name() for d in all_flux_xchgs] self.code.append( FluxExchangeBatchAssign( names=names, indices_and_ranks=[ (fe.index, fe.rank) for fe in all_flux_xchgs], arg_fields=[self.rec(arg_field) for arg_field in fe.arg_fields], dep_mapper_factory=self.dep_mapper_factory)) from pymbolic import var for n, d in zip(names, all_flux_xchgs): self.expr_to_var[d] = var(n) return self.expr_to_var[expr]
def main(): from pytential import sym from pymbolic import var ndomains = 5 k_values = tuple( "k%d" % i for i in range(ndomains)) from pytential.symbolic.pde.scalar import TMDielectric2DBoundaryOperator pde_op = TMDielectric2DBoundaryOperator( k_vacuum=1, interfaces=tuple( (0, i, sym.DEFAULT_SOURCE) for i in range(ndomains) ), domain_k_exprs=k_values, beta=var("beta")) op_unknown_sym = pde_op.make_unknown("unknown") from pytential.symbolic.mappers import GraphvizMapper gvm = GraphvizMapper() gvm(pde_op.operator(op_unknown_sym)) with open("helmholtz-op.dot", "wt") as outf: outf.write(gvm.get_dot_code())
def test_tim2d(ctx_factory): dtype = np.float32 ctx = ctx_factory() order = "C" n = 8 from pymbolic import var K_sym = var("K") field_shape = (K_sym, n, n) # K - run-time symbolic knl = lp.make_kernel(ctx.devices[0], "[K] -> {[i,j,e,m,o,gi]: 0<=i,j,m,o<%d and 0<=e<K and 0<=gi<3}" % n, [ "ur(a,b) := sum_float32(@o, D[a,o]*u[e,o,b])", "us(a,b) := sum_float32(@o, D[b,o]*u[e,a,o])", "lap[e,i,j] = " " sum_float32(m, D[m,i]*(G[0,e,m,j]*ur(m,j) + G[1,e,m,j]*us(m,j)))" "+ sum_float32(m, D[m,j]*(G[1,e,i,m]*ur(i,m) + G[2,e,i,m]*us(i,m)))" ], [ lp.ArrayArg("u", dtype, shape=field_shape, order=order), lp.ArrayArg("lap", dtype, shape=field_shape, order=order), lp.ArrayArg("G", dtype, shape=(3,)+field_shape, order=order), # lp.ConstantArrayArg("D", dtype, shape=(n, n), order=order), lp.ArrayArg("D", dtype, shape=(n, n), order=order), # lp.ImageArg("D", dtype, shape=(n, n)), lp.ValueArg("K", np.int32, approximately=1000), ], name="semlap2D", assumptions="K>=1") unroll = 32 seq_knl = knl knl = lp.add_prefetch(knl, "D", ["m", "j", "i","o"], default_tag="l.auto") knl = lp.add_prefetch(knl, "u", ["i", "j", "o"], default_tag="l.auto") knl = lp.precompute(knl, "ur", np.float32, ["a", "b"], default_tag="l.auto") knl = lp.precompute(knl, "us", np.float32, ["a", "b"], default_tag="l.auto") knl = lp.split_iname(knl, "e", 1, outer_tag="g.0")#, slabs=(0, 1)) knl = lp.tag_inames(knl, dict(i="l.0", j="l.1")) knl = lp.tag_inames(knl, dict(o="unr")) knl = lp.tag_inames(knl, dict(m="unr")) # knl = lp.add_prefetch(knl, "G", [2,3], default_tag=None) # axis/argument indices on G knl = lp.add_prefetch(knl, "G", [2,3], default_tag="l.auto") # axis/argument indices on G kernel_gen = lp.generate_loop_schedules(knl) kernel_gen = lp.check_kernels(kernel_gen, dict(K=1000)) K = 1000 lp.auto_test_vs_ref(seq_knl, ctx, kernel_gen, op_count=K*(n*n*n*2*2 + n*n*2*3 + n**3 * 2*2)/1e9, op_label="GFlops", parameters={"K": K})
def disambiguate_identifiers(statements_a, statements_b, should_disambiguate_name=None): if should_disambiguate_name is None: def should_disambiguate_name(name): # pylint:disable=function-redefined return True from pymbolic.imperative.analysis import get_all_used_identifiers id_a = get_all_used_identifiers(statements_a) id_b = get_all_used_identifiers(statements_b) from pytools import UniqueNameGenerator vng = UniqueNameGenerator(id_a | id_b) from pymbolic import var subst_b = {} for clash in id_a & id_b: if should_disambiguate_name(clash): unclash = vng(clash) subst_b[clash] = var(unclash) from pymbolic.mapper.substitutor import ( make_subst_func, SubstitutionMapper) subst_map = SubstitutionMapper(make_subst_func(subst_b)) statements_b = [ stmt.map_expressions(subst_map) for stmt in statements_b] return statements_b, subst_b
def map_reduction(expr, rec): # Only expand one level of reduction at a time, going from outermost to # innermost. Otherwise we get the (iname + insn) dependencies wrong. from pymbolic import var target_var_name = var_name_gen("acc_"+"_".join(expr.inames)) target_var = var(target_var_name) try: arg_dtype = type_inf_mapper(expr.expr) except DependencyTypeInferenceFailure: raise LoopyError("failed to determine type of accumulator for " "reduction '%s'" % expr) from loopy.kernel.data import ExpressionInstruction, TemporaryVariable new_temporary_variables[target_var_name] = TemporaryVariable( name=target_var_name, shape=(), dtype=expr.operation.result_dtype( kernel.target, arg_dtype, expr.inames), is_local=False) outer_insn_inames = temp_kernel.insn_inames(insn) bad_inames = frozenset(expr.inames) & outer_insn_inames if bad_inames: raise LoopyError("reduction used within loop(s) that it was " "supposed to reduce over: " + ", ".join(bad_inames)) init_id = temp_kernel.make_unique_instruction_id( based_on="%s_%s_init" % (insn.id, "_".join(expr.inames)), extra_used_ids=set(i.id for i in generated_insns)) init_insn = ExpressionInstruction( id=init_id, assignee=target_var, forced_iname_deps=outer_insn_inames - frozenset(expr.inames), insn_deps=frozenset(), expression=expr.operation.neutral_element(arg_dtype, expr.inames)) generated_insns.append(init_insn) update_id = temp_kernel.make_unique_instruction_id( based_on="%s_%s_update" % (insn.id, "_".join(expr.inames)), extra_used_ids=set(i.id for i in generated_insns)) reduction_insn = ExpressionInstruction( id=update_id, assignee=target_var, expression=expr.operation( arg_dtype, target_var, expr.expr, expr.inames), insn_deps=frozenset([init_insn.id]) | insn.insn_deps, forced_iname_deps=temp_kernel.insn_inames(insn) | set(expr.inames)) generated_insns.append(reduction_insn) new_insn_insn_deps.add(reduction_insn.id) return target_var
def map_reduction_seq(expr, rec, nresults, arg_dtype, reduction_dtypes): outer_insn_inames = temp_kernel.insn_inames(insn) from pymbolic import var acc_var_names = [ var_name_gen("acc_"+"_".join(expr.inames)) for i in range(nresults)] acc_vars = tuple(var(n) for n in acc_var_names) from loopy.kernel.data import TemporaryVariable, temp_var_scope for name, dtype in zip(acc_var_names, reduction_dtypes): new_temporary_variables[name] = TemporaryVariable( name=name, shape=(), dtype=dtype, scope=temp_var_scope.PRIVATE) init_id = insn_id_gen( "%s_%s_init" % (insn.id, "_".join(expr.inames))) init_insn = make_assignment( id=init_id, assignees=acc_vars, forced_iname_deps=outer_insn_inames - frozenset(expr.inames), forced_iname_deps_is_final=insn.forced_iname_deps_is_final, depends_on=frozenset(), expression=expr.operation.neutral_element(arg_dtype, expr.inames)) generated_insns.append(init_insn) update_id = insn_id_gen( based_on="%s_%s_update" % (insn.id, "_".join(expr.inames))) update_insn_iname_deps = temp_kernel.insn_inames(insn) | set(expr.inames) if insn.forced_iname_deps_is_final: update_insn_iname_deps = insn.forced_iname_deps | set(expr.inames) reduction_insn = make_assignment( id=update_id, assignees=acc_vars, expression=expr.operation( arg_dtype, acc_vars if len(acc_vars) > 1 else acc_vars[0], expr.expr, expr.inames), depends_on=frozenset([init_insn.id]) | insn.depends_on, forced_iname_deps=update_insn_iname_deps, forced_iname_deps_is_final=insn.forced_iname_deps_is_final) generated_insns.append(reduction_insn) new_insn_add_depends_on.add(reduction_insn.id) if nresults == 1: assert len(acc_vars) == 1 return acc_vars[0] else: return acc_vars
def test_generate_c_snippet(): from pymbolic import var I = var("I") # noqa f = var("f") df = var("df") q_v = var("q_v") eN = var("eN") # noqa k = var("k") u = var("u") from functools import partial l_sum = partial(lp.Reduction, "sum", allow_simultaneous=True) Instr = lp.Assignment # noqa knl = lp.make_kernel("{[I, k]: 0<=I<nSpace and 0<=k<nQuad}", [ Instr(f[I], l_sum(k, q_v[k, I] * u)), Instr(df[I], l_sum(k, q_v[k, I])), ], [ lp.GlobalArg("q_v", np.float64, shape="nQuad, nSpace"), lp.GlobalArg("f,df", np.float64, shape="nSpace"), lp.ValueArg("u", np.float64), "...", ], target=CTarget(), assumptions="nQuad>=1") if 0: # enable to play with prefetching # (prefetch currently requires constant sizes) knl = lp.fix_parameters(knl, nQuad=5, nSpace=3) knl = lp.add_prefetch(knl, "q_v", "k,I", default_tag=None) knl = lp.split_iname(knl, "k", 4, inner_tag="unr", slabs=(0, 1)) knl = lp.prioritize_loops(knl, "I,k_outer,k_inner") knl = lp.preprocess_kernel(knl) knl = lp.get_one_scheduled_kernel(knl) print(lp.generate_body(knl))
def test_basic_assign_rhs_codegen(): """Test whether the code generator generates RHS evaluation code properly.""" cbuild = RawCodeBuilder() cbuild.add_and_get_ids( Assign(id="assign_rhs1", assignee="<state>y", assignee_subscript=(), expression=var("y")(t=var("<t>")), depends_on=[]), Assign(id="assign_rhs2", assignee="<state>y", assignee_subscript=(), expression=var("yy")(t=var("<t>"), y=var("<state>y")), depends_on=["assign_rhs1"]), YieldState(id="return", time=0, time_id="final", expression=var("<state>y"), component_id="<state>", depends_on=["assign_rhs2"])) cbuild.commit() code = create_DAGCode_with_init_and_main_phases( init_statements=[], main_statements=cbuild.statements) codegen = PythonCodeGenerator(class_name="Method") Method = codegen.get_class(code) # noqa def y(t): return 6 def yy(t, y): return y + 6 method = Method({"y": y, "yy": yy}) method.set_up(t_start=0, dt_start=0, context={"y": 0}) hist = [s for s in method.run(max_steps=2)] assert len(hist) == 3 assert isinstance(hist[1], method.StateComputed) assert hist[1].state_component == 12 assert isinstance(hist[2], method.StepCompleted)
def make_spectra_knl(self, is_real, rank_shape): from pymbolic import var, parse indices = i, j, k = parse("i, j, k") momenta = [var("momenta_"+xx) for xx in ("x", "y", "z")] ksq = sum((dk_i * mom[ii])**2 for mom, dk_i, ii in zip(momenta, self.dk, indices)) kmag = var("sqrt")(ksq) bin_expr = var("round")(kmag / self.bin_width) if is_real: from pymbolic.primitives import If, Comparison, LogicalAnd nyq = self.grid_shape[-1] / 2 condition = LogicalAnd((Comparison(momenta[2][k], ">", 0), Comparison(momenta[2][k], "<", nyq))) count = If(condition, 2, 1) else: count = 1 fk = var("fk")[i, j, k] weight_expr = count * kmag**(var("k_power")) * var("abs")(fk)**2 histograms = {"spectrum": (bin_expr, weight_expr)} args = [ lp.GlobalArg("fk", self.cdtype, shape=("Nx", "Ny", "Nz"), offset=lp.auto), lp.GlobalArg("momenta_x", self.rdtype, shape=("Nx",)), lp.GlobalArg("momenta_y", self.rdtype, shape=("Ny",)), lp.GlobalArg("momenta_z", self.rdtype, shape=("Nz",)), lp.ValueArg("k_power", self.rdtype), ... ] from pystella.histogram import Histogrammer return Histogrammer(self.decomp, histograms, self.num_bins, self.rdtype, args=args, rank_shape=rank_shape)
def __init__(self, dim=None, yukawa_lambda_name="lam"): """ :arg yukawa_lambda_name: The argument name to use for the Yukawa parameter when generating functions to evaluate this kernel. """ lam = var(yukawa_lambda_name) if dim == 2: r = pymbolic_real_norm_2(make_sym_vector("d", dim)) # http://dlmf.nist.gov/10.27#E8 expr = var("hankel_1")(0, var("I") * lam * r) scaling_for_K0 = 1 / 2 * var("pi") * var("I") # noqa: N806 scaling = -1 / (2 * var("pi")) * scaling_for_K0 else: raise RuntimeError("unsupported dimensionality") super(YukawaKernel, self).__init__(dim, expression=expr, global_scaling_const=scaling, is_complex_valued=True) self.yukawa_lambda_name = yukawa_lambda_name
def precompute( kernel, subst_use, sweep_inames=[], within=None, storage_axes=None, temporary_name=None, precompute_inames=None, precompute_outer_inames=None, storage_axis_to_tag={}, # "None" is a valid value here, distinct from the default. default_tag=_not_provided, dtype=None, fetch_bounding_box=False, temporary_address_space=None, compute_insn_id=None, **kwargs): """Precompute the expression described in the substitution rule determined by *subst_use* and store it in a temporary array. A precomputation needs two things to operate, a list of *sweep_inames* (order irrelevant) and an ordered list of *storage_axes* (whose order will describe the axis ordering of the temporary array). :arg subst_use: Describes what to prefetch. The following objects may be given for *subst_use*: * The name of the substitution rule. * The tagged name ("name$tag") of the substitution rule. * A list of invocations of the substitution rule. This list of invocations, when swept across *sweep_inames*, then serves to define the footprint of the precomputation. Invocations may be tagged ("name$tag") to filter out a subset of the usage sites of the substitution rule. (Namely those usage sites that use the same tagged name.) Invocations may be given as a string or as a :class:`pymbolic.primitives.Expression` object. If only one invocation is to be given, then the only entry of the list may be given directly. If the list of invocations generating the footprint is not given, all (tag-matching, if desired) usage sites of the substitution rule are used to determine the footprint. The following cases can arise for each sweep axis: * The axis is an iname that occurs within arguments specified at usage sites of the substitution rule. This case is assumed covered by the storage axes provided for the argument. * The axis is an iname that occurs within the *value* of the rule, but not within its arguments. A new, dedicated storage axis is allocated for such an axis. :arg sweep_inames: A :class:`list` of inames to be swept. May also equivalently be a comma-separated string. :arg within: a stack match as understood by :func:`loopy.match.parse_stack_match`. :arg storage_axes: A :class:`list` of inames and/or rule argument names/indices to be used as storage axes. May also equivalently be a comma-separated string. :arg temporary_name: The temporary variable name to use for storing the precomputed data. If it does not exist, it will be created. If it does exist, its properties (such as size, type) are checked (and updated, if possible) to match its use. :arg precompute_inames: A tuple of inames to be used to carry out the precomputation. If the specified inames do not already exist, they will be created. If they do already exist, their loop domain is verified against the one required for this precomputation. This tuple may be shorter than the (provided or automatically found) *storage_axes* tuple, in which case names will be automatically created. May also equivalently be a comma-separated string. :arg precompute_outer_inames: A :class:`frozenset` of inames within which the compute instruction is nested. If *None*, make an educated guess. May also be specified as a comma-separated string. :arg default_tag: The :ref:`iname tag <iname-tags>` to be applied to the inames created to perform the precomputation. The current default will make them local axes and automatically split them to fit the work group size, but this default will disappear in favor of simply leaving them untagged in 2019. For 2018, a warning will be issued if no *default_tag* is specified. :arg compute_insn_id: The ID of the instruction generated to perform the precomputation. If `storage_axes` is not specified, it defaults to the arrangement `<direct sweep axes><arguments>` with the direct sweep axes being the slower-varying indices. Trivial storage axes (i.e. axes of length 1 with respect to the sweep) are eliminated. """ # {{{ unify temporary_address_space / temporary_scope temporary_scope = kwargs.pop("temporary_scope", None) from loopy.kernel.data import AddressSpace if temporary_scope is not None: from warnings import warn warn( "temporary_scope is deprecated. Use temporary_address_space instead", DeprecationWarning, stacklevel=2) if temporary_address_space is not None: raise LoopyError( "may not specify both temporary_address_space and " "temporary_scope") temporary_address_space = temporary_scope del temporary_scope # }}} if kwargs: raise TypeError("unrecognized keyword arguments: %s" % ", ".join(kwargs.keys())) # {{{ check, standardize arguments if isinstance(sweep_inames, str): sweep_inames = [iname.strip() for iname in sweep_inames.split(",")] for iname in sweep_inames: if iname not in kernel.all_inames(): raise RuntimeError("sweep iname '%s' is not a known iname" % iname) sweep_inames = list(sweep_inames) sweep_inames_set = frozenset(sweep_inames) if isinstance(storage_axes, str): storage_axes = [ax.strip() for ax in storage_axes.split(",")] if isinstance(precompute_inames, str): precompute_inames = [ iname.strip() for iname in precompute_inames.split(",") ] if isinstance(precompute_outer_inames, str): precompute_outer_inames = frozenset( iname.strip() for iname in precompute_outer_inames.split(",")) if isinstance(subst_use, str): subst_use = [subst_use] footprint_generators = None subst_name = None subst_tag = None from pymbolic.primitives import Variable, Call from loopy.symbolic import parse, TaggedVariable for use in subst_use: if isinstance(use, str): use = parse(use) if isinstance(use, Call): if footprint_generators is None: footprint_generators = [] footprint_generators.append(use) subst_name_as_expr = use.function else: subst_name_as_expr = use if isinstance(subst_name_as_expr, TaggedVariable): new_subst_name = subst_name_as_expr.name new_subst_tag = subst_name_as_expr.tag elif isinstance(subst_name_as_expr, Variable): new_subst_name = subst_name_as_expr.name new_subst_tag = None else: raise ValueError("unexpected type of subst_name") if (subst_name, subst_tag) == (None, None): subst_name, subst_tag = new_subst_name, new_subst_tag else: if (subst_name, subst_tag) != (new_subst_name, new_subst_tag): raise ValueError("not all uses in subst_use agree " "on rule name and tag") from loopy.match import parse_stack_match within = parse_stack_match(within) try: subst = kernel.substitutions[subst_name] except KeyError: raise LoopyError("substitution rule '%s' not found" % subst_name) c_subst_name = subst_name.replace(".", "_") # {{{ handle default_tag from loopy.transform.data import _not_provided \ as transform_data_not_provided if default_tag is _not_provided or default_tag is transform_data_not_provided: # no need to warn for scalar precomputes if sweep_inames: from warnings import warn warn( "Not specifying default_tag is deprecated, and default_tag " "will become mandatory in 2019.x. " "Pass 'default_tag=\"l.auto\" to match the current default, " "or Pass 'default_tag=None to leave the loops untagged, which " "is the recommended behavior.", DeprecationWarning, stacklevel=( # In this case, we came here through add_prefetch. Increase # the stacklevel. 3 if default_tag is transform_data_not_provided else 2)) default_tag = "l.auto" from loopy.kernel.data import parse_tag default_tag = parse_tag(default_tag) # }}} # }}} # {{{ process invocations in footprint generators, start access_descriptors if footprint_generators: from pymbolic.primitives import Variable, Call access_descriptors = [] for fpg in footprint_generators: if isinstance(fpg, Variable): args = () elif isinstance(fpg, Call): args = fpg.parameters else: raise ValueError("footprint generator must " "be substitution rule invocation") access_descriptors.append( RuleAccessDescriptor(identifier=access_descriptor_id( args, None), args=args)) # }}} # {{{ gather up invocations in kernel code, finish access_descriptors if not footprint_generators: rule_mapping_context = SubstitutionRuleMappingContext( kernel.substitutions, kernel.get_var_name_generator()) invg = RuleInvocationGatherer(rule_mapping_context, kernel, subst_name, subst_tag, within) del rule_mapping_context import loopy as lp for insn in kernel.instructions: if isinstance(insn, lp.MultiAssignmentBase): for assignee in insn.assignees: invg(assignee, kernel, insn) invg(insn.expression, kernel, insn) access_descriptors = invg.access_descriptors if not access_descriptors: raise RuntimeError("no invocations of '%s' found" % subst_name) # }}} # {{{ find inames used in arguments expanding_usage_arg_deps = set() for accdesc in access_descriptors: for arg in accdesc.args: expanding_usage_arg_deps.update( get_dependencies(arg) & kernel.all_inames()) # }}} var_name_gen = kernel.get_var_name_generator() # {{{ use given / find new storage_axes # extra axes made necessary because they don't occur in the arguments extra_storage_axes = set(sweep_inames_set - expanding_usage_arg_deps) from loopy.symbolic import SubstitutionRuleExpander submap = SubstitutionRuleExpander(kernel.substitutions) value_inames = (get_dependencies(submap(subst.expression)) - frozenset(subst.arguments)) & kernel.all_inames() if value_inames - expanding_usage_arg_deps < extra_storage_axes: raise RuntimeError("unreferenced sweep inames specified: " + ", ".join(extra_storage_axes - value_inames - expanding_usage_arg_deps)) new_iname_to_tag = {} if storage_axes is None: storage_axes = [] # Add sweep_inames (in given--rather than arbitrary--order) to # storage_axes *if* they are part of extra_storage_axes. for iname in sweep_inames: if iname in extra_storage_axes: extra_storage_axes.remove(iname) storage_axes.append(iname) if extra_storage_axes: if (precompute_inames is not None and len(storage_axes) < len(precompute_inames)): raise LoopyError( "must specify a sufficient number of " "storage_axes to uniquely determine the meaning " "of the given precompute_inames. (%d storage_axes " "needed)" % len(precompute_inames)) storage_axes.extend(sorted(extra_storage_axes)) storage_axes.extend(range(len(subst.arguments))) del extra_storage_axes prior_storage_axis_name_dict = {} storage_axis_names = [] storage_axis_sources = [] # number for arg#, or iname # {{{ check for pre-existing precompute_inames if precompute_inames is not None: preexisting_precompute_inames = (set(precompute_inames) & kernel.all_inames()) else: preexisting_precompute_inames = set() # }}} for i, saxis in enumerate(storage_axes): tag_lookup_saxis = saxis if saxis in subst.arguments: saxis = subst.arguments.index(saxis) storage_axis_sources.append(saxis) if isinstance(saxis, int): # argument index name = old_name = subst.arguments[saxis] else: old_name = saxis name = "%s_%s" % (c_subst_name, old_name) if (precompute_inames is not None and i < len(precompute_inames) and precompute_inames[i]): name = precompute_inames[i] tag_lookup_saxis = name if (name not in preexisting_precompute_inames and var_name_gen.is_name_conflicting(name)): raise RuntimeError("new storage axis name '%s' " "conflicts with existing name" % name) else: name = var_name_gen(name) storage_axis_names.append(name) if name not in preexisting_precompute_inames: new_iname_to_tag[name] = storage_axis_to_tag.get( tag_lookup_saxis, default_tag) prior_storage_axis_name_dict[name] = old_name del storage_axis_to_tag del storage_axes del precompute_inames # }}} # {{{ fill out access_descriptors[...].storage_axis_exprs access_descriptors = [ accdesc.copy(storage_axis_exprs=storage_axis_exprs( storage_axis_sources, accdesc.args)) for accdesc in access_descriptors ] # }}} expanding_inames = sweep_inames_set | frozenset(expanding_usage_arg_deps) assert expanding_inames <= kernel.all_inames() if storage_axis_names: # {{{ find domain to be changed change_inames = expanding_inames | preexisting_precompute_inames from loopy.kernel.tools import DomainChanger domch = DomainChanger(kernel, change_inames) if domch.leaf_domain_index is not None: # If the sweep inames are at home in parent domains, then we'll add # fetches with loops over copies of these parent inames that will end # up being scheduled *within* loops over these parents. for iname in sweep_inames_set: if kernel.get_home_domain_index( iname) != domch.leaf_domain_index: raise RuntimeError( "sweep iname '%s' is not 'at home' in the " "sweep's leaf domain" % iname) # }}} abm = ArrayToBufferMap(kernel, domch.domain, sweep_inames, access_descriptors, len(storage_axis_names)) non1_storage_axis_names = [] for i, saxis in enumerate(storage_axis_names): if abm.non1_storage_axis_flags[i]: non1_storage_axis_names.append(saxis) else: del new_iname_to_tag[saxis] if saxis in preexisting_precompute_inames: raise LoopyError( "precompute axis %d (1-based) was " "eliminated as " "having length 1 but also mapped to existing " "iname '%s'" % (i + 1, saxis)) mod_domain = domch.domain # {{{ modify the domain, taking into account preexisting inames # inames may already exist in mod_domain, add them primed to start primed_non1_saxis_names = [ iname + "'" for iname in non1_storage_axis_names ] mod_domain = abm.augment_domain_with_sweep( domch.domain, primed_non1_saxis_names, boxify_sweep=fetch_bounding_box) check_domain = mod_domain for i, saxis in enumerate(non1_storage_axis_names): var_dict = mod_domain.get_var_dict(isl.dim_type.set) if saxis in preexisting_precompute_inames: # add equality constraint between existing and new variable dt, dim_idx = var_dict[saxis] saxis_aff = isl.Aff.var_on_domain(mod_domain.space, dt, dim_idx) dt, dim_idx = var_dict[primed_non1_saxis_names[i]] new_var_aff = isl.Aff.var_on_domain(mod_domain.space, dt, dim_idx) mod_domain = mod_domain.add_constraint( isl.Constraint.equality_from_aff(new_var_aff - saxis_aff)) # project out the new one mod_domain = mod_domain.project_out(dt, dim_idx, 1) else: # remove the prime from the new variable dt, dim_idx = var_dict[primed_non1_saxis_names[i]] mod_domain = mod_domain.set_dim_name(dt, dim_idx, saxis) def add_assumptions(d): assumption_non_param = isl.BasicSet.from_params(kernel.assumptions) assumptions, domain = isl.align_two(assumption_non_param, d) return assumptions & domain # {{{ check that we got the desired domain check_domain = add_assumptions( check_domain.project_out_except(primed_non1_saxis_names, [isl.dim_type.set])) mod_check_domain = add_assumptions(mod_domain) # re-add the prime from the new variable var_dict = mod_check_domain.get_var_dict(isl.dim_type.set) for saxis in non1_storage_axis_names: dt, dim_idx = var_dict[saxis] mod_check_domain = mod_check_domain.set_dim_name( dt, dim_idx, saxis + "'") mod_check_domain = mod_check_domain.project_out_except( primed_non1_saxis_names, [isl.dim_type.set]) mod_check_domain, check_domain = isl.align_two(mod_check_domain, check_domain) # The modified domain can't get bigger by adding constraints assert mod_check_domain <= check_domain if not check_domain <= mod_check_domain: print(check_domain) print(mod_check_domain) raise LoopyError("domain of preexisting inames does not match " "domain needed for precompute") # }}} # {{{ check that we didn't shrink the original domain # project out the new names from the modified domain orig_domain_inames = list(domch.domain.get_var_dict(isl.dim_type.set)) mod_check_domain = add_assumptions( mod_domain.project_out_except(orig_domain_inames, [isl.dim_type.set])) check_domain = add_assumptions(domch.domain) mod_check_domain, check_domain = isl.align_two(mod_check_domain, check_domain) # The modified domain can't get bigger by adding constraints assert mod_check_domain <= check_domain if not check_domain <= mod_check_domain: print(check_domain) print(mod_check_domain) raise LoopyError( "original domain got shrunk by applying the precompute") # }}} # }}} new_kernel_domains = domch.get_domains_with(mod_domain) else: # leave kernel domains unchanged new_kernel_domains = kernel.domains non1_storage_axis_names = [] abm = NoOpArrayToBufferMap() kernel = kernel.copy(domains=new_kernel_domains) # {{{ set up compute insn if temporary_name is None: temporary_name = var_name_gen(based_on=c_subst_name) assignee = var(temporary_name) if non1_storage_axis_names: assignee = assignee[tuple( var(iname) for iname in non1_storage_axis_names)] # {{{ process substitutions on compute instruction storage_axis_subst_dict = {} for arg_name, bi in zip(storage_axis_names, abm.storage_base_indices): if arg_name in non1_storage_axis_names: arg = var(arg_name) else: arg = 0 storage_axis_subst_dict[prior_storage_axis_name_dict.get( arg_name, arg_name)] = arg + bi rule_mapping_context = SubstitutionRuleMappingContext( kernel.substitutions, kernel.get_var_name_generator()) from loopy.match import parse_stack_match expr_subst_map = RuleAwareSubstitutionMapper( rule_mapping_context, make_subst_func(storage_axis_subst_dict), within=parse_stack_match(None)) compute_expression = expr_subst_map(subst.expression, kernel, None) # }}} from loopy.kernel.data import Assignment if compute_insn_id is None: compute_insn_id = kernel.make_unique_instruction_id( based_on=c_subst_name) compute_insn = Assignment( id=compute_insn_id, assignee=assignee, expression=compute_expression, # within_inames determined below ) compute_dep_id = compute_insn_id added_compute_insns = [compute_insn] if temporary_address_space == AddressSpace.GLOBAL: barrier_insn_id = kernel.make_unique_instruction_id( based_on=c_subst_name + "_barrier") from loopy.kernel.instruction import BarrierInstruction barrier_insn = BarrierInstruction(id=barrier_insn_id, depends_on=frozenset( [compute_insn_id]), synchronization_kind="global", mem_kind="global") compute_dep_id = barrier_insn_id added_compute_insns.append(barrier_insn) # }}} # {{{ substitute rule into expressions in kernel (if within footprint) from loopy.symbolic import SubstitutionRuleExpander expander = SubstitutionRuleExpander(kernel.substitutions) invr = RuleInvocationReplacer(rule_mapping_context, subst_name, subst_tag, within, access_descriptors, abm, storage_axis_names, storage_axis_sources, non1_storage_axis_names, temporary_name, compute_insn_id, compute_dep_id, compute_read_variables=get_dependencies( expander(compute_expression))) kernel = invr.map_kernel(kernel) kernel = kernel.copy(instructions=added_compute_insns + kernel.instructions) kernel = rule_mapping_context.finish_kernel(kernel) # }}} # {{{ add dependencies to compute insn kernel = kernel.copy(instructions=[ insn.copy(depends_on=frozenset(invr.compute_insn_depends_on)) if insn. id == compute_insn_id else insn for insn in kernel.instructions ]) # }}} # {{{ propagate storage iname subst to dependencies of compute instructions from loopy.kernel.tools import find_recursive_dependencies compute_deps = find_recursive_dependencies(kernel, frozenset([compute_insn_id])) # FIXME: Need to verify that there are no outside dependencies # on compute_deps prior_storage_axis_names = frozenset(storage_axis_subst_dict) new_insns = [] for insn in kernel.instructions: if (insn.id in compute_deps and insn.within_inames & prior_storage_axis_names): insn = (insn.with_transformed_expressions( lambda expr: expr_subst_map(expr, kernel, insn)).copy( within_inames=frozenset( storage_axis_subst_dict.get(iname, var(iname)).name for iname in insn.within_inames))) new_insns.append(insn) else: new_insns.append(insn) kernel = kernel.copy(instructions=new_insns) # }}} # {{{ determine inames for compute insn if precompute_outer_inames is None: from loopy.kernel.tools import guess_iname_deps_based_on_var_use precompute_outer_inames = ( frozenset(non1_storage_axis_names) | frozenset((expanding_usage_arg_deps | value_inames) - sweep_inames_set) | guess_iname_deps_based_on_var_use(kernel, compute_insn)) else: if not isinstance(precompute_outer_inames, frozenset): raise TypeError("precompute_outer_inames must be a frozenset") precompute_outer_inames = precompute_outer_inames \ | frozenset(non1_storage_axis_names) kernel = kernel.copy(instructions=[ insn.copy(within_inames=precompute_outer_inames) if insn.id == compute_insn_id else insn for insn in kernel.instructions ]) # }}} # {{{ set up temp variable import loopy as lp if dtype is not None: dtype = np.dtype(dtype) if temporary_address_space is None: temporary_address_space = lp.auto new_temp_shape = tuple(abm.non1_storage_shape) new_temporary_variables = kernel.temporary_variables.copy() if temporary_name not in new_temporary_variables: temp_var = lp.TemporaryVariable( name=temporary_name, dtype=dtype, base_indices=(0, ) * len(new_temp_shape), shape=tuple(abm.non1_storage_shape), address_space=temporary_address_space, dim_names=tuple(non1_storage_axis_names)) else: temp_var = new_temporary_variables[temporary_name] # {{{ check and adapt existing temporary if temp_var.dtype is lp.auto: pass elif temp_var.dtype is not lp.auto and dtype is lp.auto: dtype = temp_var.dtype elif temp_var.dtype is not lp.auto and dtype is not lp.auto: if temp_var.dtype != dtype: raise LoopyError("Existing and new dtype of temporary '%s' " "do not match (existing: %s, new: %s)" % (temporary_name, temp_var.dtype, dtype)) temp_var = temp_var.copy(dtype=dtype) if len(temp_var.shape) != len(new_temp_shape): raise LoopyError( "Existing and new temporary '%s' do not " "have matching number of dimensions ('%d' vs. '%d') " % (temporary_name, len(temp_var.shape), len(new_temp_shape))) if temp_var.base_indices != (0, ) * len(new_temp_shape): raise LoopyError( "Existing and new temporary '%s' do not " "have matching number of dimensions ('%d' vs. '%d') " % (temporary_name, len(temp_var.shape), len(new_temp_shape))) new_temp_shape = tuple( max(i, ex_i) for i, ex_i in zip(new_temp_shape, temp_var.shape)) temp_var = temp_var.copy(shape=new_temp_shape) if temporary_address_space == temp_var.address_space: pass elif temporary_address_space is lp.auto: temporary_address_space = temp_var.address_space elif temp_var.address_space is lp.auto: pass else: raise LoopyError("Existing and new temporary '%s' do not " "have matching scopes (existing: %s, new: %s)" % (temporary_name, AddressSpace.stringify(temp_var.address_space), AddressSpace.stringify(temporary_address_space))) temp_var = temp_var.copy(address_space=temporary_address_space) # }}} new_temporary_variables[temporary_name] = temp_var kernel = kernel.copy(temporary_variables=new_temporary_variables) # }}} from loopy import tag_inames kernel = tag_inames(kernel, new_iname_to_tag) from loopy.kernel.data import AutoFitLocalIndexTag, filter_iname_tags_by_type if filter_iname_tags_by_type(new_iname_to_tag.values(), AutoFitLocalIndexTag): from loopy.kernel.tools import assign_automatic_axes kernel = assign_automatic_axes(kernel) return kernel
def test_expand(): from pymbolic import var, expand x = var("x") u = (x + 1)**5 expand(u)
def test_tim3d(ctx_factory): dtype = np.float32 ctx = ctx_factory() order = "C" n = 8 from pymbolic import var K_sym = var("K") field_shape = (K_sym, n, n, n) # K - run-time symbolic knl = lp.make_kernel( ctx.devices[0], "[K] -> {[i,j,k,e,m,o,gi]: 0<=i,j,k,m,o<%d and 0<=e<K and 0<=gi<6}" % n, [ "ur(a,b,c) := sum_float32(@o, D[a,o]*u[e,o,b,c])", "us(a,b,c) := sum_float32(@o, D[b,o]*u[e,a,o,c])", "ut(a,b,c) := sum_float32(@o, D[c,o]*u[e,a,b,o])", "lap[e,i,j,k] = " " sum_float32(m, D[m,i]*(G[0,e,m,j,k]*ur(m,j,k) + G[1,e,m,j,k]*us(m,j,k) + G[2,e,m,j,k]*ut(m,j,k)))" " + sum_float32(m, D[m,j]*(G[1,e,i,m,k]*ur(i,m,k) + G[3,e,i,m,k]*us(i,m,k) + G[4,e,i,m,k]*ut(i,m,k)))" " + sum_float32(m, D[m,k]*(G[2,e,i,j,m]*ur(i,j,m) + G[4,e,i,j,m]*us(i,j,m) + G[5,e,i,j,m]*ut(i,j,m)))" ], [ lp.ArrayArg("u", dtype, shape=field_shape, order=order), lp.ArrayArg("lap", dtype, shape=field_shape, order=order), lp.ArrayArg("G", dtype, shape=(6, ) + field_shape, order=order), # lp.ConstantArrayArg("D", dtype, shape=(n, n), order=order), lp.ArrayArg("D", dtype, shape=(n, n), order=order), # lp.ImageArg("D", dtype, shape=(n, n)), lp.ValueArg("K", np.int32, approximately=1000), ], name="semlap3D", assumptions="K>=1") seq_knl = knl knl = lp.add_prefetch(knl, "D", ["m", "j", "i", "k", "o"]) knl = lp.add_prefetch(knl, "u", ["i", "j", "o", "k"]) knl = lp.precompute(knl, "ur", np.float32, ["a", "b", "c"]) knl = lp.precompute(knl, "us", np.float32, ["a", "b", "c"]) knl = lp.precompute(knl, "ut", np.float32, ["a", "b", "c"]) knl = lp.split_iname(knl, "e", 1, outer_tag="g.0") #, slabs=(0, 1)) knl = lp.split_iname(knl, "k", n, inner_tag="l.2") #, slabs=(0, 1)) knl = lp.split_iname(knl, "j", n, inner_tag="l.1") #, slabs=(0, 1)) knl = lp.split_iname(knl, "i", n, inner_tag="l.0") #, slabs=(0, 1)) # knl = lp.tag_inames(knl, dict(k_nner="unr")) knl = lp.tag_inames(knl, dict(o="unr")) knl = lp.tag_inames(knl, dict(m="unr")) # knl = lp.tag_inames(knl, dict(i="unr")) knl = lp.add_prefetch(knl, "G", [2, 3, 4]) # axis/argument indices on G kernel_gen = lp.generate_loop_schedules(knl) kernel_gen = lp.check_kernels(kernel_gen, dict(K=1000)) K = 4000 lp.auto_test_vs_ref(seq_knl, ctx, kernel_gen, op_count=K * ((n**4) * 3 * 2 + (n**3) * 5 * 3 + (n**4) * 3 * 2) / 1e9, op_label="GFlops", parameters={"K": K})
def __init__(self, iname_exprs, code, read_variables=frozenset(), assignees=tuple(), id=None, depends_on=None, depends_on_is_final=None, groups=None, conflicts_with_groups=None, no_sync_with=None, within_inames_is_final=None, within_inames=None, priority=0, boostable=None, boostable_into=None, predicates=frozenset(), tags=None, insn_deps=None, insn_deps_is_final=None): """ :arg iname_exprs: Like :attr:`iname_exprs`, but instead of tuples, simple strings pepresenting inames are also allowed. A single string is also allowed, which should consists of comma-separated inames. :arg assignees: Like :attr:`assignees`, but may also be a semicolon-separated string of such expressions or a sequence of strings parseable into the desired format. """ InstructionBase.__init__(self, id=id, depends_on=depends_on, depends_on_is_final=depends_on_is_final, groups=groups, conflicts_with_groups=conflicts_with_groups, no_sync_with=no_sync_with, within_inames_is_final=within_inames_is_final, within_inames=within_inames, boostable=boostable, boostable_into=boostable_into, priority=priority, predicates=predicates, tags=tags, insn_deps=insn_deps, insn_deps_is_final=insn_deps_is_final) # {{{ normalize iname_exprs if isinstance(iname_exprs, str): iname_exprs = [i.strip() for i in iname_exprs.split(",")] iname_exprs = [i for i in iname_exprs if i] from pymbolic import var new_iname_exprs = [] for i in iname_exprs: if isinstance(i, str): new_iname_exprs.append((i, var(i))) else: new_iname_exprs.append(i) # }}} # {{{ normalize assignees if isinstance(assignees, str): assignees = [i.strip() for i in assignees.split(";")] assignees = [i for i in assignees if i] new_assignees = [] from loopy.symbolic import parse for i in assignees: if isinstance(i, str): new_assignees.append(parse(i)) else: new_assignees.append(i) # }}} self.iname_exprs = new_iname_exprs from loopy.tools import remove_common_indentation self.code = remove_common_indentation(code) self.read_variables = read_variables self.assignees = new_assignees
def test_euler_dt_var(self): self._test_scheme(EulerStep(pm.var('dt')))
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ from pymbolic import parse, var from pymbolic.mapper.dependency import DependencyMapper x = var("x") y = var("y") expr2 = 3 * x + 5 - y expr = parse("3*x+5-y") print(expr) print(expr2) dm = DependencyMapper() print(dm(expr))
def __init__(self, fft, dk): self.fft = fft grid_size = fft.grid_shape[0] * fft.grid_shape[1] * fft.grid_shape[2] queue = self.fft.sub_k["momenta_x"].queue sub_k = list(x.get().astype("int") for x in self.fft.sub_k.values()) k_names = ("k_x", "k_y", "k_z") self.momenta = {} for mu, (name, kk) in enumerate(zip(k_names, sub_k)): kk_mu = dk[mu] * kk.astype(fft.rdtype) self.momenta[name + "_2"] = cla.to_device(queue, kk_mu) # zero Nyquist mode for first derivatives kk_mu[abs(sub_k[mu]) == fft.grid_shape[mu] // 2] = 0. kk_mu[sub_k[mu] == 0] = 0. self.momenta[name + "_1"] = cla.to_device(queue, kk_mu) args = [ lp.GlobalArg("fk", shape="(Nx, Ny, Nz)"), lp.GlobalArg("k_x_1, k_x_2", fft.rdtype, shape=("Nx", )), lp.GlobalArg("k_y_1, k_y_2", fft.rdtype, shape=("Ny", )), lp.GlobalArg("k_z_1, k_z_2", fft.rdtype, shape=("Nz", )), ] from pystella.field import Field fk = Field("fk") pd = tuple(Field(pdi) for pdi in ("pdx_k", "pdy_k", "pdz_k")) indices = fk.indices from pymbolic import var mom_vars = tuple(var(name + "_1") for name in k_names) fk_tmp = var("fk_tmp") tmp_insns = [(fk_tmp, fk * (1 / grid_size))] pdx, pdy, pdz = ({ pdi: kk_i[indices[i]] * 1j * fk_tmp } for i, (pdi, kk_i) in enumerate(zip(pd, mom_vars))) pdx_incr, pdy_incr, pdz_incr = ({ Field("div"): Field("div") + kk_i[indices[i]] * 1j * fk_tmp } for i, kk_i in enumerate(mom_vars)) mom_vars = tuple(var(name + "_2") for name in k_names) kmag_sq = sum(kk_i[x_i]**2 for kk_i, x_i in zip(mom_vars, indices)) lap = {Field("lap_k"): -kmag_sq * fk_tmp} from pystella.elementwise import ElementWiseMap common_args = dict(halo_shape=0, args=args, lsize=(16, 2, 1), tmp_instructions=tmp_insns, options=lp.Options(return_dict=True)) self.pdx_knl = ElementWiseMap(pdx, **common_args) self.pdy_knl = ElementWiseMap(pdy, **common_args) self.pdz_knl = ElementWiseMap(pdz, **common_args) self.pdx_incr_knl = ElementWiseMap(pdx_incr, **common_args) self.pdy_incr_knl = ElementWiseMap(pdy_incr, **common_args) self.pdz_incr_knl = ElementWiseMap(pdz_incr, **common_args) self.lap_knl = ElementWiseMap(lap, **common_args) common_args["lsize"] = (16, 1, 1) self.grad_knl = ElementWiseMap({**pdx, **pdy, **pdz}, **common_args) self.grad_lap_knl = ElementWiseMap({ **pdx, **pdy, **pdz, **lap }, **common_args)
def RestrictionBase(coefs, StencilKernel, halo_shape, **kwargs): """ A base function for generating a restriction kernel. :arg coefs: The coefficients representing the restriction formula. Follows the convention of :func:`pystella.derivs.centered_diff` (since the restriction is applied recursively in each dimension). :arg StencilKernel: The stencil mapper to create an instance of. Defaults to :class:`~pystella.Stencil`. :arg halo_shape: The number of halo layers on (both sides of) each axis of the computational grid. Currently must be an :class:`int`. :arg lsize: The shape of prefetched arrays in shared memory. See :class:`~pystella.ElementWiseMap`. Defaults to ``(4, 4, 4)``. :arg correct: A :class:`bool` determining whether to produce a kernel which corrects an output array by the restricted array, or to only perform strict restriction. Defaults to *False*. :returns: An instance of ``StencilKernel`` which executes the requested restriction. """ lsize = kwargs.pop("lsize", (4, 4, 4)) # ensure grid dimensions are *not* passed, as they will be misinterpreted for N in ["Nx", "Ny", "Nz"]: _ = kwargs.pop(N, None) restrict_coefs = {} for a, c_a in coefs.items(): for b, c_b in coefs.items(): for c, c_c in coefs.items(): restrict_coefs[(a, b, c)] = c_a * c_b * c_c from pymbolic import parse, var i, j, k = parse("i, j, k") f1 = Field("f1", offset="h", indices=(2 * i, 2 * j, 2 * k)) f2 = Field("f2", offset="h") tmp = var("tmp") tmp_dict = {tmp: expand_stencil(f1, restrict_coefs)} if kwargs.pop("correct", False): restrict_dict = {f2: f2 - tmp} else: restrict_dict = {f2: tmp} args = [ lp.GlobalArg("f1", shape="(2*Nx+2*h, 2*Ny+2*h, 2*Nz+2*h)"), lp.GlobalArg("f2", shape="(Nx+2*h, Ny+2*h, Nz+2*h)") ] if isinstance(StencilKernel, Stencil): return StencilKernel(restrict_dict, tmp_instructions=tmp_dict, args=args, prefetch_args=["f1"], halo_shape=halo_shape, lsize=lsize, **kwargs) else: return StencilKernel(restrict_dict, tmp_instructions=tmp_dict, args=args, halo_shape=halo_shape, lsize=lsize, **kwargs)
def InterpolationBase(even_coefs, odd_coefs, StencilKernel, halo_shape, **kwargs): """ A base function for generating a restriction kernel. :arg even_coefs: The coefficients representing the interpolation formula for gridpoints on the coarse and fine grid which coincide in space. Follows the convention of :func:`pystella.derivs.centered_diff` (since the restriction is applied recursively in each dimension). :arg odd_coefs: Same as ``even_coefs``, but for points on the fine grid which lie between points on the coarse grid. :arg StencilKernel: The stencil mapper to create an instance of. Defaults to :class:`~pystella.Stencil`. :arg halo_shape: The number of halo layers on (both sides of) each axis of the computational grid. Currently must be an :class:`int`. :arg correct: A :class:`bool` determining whether to produce a kernel which corrects an output array by the interpolated array, or to only perform strict interpolation. Defaults to *False*. :returns: An instance of ``StencilKernel`` which executes the requested interpolation. """ from pymbolic import parse, var i, j, k = parse("i, j, k") f1 = Field("f1", offset="h") tmp_insns = {} tmp = var("tmp") import itertools for parity in tuple(itertools.product((0, 1), (0, 1), (0, 1))): result = 0 for a, c_a in odd_coefs.items() if parity[0] else even_coefs.items(): for b, c_b in odd_coefs.items() if parity[1] else even_coefs.items( ): for c, c_c in odd_coefs.items( ) if parity[2] else even_coefs.items(): f2 = Field("f2", offset="h", indices=((i + a) // 2, (j + b) // 2, (k + c) // 2)) result += c_a * c_b * c_c * f2 tmp_insns[tmp[parity]] = result from pymbolic.primitives import Remainder a, b, c = (Remainder(ind, 2) for ind in (i, j, k)) if kwargs.pop("correct", False): interp_dict = {f1: f1 + tmp[a, b, c]} else: interp_dict = {f1: tmp[a, b, c]} args = [ lp.GlobalArg("f1", shape="(Nx+2*h, Ny+2*h, Nz+2*h)"), lp.GlobalArg("f2", shape="(Nx//2+2*h, Ny//2+2*h, Nz//2+2*h)") ] return StencilKernel(interp_dict, tmp_instructions=tmp_insns, args=args, prefetch_args=["f2"], halo_shape=halo_shape, **kwargs)
def get_access_info(target, ary, index, eval_expr, vectorization_info): """ :arg ary: an object of type :class:`ArrayBase` :arg index: a tuple of indices representing a subscript into ary :arg vectorization_info: an instance of :class:`loopy.codegen.VectorizationInfo`, or *None*. """ import loopy as lp from pymbolic import var def eval_expr_assert_integer_constant(i, expr): from pymbolic.mapper.evaluator import UnknownVariableError try: result = eval_expr(expr) except UnknownVariableError as e: raise LoopyError( "When trying to index the array '%s' along axis " "%d (tagged '%s'), the index was not a compile-time " "constant (but it has to be in order for code to be " "generated). You likely want to unroll the iname(s) '%s'." % (ary.name, i, ary.dim_tags[i], str(e))) if not is_integer(result): raise LoopyError("subscript '%s[%s]' has non-constant " "index for separate-array axis %d (0-based)" % (ary.name, index, i)) return result def apply_offset(sub): import loopy as lp if ary.offset: if ary.offset is lp.auto: return var(array_name + "_offset") + sub elif isinstance(ary.offset, str): return var(ary.offset) + sub else: # assume it's an expression return ary.offset + sub else: return sub if not isinstance(index, tuple): index = (index, ) array_name = ary.name if ary.dim_tags is None: if len(index) != 1: raise LoopyError( "Array '%s' has no known axis implementation " "tags and therefore only supports one-dimensional " "indexing. (Did you mean 'shape=loopy.auto' instead of " "'shape=None'?)" % ary.name) return AccessInfo(array_name=array_name, subscripts=(apply_offset(index[0]), ), vector_index=None) if len(ary.dim_tags) != len(index): raise LoopyError("subscript to '%s[%s]' has the wrong " "number of indices (got: %d, expected: %d)" % (ary.name, index, len(index), len(ary.dim_tags))) num_target_axes = ary.num_target_axes() vector_index = None subscripts = [0] * num_target_axes vector_size = ary.vector_size(target) # {{{ process separate-array dim tags first, to find array name for i, (idx, dim_tag) in enumerate(zip(index, ary.dim_tags)): if isinstance(dim_tag, SeparateArrayArrayDimTag): idx = eval_expr_assert_integer_constant(i, idx) array_name += "_s%d" % idx # }}} # {{{ process remaining dim tags for i, (idx, dim_tag) in enumerate(zip(index, ary.dim_tags)): if isinstance(dim_tag, FixedStrideArrayDimTag): stride = dim_tag.stride if is_integer(stride): if not dim_tag.stride % vector_size == 0: raise LoopyError( "array '%s' has axis %d stride of " "%d, which is not divisible by the size of the " "vector (%d)" % (ary.name, i, dim_tag.stride, vector_size)) elif stride is lp.auto: stride = var(array_name + "_stride%d" % i) subscripts[dim_tag.target_axis] += (stride // vector_size) * idx elif isinstance(dim_tag, SeparateArrayArrayDimTag): pass elif isinstance(dim_tag, VectorArrayDimTag): from pymbolic.primitives import Variable if (vectorization_info is not None and isinstance(index[i], Variable) and index[i].name == vectorization_info.iname): # We'll do absolutely nothing here, which will result # in the vector being returned. pass else: idx = eval_expr_assert_integer_constant(i, idx) assert vector_index is None vector_index = idx else: raise LoopyError("unsupported array dim implementation tag '%s' " "in array '%s'" % (dim_tag, ary.name)) # }}} from pymbolic import var import loopy as lp if ary.offset: if num_target_axes > 1: raise NotImplementedError("offsets for multiple image axes") subscripts[0] = apply_offset(subscripts[0]) return AccessInfo(array_name=array_name, vector_index=vector_index, subscripts=subscripts)
def gen_decls(name_suffix, shape, strides, unvec_shape, unvec_strides, stride_arg_axes, dtype, user_index): """ :arg unvec_shape: shape tuple that accounts for :class:`loopy.kernel.array.VectorArrayDimTag` in a scalar manner :arg unvec_strides: strides tuple that accounts for :class:`loopy.kernel.array.VectorArrayDimTag` in a scalar manner :arg stride_arg_axes: a tuple *(user_axis, impl_axis, unvec_impl_axis)* :arg user_index: A tuple representing a (user-facing) multi-dimensional subscript. This is filled in with concrete integers when known (such as for separate-array dim tags), and with *None* where the index won't be known until run time. """ if dtype is None: dtype = self.dtype user_axis = len(user_index) num_user_axes = self.num_user_axes(require_answer=False) if num_user_axes is None or user_axis >= num_user_axes: # {{{ recursion base case full_name = self.name + name_suffix stride_args = [] strides = list(strides) unvec_strides = list(unvec_strides) # generate stride arguments, yielded later to keep array first for stride_user_axis, stride_impl_axis, stride_unvec_impl_axis \ in stride_arg_axes: stride_name = full_name + "_stride%d" % stride_user_axis from pymbolic import var strides[stride_impl_axis] = \ unvec_strides[stride_unvec_impl_axis] = \ var(stride_name) stride_args.append( ImplementedDataInfo( target=target, name=stride_name, dtype=index_dtype, arg_class=ValueArg, stride_for_name_and_axis=(full_name, stride_impl_axis), is_written=False)) yield ImplementedDataInfo(target=target, name=full_name, base_name=self.name, arg_class=type(self), dtype=dtype, shape=shape, strides=tuple(strides), unvec_shape=unvec_shape, unvec_strides=tuple(unvec_strides), allows_offset=bool(self.offset), is_written=is_written) import loopy as lp if self.offset is lp.auto: offset_name = full_name + "_offset" yield ImplementedDataInfo(target=target, name=offset_name, dtype=index_dtype, arg_class=ValueArg, offset_for_name=full_name, is_written=False) yield from stride_args # }}} return dim_tag = self.dim_tags[user_axis] if isinstance(dim_tag, FixedStrideArrayDimTag): if array_shape is None: new_shape_axis = None else: new_shape_axis = array_shape[user_axis] import loopy as lp if dim_tag.stride is lp.auto: new_stride_arg_axes = stride_arg_axes \ + ((user_axis, len(strides), len(unvec_strides)),) # repaired above when final array name is known # (and stride argument is created) new_stride_axis = None else: new_stride_arg_axes = stride_arg_axes new_stride_axis = dim_tag.stride yield from gen_decls(name_suffix, shape + (new_shape_axis, ), strides + (new_stride_axis, ), unvec_shape + (new_shape_axis, ), unvec_strides + (new_stride_axis, ), new_stride_arg_axes, dtype, user_index + (None, )) elif isinstance(dim_tag, SeparateArrayArrayDimTag): shape_i = array_shape[user_axis] if not is_integer(shape_i): raise LoopyError("shape of '%s' has non-constant " "integer axis %d (0-based)" % (self.name, user_axis)) for i in range(shape_i): yield from gen_decls(name_suffix + "_s%d" % i, shape, strides, unvec_shape, unvec_strides, stride_arg_axes, dtype, user_index + (i, )) elif isinstance(dim_tag, VectorArrayDimTag): shape_i = array_shape[user_axis] if not is_integer(shape_i): raise LoopyError("shape of '%s' has non-constant " "integer axis %d (0-based)" % (self.name, user_axis)) yield from gen_decls( name_suffix, shape, strides, unvec_shape + (shape_i, ), # vectors always have stride 1 unvec_strides + (1, ), stride_arg_axes, target.vector_dtype(dtype, shape_i), user_index + (None, )) else: raise LoopyError( "unsupported array dim implementation tag '%s' " "in array '%s'" % (dim_tag, self.name))
def _indices_for_axis_permutation(self, expr: AxisPermutation) -> SymbolicIndex: indices = [None] * expr.ndim for from_index, to_index in enumerate(expr.axis_permutation): indices[to_index] = var(f"_{from_index}") return tuple(indices)
def test_aff_to_expr_2(): from loopy.symbolic import aff_to_expr x = isl.Aff("[n] -> { [i0] -> [(-i0 + 2*floor((i0)/2))] }") from pymbolic import var i0 = var("i0") assert aff_to_expr(x) == (-1) * i0 + 2 * (i0 // 2)
def __init__(self, kernel, domain, sweep_inames, access_descriptors, storage_axis_count): self.kernel = kernel self.sweep_inames = sweep_inames storage_axis_names = self.storage_axis_names = [ "_loopy_storage_%d" % i for i in range(storage_axis_count) ] # {{{ duplicate sweep inames # The duplication is necessary, otherwise the storage fetch # inames remain weirdly tied to the original sweep inames. self.primed_sweep_inames = [psin + "'" for psin in sweep_inames] from loopy.isl_helpers import duplicate_axes dup_sweep_index = domain.space.dim(dim_type.out) domain_dup_sweep = duplicate_axes(domain, sweep_inames, self.primed_sweep_inames) self.prime_sweep_inames = SubstitutionMapper( make_subst_func({ sin: var(psin) for sin, psin in zip(sweep_inames, self.primed_sweep_inames) })) # # }}} self.stor2sweep = build_global_storage_to_sweep_map( kernel, access_descriptors, domain_dup_sweep, dup_sweep_index, storage_axis_names, sweep_inames, self.primed_sweep_inames, self.prime_sweep_inames) storage_base_indices, storage_shape = compute_bounds( kernel, domain, self.stor2sweep, self.primed_sweep_inames, storage_axis_names) # compute augmented domain # {{{ filter out unit-length dimensions non1_storage_axis_flags = [] non1_storage_shape = [] for saxis_len in storage_shape: has_length_non1 = saxis_len != 1 non1_storage_axis_flags.append(has_length_non1) if has_length_non1: non1_storage_shape.append(saxis_len) # }}} # {{{ subtract off the base indices # add the new, base-0 indices as new in dimensions sp = self.stor2sweep.get_space() stor_idx = sp.dim(dim_type.out) n_stor = storage_axis_count nn1_stor = len(non1_storage_shape) aug_domain = self.stor2sweep.move_dims(dim_type.out, stor_idx, dim_type.in_, 0, n_stor).range() # aug_domain space now: # [domain](dup_sweep_index)[dup_sweep](stor_idx)[stor_axes'] aug_domain = aug_domain.insert_dims(dim_type.set, stor_idx, nn1_stor) inew = 0 for i, name in enumerate(storage_axis_names): if non1_storage_axis_flags[i]: aug_domain = aug_domain.set_dim_name(dim_type.set, stor_idx + inew, name) inew += 1 # aug_domain space now: # [domain](dup_sweep_index)[dup_sweep](stor_idx)[stor_axes'][n1_stor_axes] from loopy.symbolic import aff_from_expr for saxis, bi, s in zip(storage_axis_names, storage_base_indices, storage_shape): if s != 1: cns = isl.Constraint.equality_from_aff( aff_from_expr(aug_domain.get_space(), var(saxis) - (var(saxis + "'") - bi))) aug_domain = aug_domain.add_constraint(cns) # }}} # eliminate (primed) storage axes with non-zero base indices aug_domain = aug_domain.project_out(dim_type.set, stor_idx + nn1_stor, n_stor) # eliminate duplicated sweep_inames nsweep = len(sweep_inames) aug_domain = aug_domain.project_out(dim_type.set, dup_sweep_index, nsweep) self.non1_storage_axis_flags = non1_storage_axis_flags self.aug_domain = aug_domain self.storage_base_indices = storage_base_indices self.non1_storage_shape = non1_storage_shape
def emit_multiple_assignment(self, codegen_state, insn): ecm = codegen_state.expression_to_code_mapper from pymbolic.primitives import Variable from pymbolic.mapper.stringifier import PREC_NONE func_id = insn.expression.function parameters = insn.expression.parameters if isinstance(func_id, Variable): func_id = func_id.name assignee_var_descriptors = [ codegen_state.kernel.get_var_descriptor(a) for a in insn.assignee_var_names() ] par_dtypes = tuple(ecm.infer_type(par) for par in parameters) mangle_result = codegen_state.kernel.mangle_function( func_id, par_dtypes) if mangle_result is None: raise RuntimeError( "function '%s' unknown--" "maybe you need to register a function mangler?" % func_id) assert mangle_result.arg_dtypes is not None from loopy.expression import dtype_to_type_context c_parameters = [ ecm(par, PREC_NONE, dtype_to_type_context(self.target, tgt_dtype), tgt_dtype).expr for par, par_dtype, tgt_dtype in zip( parameters, par_dtypes, mangle_result.arg_dtypes) ] from loopy.codegen import SeenFunction codegen_state.seen_functions.add( SeenFunction(func_id, mangle_result.target_name, mangle_result.arg_dtypes)) from pymbolic import var for i, (a, tgt_dtype) in enumerate( zip(insn.assignees[1:], mangle_result.result_dtypes[1:])): if tgt_dtype != ecm.infer_type(a): raise LoopyError("type mismatch in %d'th (1-based) left-hand " "side of instruction '%s'" % (i + 1, insn.id)) c_parameters.append( # TODO Yuck: The "where-at function": &(...) var("&")(ecm(a, PREC_NONE, dtype_to_type_context(self.target, tgt_dtype), tgt_dtype).expr)) from pymbolic import var result = var(mangle_result.target_name)(*c_parameters) # In case of no assignees, we are done if len(mangle_result.result_dtypes) == 0: from cgen import ExpressionStatement return ExpressionStatement( CExpression(self.get_c_expression_to_code_mapper(), result)) result = ecm.wrap_in_typecast(mangle_result.result_dtypes[0], assignee_var_descriptors[0].dtype, result) lhs_code = ecm(insn.assignees[0], prec=PREC_NONE, type_context=None) from cgen import Assign return Assign( lhs_code, CExpression(self.get_c_expression_to_code_mapper(), result))
def add_prefetch(kernel, var_name, sweep_inames=[], dim_arg_names=None, # "None" is a valid value here, distinct from the default. default_tag=_not_provided, rule_name=None, temporary_name=None, temporary_scope=None, temporary_is_local=None, footprint_subscripts=None, fetch_bounding_box=False, fetch_outer_inames=None): """Prefetch all accesses to the variable *var_name*, with all accesses being swept through *sweep_inames*. :arg var_name: A string, the name of the variable being prefetched. This may be a 'tagged variable name' (such as ``field$mytag`` to restrict the effect of the operation to only variable accesses with a matching tag. This may also be a subscripted version of the variable, in which case this access dictates the footprint that is prefetched, e.g. ``A[:,:]`` or ``field[i,j,:,:]``. In this case, accesses in the kernel are disregarded. :arg sweep_inames: A list of inames, or a comma-separated string of them. This routine 'sweeps' all accesses to *var_name* through all allowed values of the *sweep_inames* to generate a footprint. All values in this footprint are then stored in a temporary variable, and the original variable accesses replaced with accesses to this temporary. :arg dim_arg_names: List of names representing each fetch axis. These names show up as inames in the generated fetch code :arg default_tag: The :ref:`implementation tag <iname-tags>` to assign to the inames driving the prefetch code. Use *None* to leave them undefined (to assign them later by hand). The current default will make them local axes and automatically split them to fit the work group size, but this default will disappear in favor of simply leaving them untagged in 2019.x. For 2018.x, a warning will be issued if no *default_tag* is specified. :arg rule_name: base name of the generated temporary variable. :arg temporary_name: The name of the temporary to be used. :arg temporary_scope: The :class:`temp_var_scope` to use for the temporary. :arg temporary_is_local: Deprecated, use *temporary_scope* instead. :arg footprint_subscripts: A list of tuples indicating the index (i.e. subscript) tuples used to generate the footprint. If only one such set of indices is desired, this may also be specified directly by putting an index expression into *var_name*. Substitutions such as those occurring in dimension splits are recorded and also applied to these indices. :arg fetch_bounding_box: To fit within :mod:`loopy`'s execution model, the 'footprint' of the fetch currently has to be a convex set. Sometimes this is not the case, e.g. for a high-order stencil:: o o ooooo o o The footprint of the stencil when 'swept' over a base domain would look like this, and because of the 'missing corners', this set is not convex:: oooooooooo oooooooooo oooooooooooooo oooooooooooooo oooooooooooooo oooooooooooooo oooooooooo oooooooooo Passing ``fetch_bounding_box=True`` gives :mod:`loopy` permission to instead fetch the 'bounding box' of the footprint, i.e. this set in the stencil example:: OOooooooooooOO OOooooooooooOO oooooooooooooo oooooooooooooo oooooooooooooo oooooooooooooo OOooooooooooOO OOooooooooooOO Note the added corners marked with "``O``". The resulting footprint is guaranteed to be convex. :arg fetch_outer_inames: The inames within which the fetch instruction is nested. If *None*, make an educated guess. This function internally uses :func:`extract_subst` and :func:`precompute`. """ # {{{ fish indexing out of var_name and into footprint_subscripts from loopy.symbolic import parse parsed_var_name = parse(var_name) from pymbolic.primitives import Variable, Subscript if isinstance(parsed_var_name, Variable): # nothing to see pass elif isinstance(parsed_var_name, Subscript): if footprint_subscripts is not None: raise TypeError("if footprint_subscripts is specified, then var_name " "may not contain a subscript") assert isinstance(parsed_var_name.aggregate, Variable) footprint_subscripts = [parsed_var_name.index] parsed_var_name = parsed_var_name.aggregate else: raise ValueError("var_name must either be a variable name or a subscript") # }}} # {{{ fish out tag from loopy.symbolic import TaggedVariable if isinstance(parsed_var_name, TaggedVariable): var_name = parsed_var_name.name tag = parsed_var_name.tag else: var_name = parsed_var_name.name tag = None # }}} c_name = var_name if tag is not None: c_name = c_name + "_" + tag var_name_gen = kernel.get_var_name_generator() if rule_name is None: rule_name = var_name_gen("%s_fetch_rule" % c_name) if temporary_name is None: temporary_name = var_name_gen("%s_fetch" % c_name) arg = kernel.arg_dict[var_name] # {{{ make parameter names and unification template parameters = [] for i in range(arg.num_user_axes()): based_on = "%s_dim_%d" % (c_name, i) if arg.dim_names is not None: based_on = "%s_dim_%s" % (c_name, arg.dim_names[i]) if dim_arg_names is not None and i < len(dim_arg_names): based_on = dim_arg_names[i] par_name = var_name_gen(based_on=based_on) parameters.append(par_name) from pymbolic import var uni_template = parsed_var_name if len(parameters) > 1: uni_template = uni_template.index( tuple(var(par_name) for par_name in parameters)) elif len(parameters) == 1: uni_template = uni_template.index(var(parameters[0])) # }}} from loopy.transform.subst import extract_subst kernel = extract_subst(kernel, rule_name, uni_template, parameters) if isinstance(sweep_inames, str): sweep_inames = [s.strip() for s in sweep_inames.split(",")] else: # copy, standardize to list sweep_inames = list(sweep_inames) kernel, subst_use, sweep_inames, inames_to_be_removed = \ _process_footprint_subscripts( kernel, rule_name, sweep_inames, footprint_subscripts, arg) # Our _not_provided is actually a different object from the one in the # precompute module, but precompute acutally uses that to adjust its # warning message. from loopy.transform.precompute import precompute new_kernel = precompute(kernel, subst_use, sweep_inames, precompute_inames=dim_arg_names, default_tag=default_tag, dtype=arg.dtype, fetch_bounding_box=fetch_bounding_box, temporary_name=temporary_name, temporary_scope=temporary_scope, temporary_is_local=temporary_is_local, precompute_outer_inames=fetch_outer_inames) # {{{ remove inames that were temporarily added by slice sweeps new_domains = new_kernel.domains[:] for iname in inames_to_be_removed: home_domain_index = kernel.get_home_domain_index(iname) domain = new_domains[home_domain_index] dt, idx = domain.get_var_dict()[iname] assert dt == dim_type.set new_domains[home_domain_index] = domain.project_out(dt, idx, 1) new_kernel = new_kernel.copy(domains=new_domains) # }}} # If the rule survived past precompute() (i.e. some accesses fell outside # the footprint), get rid of it before moving on. if rule_name in new_kernel.substitutions: from loopy.transform.subst import expand_subst return expand_subst(new_kernel, "... > id:"+rule_name) else: return new_kernel
def rhs_sym(t, y): return var("lambda") * y
def get_IfThenElse_test_code_and_expected_result(): from dagrt.expression import IfThenElse with CodeBuilder(name="primary") as cb: cb(var("c1"), IfThenElse(True, 0, 1)) cb(var("c2"), IfThenElse(False, 0, 1)) cb(var("c3"), IfThenElse(IfThenElse(True, True, False), 0, 1)) cb(var("c4"), IfThenElse(IfThenElse(False, True, False), 0, 1)) cb(var("c5"), IfThenElse(True, IfThenElse(True, 0, 1), 2)) cb(var("c6"), IfThenElse(True, IfThenElse(False, 0, 1), 2)) cb(var("c7"), IfThenElse(False, 0, IfThenElse(True, 1, 2))) cb(var("c8"), IfThenElse(False, 0, IfThenElse(False, 1, 2))) cb(var("c9"), 1 + IfThenElse(True, 0, 1)) cb(var("c10"), 1 + IfThenElse(False, 0, 1)) cb.yield_state(tuple(var("c" + str(i)) for i in range(1, 11)), "result", 0, "final") code = create_DAGCode_with_steady_phase(cb.statements) return (code, (0, 1, 0, 1, 0, 1, 1, 2, 1, 2))
def privatize_temporaries_with_inames(kernel, privatizing_inames, only_var_names=None): """This function provides each loop iteration of the *privatizing_inames* with its own private entry in the temporaries it accesses (possibly restricted to *only_var_names*). This is accomplished implicitly as part of generating instruction-level parallelism by the "ILP" tag and accessible separately through this transformation. Example:: for imatrix, i acc = 0 for k acc = acc + a[imatrix, i, k] * vec[k] end end might become:: for imatrix, i acc[imatrix] = 0 for k acc[imatrix] = acc[imatrix] + a[imatrix, i, k] * vec[k] end end facilitating loop interchange of the *imatrix* loop. .. versionadded:: 2018.1 """ if isinstance(privatizing_inames, str): privatizing_inames = frozenset(s.strip() for s in privatizing_inames.split(",")) if isinstance(only_var_names, str): only_var_names = frozenset(s.strip() for s in only_var_names.split(",")) wmap = kernel.writer_map() var_to_new_priv_axis_iname = {} # {{{ find variables that need extra indices for tv in kernel.temporary_variables.values(): if only_var_names is not None and tv.name not in only_var_names: continue for writer_insn_id in wmap.get(tv.name, []): writer_insn = kernel.id_to_insn[writer_insn_id] priv_axis_inames = writer_insn.within_inames & privatizing_inames referenced_priv_axis_inames = ( priv_axis_inames & writer_insn.write_dependency_names()) new_priv_axis_inames = priv_axis_inames - referenced_priv_axis_inames if not new_priv_axis_inames: break if tv.name in var_to_new_priv_axis_iname: if new_priv_axis_inames != set( var_to_new_priv_axis_iname[tv.name]): raise LoopyError( "instruction '%s' requires adding " "indices for privatizing var '%s' on iname(s) '%s', " "but previous instructions required inames '%s'" % (writer_insn_id, tv.name, ", ".join(new_priv_axis_inames), ", ".join( var_to_new_priv_axis_iname[tv.name]))) continue var_to_new_priv_axis_iname[tv.name] = set(new_priv_axis_inames) # }}} # {{{ find ilp iname lengths from loopy.isl_helpers import static_max_of_pw_aff from loopy.symbolic import pw_aff_to_expr priv_axis_iname_to_length = {} iname_to_lbound = {} for priv_axis_inames in var_to_new_priv_axis_iname.values(): for iname in priv_axis_inames: if iname in priv_axis_iname_to_length: continue bounds = kernel.get_iname_bounds(iname, constants_only=False) priv_axis_iname_to_length[iname] = pw_aff_to_expr( static_max_of_pw_aff(bounds.size, constants_only=False)) iname_to_lbound[iname] = pw_aff_to_expr(bounds.lower_bound_pw_aff) # }}} # {{{ change temporary variables from loopy.kernel.data import VectorizeTag new_temp_vars = kernel.temporary_variables.copy() for tv_name, inames in var_to_new_priv_axis_iname.items(): tv = new_temp_vars[tv_name] extra_shape = tuple(priv_axis_iname_to_length[iname] for iname in inames) shape = tv.shape if shape is None: shape = () dim_tags = ["c"] * (len(shape) + len(extra_shape)) for i, iname in enumerate(inames): if kernel.iname_tags_of_type(iname, VectorizeTag): dim_tags[len(shape) + i] = "vec" new_temp_vars[tv.name] = tv.copy( shape=shape + extra_shape, # Forget what you knew about data layout, # create from scratch. dim_tags=dim_tags, dim_names=None) # }}} from pymbolic import var var_to_extra_iname = { var_name: tuple(var(iname) for iname in inames) for var_name, inames in var_to_new_priv_axis_iname.items() } new_insns = [] for insn in kernel.instructions: eiii = ExtraInameIndexInserter(var_to_extra_iname, iname_to_lbound) new_insn = insn.with_transformed_expressions(eiii) if not eiii.seen_priv_axis_inames <= insn.within_inames: raise LoopyError( "Kernel '%s': Instruction '%s': touched variable that " "(for privatization, e.g. as performed for ILP) " "required iname(s) '%s', but that the instruction was not " "previously within the iname(s). To remedy this, first promote" "the instruction into the iname." % (kernel.name, insn.id, ", ".join(eiii.seen_priv_axis_inames - insn.within_inames))) new_insns.append(new_insn) return kernel.copy(temporary_variables=new_temp_vars, instructions=new_insns)
def map_variable(self, expr): from pymbolic import var if expr.name in self.which_vars: return var(expr.name+"'") else: return expr
def test_em_dt_var(self): self._test_scheme(EulerMaryuyamaStep(pm.var('dt')))
def test_conditions(): from pymbolic import var x = var('x') y = var('y') assert str(x.eq(y).and_(x.le(5))) == "x == y and x <= 5"
def main(): from leap.step_matrix import StepMatrixFinder from pymbolic import var speed_factor = 10 method_name = "Fq" order = 3 tol = 1e-8 prec = 1e-5 angles = np.linspace(0, 2 * np.pi, 100, endpoint=False) for step_ratio in [1, 2, 3, 4, 5, 6]: print("speed factor: %g - step ratio: %g - method: %s " "- order: %d" % (speed_factor, step_ratio, method_name, order)) method = TwoRateAdamsBashforthMethod(method=method_name, order=order, step_ratio=step_ratio, static_dt=True) code = method.generate() finder = StepMatrixFinder(code, function_map={ "<func>f2f": lambda t, f, s: var("f2f") * f, "<func>s2f": lambda t, f, s: var("s2f") * s, "<func>f2s": lambda t, f, s: var("f2s") * f, "<func>s2s": lambda t, f, s: var("s2s") * s, }, exclude_variables=["<p>bootstrap_step"]) mat = finder.get_phase_step_matrix("primary") if 0: print('Variables: %s' % finder.variables) np.set_printoptions(formatter={"all": str}) print(mat) from leap.step_matrix import fast_evaluator evaluate = fast_evaluator(mat) def is_stable(major_eigval, dt): smat = evaluate({ "<dt>": dt, "f2f": major_eigval, "s2f": 1 / speed_factor, "f2s": 1 / speed_factor, "s2s": major_eigval * 1 / speed_factor, }) eigvals = la.eigvals(smat) return (np.abs(eigvals) <= 1 + tol).all() from leap.stability import find_truth_bdry from functools import partial points = [] for angle in angles: eigval = np.exp(1j * angle) max_dt = find_truth_bdry(partial(is_stable, eigval), prec=prec) stable_fake_eigval = eigval * max_dt points.append([stable_fake_eigval.real, stable_fake_eigval.imag]) points = np.array(points).T pt.plot(points[0], points[1], "x", label="steprat: %d" % step_ratio) pt.legend(loc="best") pt.grid() outfile = "mr-stability-diagram.pdf" pt.savefig(outfile) print("Output written to %s" % outfile)
def generate_butcher(self, stage_coeff_set_names, stage_coeff_sets, rhs_funcs, estimate_coeff_set_names, estimate_coeff_sets): """ :arg stage_coeff_set_names: a list of names/string identifiers for stage coefficient sets :arg stage_coeff_sets: a mapping from set names to stage coefficients :arg rhs_funcs: a mapping from set names to right-hand-side functions :arg estimate_coeffs_set_names: a list of names/string identifiers for estimate coefficient sets :arg estimate_coeffs_sets: a mapping from estimate coefficient set names to cofficients. """ from pymbolic import var comp = self.component_id dt = self.dt t = self.t state = self.state nstages = len(self.c) # {{{ check coefficients for plausibility for name in stage_coeff_set_names: for istage in range(nstages): coeff_sum = sum(stage_coeff_sets[name][istage]) assert abs(coeff_sum - self.c[istage]) < 1e-12, ( name, istage, coeff_sum, self.c[istage]) # }}} # {{{ initialization last_rhss = {} with CodeBuilder(name="initialization") as cb: for name in stage_coeff_set_names: if (name in self.recycle_last_stage_coeff_set_names and _is_first_stage_same_as_last_stage( self.c, stage_coeff_sets[name])): last_rhss[name] = var("<p>last_rhs_" + name) cb(last_rhss[name], rhs_funcs[name](t=t, **{comp: state})) cb_init = cb # }}} stage_rhs_vars = {} rhs_var_to_unknown = {} for name in stage_coeff_set_names: stage_rhs_vars[name] = [ cb.fresh_var(f"rhs_{name}_s{i}") for i in range(nstages) ] # These are rhss if they are not yet known and pending an implicit solve. for i, rhsvar in enumerate(stage_rhs_vars[name]): unkvar = cb.fresh_var(f"unk_{name}_s{i}") rhs_var_to_unknown[rhsvar] = unkvar knowns = set() # {{{ stage loop last_state_est_var = cb.fresh_var("last_state_est") last_state_est_var_valid = False with CodeBuilder(name="primary") as cb: equations = [] unknowns = set() def make_known(v): unknowns.discard(v) knowns.add(v) for istage in range(nstages): for name in stage_coeff_set_names: c = self.c[istage] my_rhs = stage_rhs_vars[name][istage] if (name in self.recycle_last_stage_coeff_set_names and istage == 0 and _is_first_stage_same_as_last_stage( self.c, stage_coeff_sets[name])): cb(my_rhs, last_rhss[name]) make_known(my_rhs) else: is_implicit = False state_increment = 0 for src_name in stage_coeff_set_names: coeffs = stage_coeff_sets[src_name][istage] for src_istage, coeff in enumerate(coeffs): rhsval = stage_rhs_vars[src_name][src_istage] if rhsval not in knowns: unknowns.add(rhsval) is_implicit = True state_increment += dt * coeff * rhsval state_est = state + state_increment if (self.state_filter is not None and not ( # reusing last output state c == 0 and all( len(stage_coeff_sets[src_name][istage]) == 0 for src_name in stage_coeff_set_names))): state_est = self.state_filter(state_est) if is_implicit: rhs_expr = rhs_funcs[name](t=t + c * dt, **{ comp: state_est }) from dagrt.expression import collapse_constants solve_expression = collapse_constants( my_rhs - rhs_expr, list(unknowns) + [self.state], cb.assign, cb.fresh_var) equations.append(solve_expression) if istage + 1 == nstages: last_state_est_var_valid = False else: if istage + 1 == nstages: cb(last_state_est_var, state_est) state_est = last_state_est_var last_state_est_var_valid = True rhs_expr = rhs_funcs[name](t=t + c * dt, **{ comp: state_est }) cb(my_rhs, rhs_expr) make_known(my_rhs) # {{{ emit solve if possible if unknowns and len(unknowns) == len(equations): # got a square system, let's solve assignees = [unk.name for unk in unknowns] from pymbolic import substitute subst_dict = { rhs_var.name: rhs_var_to_unknown[rhs_var] for rhs_var in unknowns } cb.assign_implicit( assignees=assignees, solve_components=[ rhs_var_to_unknown[unk].name for unk in unknowns ], expressions=[ substitute(eq, subst_dict) for eq in equations ], # TODO: Could supply a starting guess other_params={"guess": state}, solver_id="solve") del equations[:] knowns.update(unknowns) unknowns.clear() # }}} # Compute solution estimates. estimate_vars = [ cb.fresh_var("est_" + name) for name in estimate_coeff_set_names ] for iest, name in enumerate(estimate_coeff_set_names): out_coeffs = estimate_coeff_sets[name] if (last_state_est_var_valid and # noqa: W504 _is_last_stage_same_as_output(self.c, stage_coeff_sets, out_coeffs)): state_est = last_state_est_var else: state_increment = 0 for src_name in stage_coeff_set_names: state_increment += sum( coeff * stage_rhs_vars[src_name][src_istage] for src_istage, coeff in enumerate(out_coeffs)) state_est = state + dt * state_increment if self.state_filter is not None: state_est = self.state_filter(state_est) cb(estimate_vars[iest], state_est) # This updates <t>. self.finish(cb, estimate_coeff_set_names, estimate_vars) # These updates have to happen *after* finish because before we # don't yet know whether finish will accept the new state. for name in stage_coeff_set_names: if (name in self.recycle_last_stage_coeff_set_names and _is_first_stage_same_as_last_stage( self.c, stage_coeff_sets[name])): cb(last_rhss[name], stage_rhs_vars[name][-1]) cb_primary = cb # }}} return DAGCode(phases={ "initial": cb_init.as_execution_phase(next_phase="primary"), "primary": cb_primary.as_execution_phase(next_phase="primary") }, initial_phase="initial")
def get_strength_or_not(self, isrc, kernel_idx): return var("strength_%d" % self.strength_usage[kernel_idx]).index(isrc)
def map_wildcard(self, expr): from pymbolic import var return var(self.unique_var_name_factory())