Esempio n. 1
0
def test_exec_nuts_init(method):
    with pm.Model() as model:
        pm.Normal('a', mu=0, sd=1, shape=2)
    with model:
        start, _ = pm.init_nuts(init=method, n_init=10)
        assert isinstance(start, dict)
        start, _ = pm.init_nuts(init=method, n_init=10, njobs=2)
        assert isinstance(start, list)
        assert len(start) == 2
        assert isinstance(start[0], dict)
Esempio n. 2
0
def test_exec_nuts_init(method):
    with pm.Model() as model:
        pm.Normal('a', mu=0, sd=1, shape=2)
    with model:
        start, _ = pm.init_nuts(init=method, n_init=10)
        assert isinstance(start, dict)
        start, _ = pm.init_nuts(init=method, n_init=10, njobs=2)
        assert isinstance(start, list)
        assert len(start) == 2
        assert isinstance(start[0], dict)
Esempio n. 3
0
def test_exec_nuts_init(method):
    with pm.Model() as model:
        pm.Normal("a", mu=0, sigma=1, shape=2)
        pm.HalfNormal("b", sigma=1)
    with model:
        start, _ = pm.init_nuts(init=method, n_init=10)
        assert isinstance(start, list)
        assert len(start) == 1
        assert isinstance(start[0], dict)
        assert "a" in start[0] and "b_log__" in start[0]
        start, _ = pm.init_nuts(init=method, n_init=10, chains=2)
        assert isinstance(start, list)
        assert len(start) == 2
        assert isinstance(start[0], dict)
        assert "a" in start[0] and "b_log__" in start[0]
Esempio n. 4
0
def test_exec_nuts_init(method):
    with pm.Model() as model:
        pm.Normal("a", mu=0, sigma=1, shape=2)
        pm.HalfNormal("b", sigma=1)
    with model:
        start, _ = pm.init_nuts(init=method, n_init=10)
        assert isinstance(start, list)
        assert len(start) == 1
        assert isinstance(start[0], dict)
        assert "a" in start[0] and "b_log__" in start[0]
        start, _ = pm.init_nuts(init=method, n_init=10, chains=2)
        assert isinstance(start, list)
        assert len(start) == 2
        assert isinstance(start[0], dict)
        assert "a" in start[0] and "b_log__" in start[0]
Esempio n. 5
0
def test_exec_nuts_init(method):
    with pm.Model() as model:
        pm.Normal('a', mu=0, sd=1, shape=2)
        pm.HalfNormal('b', sd=1)
    with model:
        start, _ = pm.init_nuts(init=method, n_init=10)
        assert isinstance(start, list)
        assert len(start) == 1
        assert isinstance(start[0], dict)
        assert 'a' in start[0] and 'b_log__' in start[0]
        start, _ = pm.init_nuts(init=method, n_init=10, chains=2)
        assert isinstance(start, list)
        assert len(start) == 2
        assert isinstance(start[0], dict)
        assert 'a' in start[0] and 'b_log__' in start[0]
Esempio n. 6
0
    def setup(self, step, init):
        """Initialize model and get start position"""
        np.random.seed(123)
        self.chains = 4
        data = pd.read_csv(pm.get_data('radon.csv'))
        data['log_radon'] = data['log_radon'].astype(theano.config.floatX)
        county_idx = data.county_code.values
        n_counties = len(data.county.unique())
        with pm.Model() as self.model:
            mu_a = pm.Normal('mu_a', mu=0., sd=100**2)
            sigma_a = pm.HalfCauchy('sigma_a', 5)

            mu_b = pm.Normal('mu_b', mu=0., sd=100**2)
            sigma_b = pm.HalfCauchy('sigma_b', 5)

            a = pm.Normal('a', mu=mu_a, sd=sigma_a, shape=n_counties)
            b = pm.Normal('b', mu=mu_b, sd=sigma_b, shape=n_counties)
            eps = pm.HalfCauchy('eps', 5)

            radon_est = a[county_idx] + b[county_idx] * data.floor.values

            pm.Normal('radon_like',
                      mu=radon_est,
                      sd=eps,
                      observed=data.log_radon)
            self.start, _ = pm.init_nuts(chains=self.chains, init=init)
Esempio n. 7
0
 def _mocked_init_nuts(*args, **kwargs):
     if init == "adapt_diag":
         start_ = [{"x": np.array(0.79788456)}]
     else:
         start_ = [{"x": np.array(-0.04949886)}]
     _, step = pm.init_nuts(*args, **kwargs)
     return start_, step
Esempio n. 8
0
def check_exec_nuts_init(method):
    with pm.Model() as model:
        pm.Normal("a", mu=0, sigma=1, size=2)
        pm.HalfNormal("b", sigma=1)
    with model:
        start, _ = pm.init_nuts(init=method, n_init=10)
        assert isinstance(start, list)
        assert len(start) == 1
        assert isinstance(start[0], dict)
        assert model.a.tag.value_var.name in start[0]
        assert model.b.tag.value_var.name in start[0]
        start, _ = pm.init_nuts(init=method, n_init=10, chains=2)
        assert isinstance(start, list)
        assert len(start) == 2
        assert isinstance(start[0], dict)
        assert model.a.tag.value_var.name in start[0]
        assert model.b.tag.value_var.name in start[0]
Esempio n. 9
0
 def track_glm_hierarchical_ess(self, init):
     with glm_hierarchical_model():
         start, step = pm.init_nuts(init=init, chains=self.chains, progressbar=False, random_seed=123)
         t0 = time.time()
         trace = pm.sample(draws=self.draws, step=step, njobs=4, chains=self.chains,
                           start=start, random_seed=100)
         tot = time.time() - t0
     ess = pm.effective_n(trace, ('mu_a',))['mu_a']
     return ess / tot
Esempio n. 10
0
 def track_glm_hierarchical_ess(self, init):
     with glm_hierarchical_model():
         start, step = pm.init_nuts(init=init, chains=self.chains, progressbar=False, random_seed=123)
         t0 = time.time()
         trace = pm.sample(draws=self.draws, step=step, cores=4, chains=self.chains,
                           start=start, random_seed=100, progressbar=False,
                           compute_convergence_checks=False)
         tot = time.time() - t0
     ess = float(pm.ess(trace, var_names=['mu_a'])['mu_a'].values)
     return ess / tot
Esempio n. 11
0
def sample_chain(model,
                 chain_i=0,
                 step=None,
                 num_samples=MAX_NUM_SAMPLES,
                 advi=False,
                 tune=5,
                 discard_tuned_samples=True,
                 num_scale1_iters=NUM_SCALE1_ITERS,
                 num_scale0_iters=NUM_SCALE0_ITERS):
    """Sample single chain from constructed Bayesian model"""
    start = timer()
    with model:
        if not advi:
            pm._log.info('Assigning NUTS sampler...')
            if step is None:
                start_, step = pm.init_nuts(init='advi',
                                            njobs=1,
                                            n_init=NUM_INIT_STEPS,
                                            random_seed=-1,
                                            progressbar=False)

            discard = tune if discard_tuned_samples else 0
            for i, trace in enumerate(
                    pm.iter_sample(num_samples + discard,
                                   step,
                                   start=start_,
                                   chain=chain_i)):
                if i == 0:
                    min_num_samples = get_min_samples_per_chain(
                        len(trace[0]), MIN_SAMPLES_CONSTANT, NUM_CHAINS)
                elapsed = timer() - start
                if elapsed > SOFT_MAX_TIME_IN_SECONDS / NUM_CHAINS:
                    print('exceeded soft time limit...')
                    if i + 1 - discard >= min_num_samples:
                        print('collected enough samples; stopping')
                        break
                    else:
                        print('but only collected {} of {}; continuing...'.
                              format(i + 1 - discard, min_num_samples))
                        if elapsed > HARD_MAX_TIME_IN_SECONDS / NUM_CHAINS:
                            print('exceeded HARD time limit; STOPPING')
                            break
            return trace[discard:]
        else:  # ADVI for neural networks
            scale = theano.shared(pm.floatX(1))
            vi = pm.ADVI(cost_part_grad_scale=scale)
            pm.fit(n=num_scale1_iters, method=vi)
            scale.set_value(0)
            approx = pm.fit(n=num_scale0_iters)
            # one sample to get dimensions of trace
            trace = approx.sample(draws=1)
            min_num_samples = get_min_samples_per_chain(
                len(trace.varnames), MIN_SAMPLES_CONSTANT, 1)
            trace = approx.sample(draws=min_num_samples)
            return trace
Esempio n. 12
0
 def track_marginal_mixture_model_ess(self, init):
     model, start = mixture_model()
     with model:
         _, step = pm.init_nuts(init=init, chains=self.chains,
                                progressbar=False, random_seed=123)
         start = [{k: v for k, v in start.items()} for _ in range(self.chains)]
         t0 = time.time()
         trace = pm.sample(draws=self.draws, step=step, njobs=4, chains=self.chains,
                           start=start, random_seed=100)
         tot = time.time() - t0
     ess = pm.effective_n(trace, ('mu',))['mu'].min()  # worst case
     return ess / tot
Esempio n. 13
0
 def track_marginal_mixture_model_ess(self, init):
     model, start = mixture_model()
     with model:
         _, step = pm.init_nuts(init=init, chains=self.chains,
                                progressbar=False, random_seed=123)
         start = [{k: v for k, v in start.items()} for _ in range(self.chains)]
         t0 = time.time()
         trace = pm.sample(draws=self.draws, step=step, cores=4, chains=self.chains,
                           start=start, random_seed=100, progressbar=False,
                           compute_convergence_checks=False)
         tot = time.time() - t0
     ess = pm.ess(trace, var_names=['mu'])['mu'].values.min()  # worst case
     return ess / tot
Esempio n. 14
0
 def track_glm_hierarchical_ess(self, init):
     with glm_hierarchical_model():
         start, step = pm.init_nuts(init=init,
                                    chains=self.chains,
                                    progressbar=False,
                                    random_seed=123)
         t0 = time.time()
         trace = pm.sample(draws=self.draws,
                           step=step,
                           njobs=4,
                           chains=self.chains,
                           start=start,
                           random_seed=100)
         tot = time.time() - t0
     ess = pm.effective_n(trace, ('mu_a', ))['mu_a']
     return ess / tot
Esempio n. 15
0
    def test_samples(self):
        chains = 1
        with pm.Model():
            x = pm.Normal('x', 0, 1)
            y = pm.Normal('y', x, 1)

            start, step = pm.init_nuts(chains=chains)

            l2hmc_step = L2HMC(potential=step.potential)
            l2hmc_trace = pm.sample(2000,
                                    step=l2hmc_step,
                                    start=start,
                                    chains=chains)

        assert np.abs(l2hmc_trace['x'].mean()) < 0.02
        assert np.abs(l2hmc_trace['x'].std() - 1) < 0.02
        assert np.abs(l2hmc_trace['y'].mean()) < 0.05
Esempio n. 16
0
 def track_marginal_mixture_model_ess(self, init):
     model, start = mixture_model()
     with model:
         _, step = pm.init_nuts(init=init,
                                chains=self.chains,
                                progressbar=False,
                                random_seed=123)
         start = [{k: v
                   for k, v in start.items()} for _ in range(self.chains)]
         t0 = time.time()
         trace = pm.sample(draws=self.draws,
                           step=step,
                           njobs=4,
                           chains=self.chains,
                           start=start,
                           random_seed=100)
         tot = time.time() - t0
     ess = pm.effective_n(trace, ('mu', ))['mu'].min()  # worst case
     return ess / tot
Esempio n. 17
0
 def time_glm_hierarchical_init(self, init):
     """How long does it take to run the initialization."""
     with glm_hierarchical_model():
         pm.init_nuts(init=init, chains=self.chains, progressbar=False)
Esempio n. 18
0
 def time_glm_hierarchical_init(self, init):
     """How long does it take to run the initialization."""
     with glm_hierarchical_model():
         pm.init_nuts(init=init, chains=self.chains, progressbar=False)