def run_lp_avf(pipe, criteria, categories, worst, best, css, pt, aa): lp = LpAVFSort(criteria, css, categories, worst, best) obj, cvs, cfs, catv = lp.solve(aa, pt) model = AVFSort(criteria, cvs, cfs, catv) aa2 = model.get_assignments(pt) ca = compute_ca(aa, aa2) pipe.send([model, ca]) pipe.close()
def one_test(self, seed, na, nc, ncat, ns): u = generate_random_avfsort_model(nc, ncat, ns, ns, seed) a = generate_alternatives(na) pt = generate_random_performance_table(a, u.criteria) aa = u.get_assignments(pt) css = CriteriaValues([]) for cf in u.cfs: cs = CriterionValue(cf.id, len(cf.function)) css.append(cs) cat = u.cat_values.to_categories() lp = LpAVFSort(u.criteria, css, cat, pt.get_worst(u.criteria), pt.get_best(u.criteria)) obj, cvs, cfs, catv = lp.solve(aa, pt) u2 = AVFSort(u.criteria, cvs, cfs, catv) aa2 = u2.get_assignments(pt) self.assertEqual(aa, aa2)
def test_lp_avfsort(seed, na, nc, ncat, ns, na_gen, pcerrors): # Generate a random UTADIS model and assignment examples model = generate_random_avfsort_model(nc, ncat, ns, ns) model.set_equal_weights() cat = model.cat_values.to_categories() a = generate_alternatives(na) pt = generate_random_performance_table(a, model.criteria) aa = model.get_assignments(pt) # Add errors in assignment examples aa_err = aa.copy() aa_erroned = add_errors_in_assignments_proba(aa_err, cat.keys(), pcerrors / 100) na_err = len(aa_erroned) gi_worst = AlternativePerformances('worst', {crit.id: 0 for crit in model.criteria}) gi_best = AlternativePerformances('best', {crit.id: 1 for crit in model.criteria}) css = CriteriaValues([]) for cf in model.cfs: cs = CriterionValue(cf.id, len(cf.function)) css.append(cs) # Run linear program t1 = time.time() lp = LpAVFSort(model.criteria, css, cat, gi_worst, gi_best) t2 = time.time() obj, cv_l, cfs_l, catv_l = lp.solve(aa_err, pt) t3 = time.time() model2 = AVFSort(model.criteria, cv_l, cfs_l, catv_l) # Compute new assignment and classification accuracy aa2 = model2.get_assignments(pt) ok = ok_errors = ok2 = ok2_errors = altered = 0 for alt in a: if aa_err(alt.id) == aa2(alt.id): ok2 += 1 if alt.id in aa_erroned: ok2_errors += 1 if aa(alt.id) == aa2(alt.id): ok += 1 if alt.id in aa_erroned: ok_errors += 1 elif alt.id not in aa_erroned: altered += 1 total = len(a) ca2 = ok2 / total ca2_errors = ok2_errors / total ca = ok / total ca_errors = ok_errors / total # Perform the generalization a_gen = generate_alternatives(na_gen) pt_gen = generate_random_performance_table(a_gen, model.criteria) aa_gen = model.get_assignments(pt_gen) aa_gen2 = model2.get_assignments(pt_gen) ca_gen = compute_ca(aa_gen, aa_gen2) aa_gen_err = aa_gen.copy() aa_gen_erroned = add_errors_in_assignments_proba(aa_gen_err, cat.keys(), pcerrors / 100) aa_gen2 = model2.get_assignments(pt_gen) ca_gen_err = compute_ca(aa_gen_err, aa_gen2) # Save all infos in test_result class t = test_result("%s-%d-%d-%d-%d-%d-%g" % (seed, na, nc, ncat, ns, na_gen, pcerrors)) # Input params t['seed'] = seed t['na'] = na t['nc'] = nc t['ncat'] = ncat t['ns'] = ns t['na_gen'] = na_gen t['pcerrors'] = pcerrors # Output params t['na_err'] = na_err t['obj'] = obj t['ca'] = ca t['ca_errors'] = ca_errors t['altered'] = altered t['ca2'] = ca2 t['ca2_errors'] = ca2_errors t['ca_gen'] = ca_gen t['ca_gen_err'] = ca_gen_err t['t_total'] = t3 - t1 t['t_const'] = t2 - t1 t['t_solve'] = t3 - t2 return t
def test_lp_avfsort(seed, na, nc, ncat, ns, na_gen, pcerrors): # Generate a random ELECTRE TRI model and assignment examples model = generate_random_mrsort_model(nc, ncat, seed) # Generate a first set of alternatives a = generate_alternatives(na) pt = generate_random_performance_table(a, model.criteria) aa = model.pessimist(pt) # Add errors in assignment examples aa_err = aa.copy() aa_erroned = add_errors_in_assignments(aa_err, model.categories, pcerrors / 100) gi_worst = AlternativePerformances('worst', {c.id: 0 for c in model.criteria}) gi_best = AlternativePerformances('best', {c.id: 1 for c in model.criteria}) css = CriteriaValues([]) for c in model.criteria: cs = CriterionValue(c.id, ns) css.append(cs) # Run linear program t1 = time.time() lp = LpAVFSort(model.criteria, css, model.categories_profiles.to_categories(), gi_worst, gi_best) t2 = time.time() obj, cv_l, cfs_l, catv_l = lp.solve(aa_err, pt) t3 = time.time() model2 = AVFSort(model.criteria, cv_l, cfs_l, catv_l) # Compute new assignment and classification accuracy aa2 = model2.get_assignments(pt) ok = ok_errors = ok2 = ok2_errors = 0 for alt in a: if aa_err(alt.id) == aa2(alt.id): ok2 += 1 if alt.id in aa_erroned: ok2_errors += 1 if aa(alt.id) == aa2(alt.id): ok += 1 if alt.id in aa_erroned: ok_errors += 1 total = len(a) ca2 = ok2 / total ca2_errors = ok2_errors / total ca = ok / total ca_errors = ok_errors / total # Perform the generalization a_gen = generate_alternatives(na_gen) pt_gen = generate_random_performance_table(a_gen, model.criteria) aa = model.pessimist(pt_gen) aa2 = model2.get_assignments(pt_gen) ca_gen = compute_ca(aa, aa2) # Save all infos in test_result class t = test_result("%s-%d-%d-%d-%d-%d-%g" % (seed, na, nc, ncat, ns, na_gen, pcerrors)) # Input params t['seed'] = seed t['na'] = na t['nc'] = nc t['ncat'] = ncat t['ns'] = ns t['na_gen'] = na_gen t['pcerrors'] = pcerrors # Output params t['obj'] = obj t['ca'] = ca t['ca_errors'] = ca_errors t['ca2'] = ca2 t['ca2_errors'] = ca2_errors t['ca_gen'] = ca_gen t['t_total'] = t3 - t1 t['t_const'] = t2 - t1 t['t_solve'] = t3 - t2 return t
def run_test(seed, data, pclearning, nseg): random.seed(seed) # Separate learning data and test data pt_learning, pt_test = data.pt.split(2, [pclearning, 100 - pclearning]) aa_learning = data.aa.get_subset(pt_learning.keys()) aa_test = data.aa.get_subset(pt_test.keys()) worst = data.pt.get_worst(data.c) best = data.pt.get_best(data.c) # Run the linear program t1 = time.time() css = CriteriaValues([]) for c in data.c: cs = CriterionValue(c.id, nseg) css.append(cs) lp = LpAVFSort(data.c, css, data.cats, worst, best) obj, cvs, cfs, catv = lp.solve(aa_learning, pt_learning) t_total = time.time() - t1 model = AVFSort(data.c, cvs, cfs, catv) ordered_categories = model.categories # CA learning set aa_learning2 = model.get_assignments(pt_learning) ca_learning = compute_ca(aa_learning, aa_learning2) auc_learning = model.auc(aa_learning, pt_learning) diff_learning = compute_confusion_matrix(aa_learning, aa_learning2, ordered_categories) # Compute CA of test setting if len(aa_test) > 0: aa_test2 = model.get_assignments(pt_test) ca_test = compute_ca(aa_test, aa_test2) auc_test = model.auc(aa_test, pt_test) diff_test = compute_confusion_matrix(aa_test,aa_test2, ordered_categories) else: ca_test = 0 auc_test = 0 ncat = len(data.cats) diff_test = OrderedDict([((a, b), 0) for a in ordered_categories \ for b in ordered_categories]) # Compute CA of whole set aa2 = model.get_assignments(data.pt) ca = compute_ca(data.aa, aa2) auc = model.auc(data.aa, data.pt) diff_all = compute_confusion_matrix(data.aa, aa2, ordered_categories) t = test_result("%s-%d-%d-%d" % (data.name, seed, nseg, pclearning)) model.id = 'learned' aa_learning.id, aa_test.id = 'learning_set', 'test_set' pt_learning.id, pt_test.id = 'learning_set', 'test_set' save_to_xmcda("%s/%s.bz2" % (directory, t.test_name), model, aa_learning, aa_test, pt_learning, pt_test) t['seed'] = seed t['na'] = len(data.a) t['nc'] = len(data.c) t['ncat'] = len(data.cats) t['ns'] = nseg t['pclearning'] = pclearning t['na_learning'] = len(aa_learning) t['na_test'] = len(aa_test) t['obj'] = obj t['ca_learning'] = ca_learning t['ca_test'] = ca_test t['ca_all'] = ca t['auc_learning'] = auc_learning t['auc_test'] = auc_test t['auc_all'] = auc for k, v in diff_learning.items(): t['learn_%s_%s' % (k[0], k[1])] = v for k, v in diff_test.items(): t['test_%s_%s' % (k[0], k[1])] = v for k, v in diff_all.items(): t['all_%s_%s' % (k[0], k[1])] = v t['t_total'] = t_total return t
for i in range(0, nloop): model, ca_learning = meta.optimize(nmeta) print(ca_learning) if ca_learning == 1: break elif algo == 'mip_mrsort': model_type = 'mrsort' cat_profiles = generate_categories_profiles(data.cats) model = MRSort(data.c, None, None, None, cat_profiles) mip = MipMRSort(model, data.pt, data.aa) mip.solve() elif algo == 'lp_utadis': model_type = 'utadis' css = CriteriaValues(CriterionValue(c.id, nseg) for c in data.c) lp = LpAVFSort(data.c, css, data.cats, worst, best) obj, cvs, cfs, catv = lp.solve(data.aa, data.pt) model = AVFSort(data.c, cvs, cfs, catv) elif algo == 'lp_utadis_compat': model_type = 'utadis' css = CriteriaValues(CriterionValue(c.id, nseg) for c in data.c) print("LpAVFSortCompat") lp = LpAVFSortCompat(data.c, css, data.cats, worst, best) obj, cvs, cfs, catv = lp.solve(data.aa, data.pt) model = AVFSort(data.c, cvs, cfs, catv) else: print("Invalid algorithm!") sys.exit(1) t_total = time.time() - t1