Esempio n. 1
0
def sample(
    draws=1000,
    tune=1000,
    model=None,
    warmup_window=50,
    adapt_window=50,
    cooldown_window=50,
    target_accept=0.9,
    gamma=0.05,
    k=0.75,
    t0=10,
    step_kwargs=None,
    **kwargs,
):
    model = modelcontext(model)

    if not all_continuous(model.vars):
        raise ValueError("NUTS can only be used for models with only "
                         "continuous variables.")

    warmup_window, update_steps = build_schedule(
        tune,
        warmup_window=warmup_window,
        adapt_window=adapt_window,
        cooldown_window=cooldown_window,
    )

    potential = WindowedQuadPotentialDenseAdapt(model.ndim, warmup_window,
                                                update_steps)

    if step_kwargs is None:
        step_kwargs = {}
    step = pm.NUTS(
        potential=potential,
        model=model,
        target_accept=target_accept,
        **step_kwargs,
    )
    step.step_adapt = WindowedDualAverageAdaptation(
        np.append(warmup_window, update_steps),
        step.step_size,
        target_accept,
        gamma,
        k,
        t0,
    )

    kwargs["step"] = step
    return pm.sample(draws=draws, tune=tune, model=model, **kwargs)
Esempio n. 2
0
def get_dense_nuts_step(start=None,
                        adaptation_window=101,
                        doubling=True,
                        model=None,
                        **kwargs):
    """Get a NUTS step function with a dense mass matrix

    The entries in the mass matrix will be tuned based on the sample
    covariances during tuning. All extra arguments are passed directly to
    ``pymc3.NUTS``.

    Args:
        start (dict, optional): A starting point in parameter space. If not
            provided, the model's ``test_point`` is used.
        adaptation_window (int, optional): The (initial) size of the window
            used for sample covariance estimation.
        doubling (bool, optional): If ``True`` (default) the adaptation window
            is doubled each time the matrix is updated.

    """
    model = modelcontext(model)

    if not all_continuous(model.vars):
        raise ValueError("NUTS can only be used for models with only "
                         "continuous variables.")

    if start is None:
        start = model.test_point
    mean = model.dict_to_array(start)
    var = np.eye(len(mean))
    potential = QuadPotentialDenseAdapt(
        model.ndim,
        mean,
        var,
        10,
        adaptation_window=adaptation_window,
        doubling=doubling,
    )

    return pm.NUTS(potential=potential, model=model, **kwargs)
Esempio n. 3
0
def get_dense_nuts_step(
    start=None,
    adaptation_window=101,
    doubling=True,
    initial_weight=10,
    use_hessian=False,
    use_hessian_diag=False,
    hessian_regularization=1e-8,
    model=None,
    **kwargs,
):
    """Get a NUTS step function with a dense mass matrix

    The entries in the mass matrix will be tuned based on the sample
    covariances during tuning. All extra arguments are passed directly to
    ``pymc3.NUTS``.

    Args:
        start (dict, optional): A starting point in parameter space. If not
            provided, the model's ``test_point`` is used.
        adaptation_window (int, optional): The (initial) size of the window
            used for sample covariance estimation.
        doubling (bool, optional): If ``True`` (default) the adaptation window
            is doubled each time the matrix is updated.

    """
    model = modelcontext(model)

    if not all_continuous(model.vars):
        raise ValueError("NUTS can only be used for models with only "
                         "continuous variables.")

    if start is None:
        start = model.test_point
    mean = model.dict_to_array(start)

    if use_hessian or use_hessian_diag:
        try:
            import numdifftools as nd
        except ImportError:
            raise ImportError(
                "The 'numdifftools' package is required for Hessian "
                "computations")

        logger.info("Numerically estimating Hessian matrix")
        if use_hessian_diag:
            hess = nd.Hessdiag(model.logp_array)(mean)
            var = np.diag(-1.0 / hess)
        else:
            hess = nd.Hessian(model.logp_array)(mean)
            var = -np.linalg.inv(hess)

        factor = 1
        success = False
        while not success:
            var[np.diag_indices_from(var)] += factor * hessian_regularization

            try:
                np.linalg.cholesky(var)
            except np.linalg.LinAlgError:
                factor *= 2
            else:
                success = True

    else:
        var = np.eye(len(mean))

    potential = QuadPotentialDenseAdapt(
        model.ndim,
        mean,
        var,
        initial_weight,
        adaptation_window=adaptation_window,
        doubling=doubling,
    )

    return pm.NUTS(potential=potential, model=model, **kwargs)
Esempio n. 4
0
def sample(
    *,
    draws=1000,
    tune=1000,
    model=None,
    step_kwargs=None,
    warmup_window=50,
    adapt_window=50,
    cooldown_window=100,
    initial_accept=None,
    target_accept=0.9,
    gamma=0.05,
    k=0.75,
    t0=10,
    **kwargs,
):
    # Check that we're in a model context and that all the variables are
    # continuous
    model = modelcontext(model)
    if not all_continuous(model.vars):
        raise ValueError("NUTS can only be used for models with only "
                         "continuous variables.")
    start = kwargs.get("start", None)
    if start is None:
        start = model.test_point
    mean = model.dict_to_array(start)

    update_steps = build_schedule(
        tune,
        warmup_window=warmup_window,
        adapt_window=adapt_window,
        cooldown_window=cooldown_window,
    )

    potential = QuadPotentialDenseAdapt(
        model.ndim,
        initial_mean=mean,
        initial_weight=10,
        update_steps=update_steps,
    )

    if "step" in kwargs:
        step = kwargs["step"]
    else:
        if step_kwargs is None:
            step_kwargs = {}
        step = pm.NUTS(
            potential=potential,
            model=model,
            target_accept=target_accept,
            **step_kwargs,
        )

    if "target_accept" in step_kwargs and target_accept is not None:
        raise ValueError(
            "'target_accept' cannot be given as a keyword argument and in "
            "'step_kwargs'")
    target_accept = step_kwargs.pop("target_accept", target_accept)
    if initial_accept is None:
        target = target_accept
    else:
        if initial_accept > target_accept:
            raise ValueError(
                "initial_accept must be less than or equal to target_accept")
        target = initial_accept + (target_accept - initial_accept) * np.sqrt(
            np.arange(len(update_steps)) / (len(update_steps) - 1))
    step.step_adapt = WindowedDualAverageAdaptation(update_steps,
                                                    step.step_size, target,
                                                    gamma, k, t0)

    kwargs["step"] = step
    return pm.sample(draws=draws, tune=tune, model=model, **kwargs)