def test_initial_parameter_outside(self):
     MP = ModelParameters()
     MP.add_model_parameter('aa', 0, minimum = -10., maximum = 10)
     MP.add_model_parameter('bb', 11, minimum = -10., maximum = 10)
     MP._openparameterstructure(nbatch=1)
     with self.assertRaises(SystemExit, msg = 'Initial value outside of bounds.'):
         MP._check_initial_values_wrt_parameter_limits()
Esempio n. 2
0
    def test_not_all_adapt(self):
        MP = ModelParameters()
        parind, adapt, no_adapt = MP.setup_adaptation_indices(
            adapt=np.array([False, True, True]),
            parind=np.array([True, True, True]))
        self.assertTrue(np.array_equal(parind, np.array([0, 1, 2])),
                        msg=str('Expect arrays to match: {} neq {}'.format(
                            parind, np.array([0, 1, 2]))))
        self.assertTrue(np.array_equal(adapt, np.array([1, 2])),
                        msg=str('Expect arrays to match: {} neq {}'.format(
                            adapt, np.array([1, 2]))))
        self.assertTrue(np.array_equal(no_adapt, np.array([True, False,
                                                           False])),
                        msg=str('Expect arrays to match: {} neq {}'.format(
                            no_adapt, np.array([True, False, False]))))

        parind, adapt, no_adapt = MP.setup_adaptation_indices(
            adapt=np.array([False, True, False]),
            parind=np.array([True, True, True]))
        self.assertTrue(np.array_equal(parind, np.array([0, 1, 2])),
                        msg=str('Expect arrays to match: {} neq {}'.format(
                            parind, np.array([0, 1, 2]))))
        self.assertTrue(np.array_equal(adapt, np.array([1])),
                        msg=str('Expect arrays to match: {} neq {}'.format(
                            adapt, np.array([1]))))
        self.assertTrue(np.array_equal(no_adapt, np.array([True, False,
                                                           True])),
                        msg=str('Expect arrays to match: {} neq {}'.format(
                            no_adapt, np.array([True, False, True]))))
Esempio n. 3
0
 def test_setup_prior_sigma(self):
     MP = ModelParameters()
     self.assertEqual(MP.setup_prior_sigma(sigma=np.array([0.1])),
                      np.array([0.1]),
                      msg='Expect = sigma')
     self.assertEqual(MP.setup_prior_sigma(sigma=0.),
                      np.inf,
                      msg='Expect = inf')
Esempio n. 4
0
 def test_setup_prior_mu(self):
     MP = ModelParameters()
     self.assertEqual(MP.setup_prior_mu(mu=np.array([0.1]),
                                        value=np.array([0.3])),
                      np.array([0.1]),
                      msg='Expect = mu')
     self.assertEqual(MP.setup_prior_mu(mu=np.nan, value=np.array([0.3])),
                      np.array([0.3]),
                      msg='Expect = value')
Esempio n. 5
0
 def standard_check(self, theta0=1.0, name='$p_{0}$'):
     MP = ModelParameters()
     MP.add_model_parameter(name=name, theta0=theta0)
     self.assertEqual(MP.parameters[0]['theta0'], theta0)
     self.assertEqual(MP.parameters[0]['name'], name)
     self.assertEqual(MP.parameters[0]['minimum'], -np.inf)
     self.assertEqual(MP.parameters[0]['maximum'], np.inf)
     self.assertEqual(MP.parameters[0]['prior_mu'], np.zeros([1]))
     self.assertEqual(MP.parameters[0]['prior_sigma'], np.inf)
     self.assertEqual(MP.parameters[0]['sample'], 1)
     self.assertEqual(MP.parameters[0]['local'], 0)
Esempio n. 6
0
 def test_raises_error(self):
     MP = ModelParameters()
     MP.add_model_parameter('aa', 0, minimum=-10., maximum=10)
     MP.add_model_parameter('bb', 5, minimum=100., maximum=10)
     MP._openparameterstructure(nbatch=1)
     with self.assertRaises(SystemExit, msg='Min > Max'):
         MP._check_parameter_limits()
Esempio n. 7
0
 def test_scan_for_local_variables_with_sample_false(self):
     MP = ModelParameters()
     MP.add_model_parameter(name='m', theta0=0.2, local=0, sample=False)
     MP.add_model_parameter(name='b', theta0=-0.5, local=1)
     local = MP.scan_for_local_variables(nbatch=2, parameters=MP.parameters)
     self.assertTrue(np.array_equal(local, np.array([1, 2])),
                     msg=str('Expect arrays to match: {} neq {}'.format(
                         local, np.array([1, 2]))))
Esempio n. 8
0
 def test_setup_adapting(self):
     MP = ModelParameters()
     self.assertTrue(MP.setup_adapting(adapt=True, sample=True),
                     msg='Expect True')
     self.assertFalse(MP.setup_adapting(adapt=False, sample=True),
                      msg='Expect False')
     self.assertFalse(MP.setup_adapting(adapt=True, sample=False),
                      msg='Expect False')
     self.assertFalse(MP.setup_adapting(adapt=False, sample=False),
                      msg='Expect False')
Esempio n. 9
0
 def test_get_parameter_features(self):
     MP = ModelParameters()
     MP.add_model_parameter(name='a1', theta0=0.1, minimum=0, maximum=1)
     MP.add_model_parameter(name='a2', theta0=0.2, minimum=0, maximum=1)
     MP.add_model_parameter(name='a3', theta0=0.3, minimum=0, maximum=1)
     npar, low_lim, upp_lim = get_parameter_features(MP.parameters)
     self.assertEqual(npar, 3, msg='Expect to find 3 parameters')
     self.assertTrue(np.array_equal(low_lim, np.zeros([3])),
                     msg=str('Expect low_lim all zero: {} neq {}'.format(
                         low_lim, np.zeros([3]))))
     self.assertTrue(np.array_equal(upp_lim, np.ones([3])),
                     msg=str('Expect upp_lim all one: {} neq {}'.format(
                         upp_lim, np.ones([3]))))
Esempio n. 10
0
 def test_get_parameter_features_with_inf_bounds(self):
     MP = ModelParameters()
     MP.add_model_parameter(name='a1',
                            theta0=0.1,
                            minimum=-np.inf,
                            maximum=1)
     MP.add_model_parameter(name='a2', theta0=0.2, minimum=0, maximum=1)
     MP.add_model_parameter(name='a3',
                            theta0=0.3,
                            minimum=0,
                            maximum=np.inf)
     npar, low_lim, upp_lim = get_parameter_features(MP.parameters)
     expect_low_lim = np.array([0.1 - 100 * 0.1, 0, 0])
     expect_upp_lim = np.array([1, 1, 0.3 + 100 * 0.3])
     self.assertEqual(npar, 3, msg='Expect to find 3 parameters')
     self.assertTrue(np.array_equal(low_lim, expect_low_lim),
                     msg=str('Expect low_lim finite: {} neq {}'.format(
                         low_lim, expect_low_lim)))
     self.assertTrue(np.array_equal(upp_lim, expect_upp_lim),
                     msg=str('Expect upp_lim finite: {} neq {}'.format(
                         upp_lim, expect_upp_lim)))
Esempio n. 11
0
 def test_results_to_params(self):
     MP = ModelParameters()
     MP.add_model_parameter('aa', 0)
     MP._openparameterstructure(nbatch=1)
     # define minimal results dictionary
     results = {
         'parind': MP._parind,
         'names': MP._names,
         'local': MP._local,
         'theta': [1.2]
     }
     # initialize default options
     SO = SimulationOptions()
     SO.define_simulation_options(verbosity=0)
     MP.display_parameter_settings(verbosity=SO.verbosity,
                                   no_adapt=MP._no_adapt)
     MP._results_to_params(results, 1)
     MP._openparameterstructure(nbatch=1)
     MP.display_parameter_settings(verbosity=SO.verbosity,
                                   no_adapt=MP._no_adapt)
     self.assertEqual(MP.parameters[0]['theta0'], results['theta'][0])
Esempio n. 12
0
 def test_initial_parameter_okay(self):
     MP = ModelParameters()
     MP.add_model_parameter('aa', 0, minimum=-10., maximum=10)
     MP.add_model_parameter('bb', 9, minimum=-10., maximum=10)
     MP._openparameterstructure(nbatch=1)
     self.assertTrue(MP._check_initial_values_wrt_parameter_limits())
Esempio n. 13
0
    def test_parameter_display_set_2(self):
        MP = ModelParameters()
        MP.add_model_parameter(name='m',
                               theta0=2.,
                               minimum=-10,
                               maximum=np.inf,
                               sample=True)
        MP.add_model_parameter(name='b',
                               theta0=-5.,
                               minimum=-10,
                               maximum=100,
                               sample=False)
        MP.add_model_parameter(name='b2',
                               theta0=-5.3e6,
                               minimum=-1e7,
                               maximum=1e6,
                               sample=True)
        MP._openparameterstructure(nbatch=1)

        MP.display_parameter_settings(verbosity=None, no_adapt=None)
Esempio n. 14
0
            'theta': [1.2]
        }
        # initialize default options
        SO = SimulationOptions()
        SO.define_simulation_options(verbosity=0)
        MP.display_parameter_settings(verbosity=SO.verbosity,
                                      no_adapt=MP._no_adapt)
        MP._results_to_params(results, 1)
        MP._openparameterstructure(nbatch=1)
        MP.display_parameter_settings(verbosity=SO.verbosity,
                                      no_adapt=MP._no_adapt)
        self.assertEqual(MP.parameters[0]['theta0'], results['theta'][0])


# --------------------------
MP = ModelParameters()


class LessThanOrEqualToZero(unittest.TestCase):
    def test_x_lt_0(self):
        self.assertTrue(less_than_or_equal_to_zero(x=-1))

    def test_x_eq_0(self):
        self.assertTrue(less_than_or_equal_to_zero(x=0))

    def test_x_gt_0(self):
        self.assertFalse(less_than_or_equal_to_zero(x=1))


# --------------------------
class ReplaceListElements(unittest.TestCase):