Esempio n. 1
0
 def test_revert(self):
     N = NormApprox(model)
     N.fit()
     max_alpha = N.alpha.value.copy()
     N.alpha.random()
     N.revert_to_max()
     assert_almost_equal(N.alpha.value, max_alpha)
Esempio n. 2
0
 def test_draws(self):
     N = NormApprox(model)
     N.fit('fmin')
     N.sample(1000)
     if PLOT:
         plot(N.alpha.trace(), N.beta.trace(), 'k.')
         xlabel(r'$\alpha$')
         ylabel(r'$\beta$')
Esempio n. 3
0
 def test_get(self):
     N = NormApprox(model)
     N.fit('fmin')
     N.mu[N.alpha, N.beta]
     N.C[N.alpha, N.beta]
Esempio n. 4
0
 def test_sig(self):
     N = NormApprox(model)
     N.fit('fmin')
     assert((abs(N._sig * N._sig.T - N._C) < 1.0e-14).all())
Esempio n. 5
0
 def test_fmin_powell(self):
     N = NormApprox(model)
     N.fit('fmin_powell')
Esempio n. 6
0
 def test_fmin_l_bfgs_b(self):
     N = NormApprox(model)
     N.fit('fmin_l_bfgs_b')
Esempio n. 7
0
 def test_fmin_cg(self):
     N = NormApprox(model)
     N.fit('fmin_cg')
Esempio n. 8
0
 def test_sig(self):
     N = NormApprox(model)
     N.fit('fmin')
     assert((abs(N._sig * N._sig.T - N._C) < 1.0e-14).all())
Esempio n. 9
0
 def test_fmin(self):
     N = NormApprox(model)
     N.fit('fmin')
Esempio n. 10
0
 def test_fmin_powell(self):
     N = NormApprox(model)
     N.fit('fmin_powell')
Esempio n. 11
0
 def test_fmin_cg(self):
     N = NormApprox(model)
     N.fit('fmin_cg')
Esempio n. 12
0
 def test_fmin_l_bfgs_b(self):
     N = NormApprox(model)
     N.fit('fmin_l_bfgs_b')
Esempio n. 13
0
 def test_fmin(self):
     N = NormApprox(model)
     N.fit('fmin')
 def test_get(self):
     N = NormApprox(model)
     N.fit('fmin')
     N.mu[N.alpha, N.beta]
     N.C[N.alpha, N.beta]