def make_model(cls): with pm.Model() as model: sd_mu = np.array([1, 2, 3, 4, 5]) sd_dist = pm.LogNormal.dist(mu=sd_mu, sigma=sd_mu / 10.0, size=5) chol_packed = pm.LKJCholeskyCov("chol_packed", eta=3, n=5, sd_dist=sd_dist) chol = pm.expand_packed_triangular(5, chol_packed, lower=True) cov = at.dot(chol, chol.T) stds = at.sqrt(at.diag(cov)) pm.Deterministic("log_stds", at.log(stds)) corr = cov / stds[None, :] / stds[:, None] corr_entries_unit = (corr[np.tril_indices(5, -1)] + 1) / 2 pm.Deterministic("corr_entries_unit", corr_entries_unit) return model
def test_sample_prior_and_posterior(self): def build_toy_dataset(N, K): pi = np.array([0.2, 0.5, 0.3]) mus = [[1, 1, 1], [-1, -1, -1], [2, -2, 0]] stds = [[0.1, 0.1, 0.1], [0.1, 0.2, 0.2], [0.2, 0.3, 0.3]] x = np.zeros((N, 3), dtype=np.float32) y = np.zeros((N, ), dtype=np.int) for n in range(N): k = np.argmax(np.random.multinomial(1, pi)) x[n, :] = np.random.multivariate_normal( mus[k], np.diag(stds[k])) y[n] = k return x, y N = 100 # number of data points K = 3 # number of mixture components D = 3 # dimensionality of the data X, y = build_toy_dataset(N, K) with pm.Model() as model: pi = pm.Dirichlet("pi", np.ones(K), shape=(K, )) comp_dist = [] mu = [] packed_chol = [] chol = [] for i in range(K): mu.append(pm.Normal("mu%i" % i, 0, 10, shape=D)) packed_chol.append( pm.LKJCholeskyCov("chol_cov_%i" % i, eta=2, n=D, sd_dist=pm.HalfNormal.dist(2.5))) chol.append( pm.expand_packed_triangular(D, packed_chol[i], lower=True)) comp_dist.append( pm.MvNormal.dist(mu=mu[i], chol=chol[i], shape=D)) pm.Mixture("x_obs", pi, comp_dist, observed=X) with model: idata = pm.sample(30, tune=10, chains=1) n_samples = 20 with model: ppc = pm.sample_posterior_predictive(idata, n_samples) prior = pm.sample_prior_predictive(samples=n_samples) assert ppc["x_obs"].shape == (n_samples, ) + X.shape assert prior["x_obs"].shape == (n_samples, ) + X.shape assert prior["mu0"].shape == (n_samples, D) assert prior["chol_cov_0"].shape == (n_samples, D * (D + 1) // 2)