Esempio n. 1
0
def delivery_from_tel_plan_contents(tel_contents):
    pattern = get_control_point_pattern()
    all_controlpoint_results = re.findall(pattern, tel_contents)

    mu = np.cumsum([float(result[3]) for result in all_controlpoint_results])

    iec_gantry_angle = [float(result[1]) for result in all_controlpoint_results]
    bipolar_gantry_angle = pymedphys._utilities.transforms.convert_IEC_angle_to_bipolar(  # pylint: disable = protected-access
        iec_gantry_angle
    )

    iec_coll_angle = [float(result[2]) for result in all_controlpoint_results]
    bipolar_coll_angle = pymedphys._utilities.transforms.convert_IEC_angle_to_bipolar(  # pylint: disable = protected-access
        iec_coll_angle
    )

    mlcs = [convert_mlc_string(result[0]) for result in all_controlpoint_results]

    jaw_gap = np.array([float(result[4]) for result in all_controlpoint_results])
    jaw_field_centre = np.array(
        [float(result[5]) for result in all_controlpoint_results]
    )
    jaw_a = jaw_field_centre + jaw_gap / 2
    jaw_b = -(jaw_field_centre - jaw_gap / 2)
    jaws = np.vstack([jaw_a, jaw_b]).T

    return mu, bipolar_gantry_angle, bipolar_coll_angle, mlcs, jaws
Esempio n. 2
0
def calculate_expanded_mask(contours, dcm_ct, expansion):
    dx, dy, Cx, Cy, Ox, Oy = get_image_transformation_parameters(dcm_ct)

    ct_size = np.shape(dcm_ct.pixel_array)

    new_ct_size = np.array(ct_size) * expansion

    expanded_mask = np.zeros(new_ct_size)

    for xyz in contours:
        x = np.array(xyz[0::3])
        y = np.array(xyz[1::3])
        z = xyz[2::3]

        if len(set(z)) != 1:
            raise ValueError("Expected only one z value for a given contour")

        r = (((y - Cy) / dy * Oy)) * expansion + (expansion - 1) * 0.5
        c = (((x - Cx) / dx * Ox)) * expansion + (expansion - 1) * 0.5

        expanded_mask = np.logical_or(
            expanded_mask,
            skimage.draw.polygon2mask(new_ct_size, np.array(list(zip(r, c)))),
        )

    return expanded_mask
Esempio n. 3
0
    def from_lists(self, x, y, meta={}):
        """  import x and y lists

        Parameters
        ----------
        x : list
            List of float x values
        y : list
            List of float y values
        meta : dict, optional

        Returns
        -------
        Profile

        Examples
        --------
        ``profile = Profile().fron_lists(x_list,data_list)``

        """

        self.x = np.array(x)
        self.y = np.array(y)
        self.__init__(x=x, y=y, meta=meta)
        return Profile(x=x, y=y, meta=meta)
Esempio n. 4
0
def random_uncompared_logfiles(index, config, compared_hashes):
    index_set = set(index.keys())
    comparison_set = set(compared_hashes)

    not_yet_compared = np.array(list(index_set.difference(comparison_set)))
    field_types = np.array(
        [
            index[file_hash]["delivery_details"]["field_type"]
            for file_hash in not_yet_compared
        ]
    )

    file_hashes_vmat = not_yet_compared[field_types == "VMAT"]

    vmat_filepaths = np.array(
        [
            os.path.join(
                config["linac_logfile_data_directory"],
                "indexed",
                index[file_hash]["filepath"],
            )
            for file_hash in file_hashes_vmat
        ]
    )

    shuffle_index = np.arange(len(vmat_filepaths))
    np.random.shuffle(shuffle_index)

    return file_hashes_vmat[shuffle_index], vmat_filepaths[shuffle_index]
Esempio n. 5
0
def visual_circle_and_ellipse(insert_x, insert_y, width, length,
                              circle_centre):

    t = np.linspace(0, 2 * np.pi)
    circle = {
        "x": width / 2 * np.sin(t) + circle_centre[0],
        "y": width / 2 * np.cos(t) + circle_centre[1],
    }

    x_shift, y_shift, rotation_angle = visual_alignment_of_equivalent_ellipse(
        insert_x, insert_y, width, length, None)

    rotation_matrix = np.array([
        [np.cos(rotation_angle), -np.sin(rotation_angle)],
        [np.sin(rotation_angle),
         np.cos(rotation_angle)],
    ])

    ellipse = np.array([length / 2 * np.sin(t), width / 2 * np.cos(t)]).T

    rotated_ellipse = ellipse @ rotation_matrix

    translated_ellipse = rotated_ellipse + np.array([y_shift, x_shift])
    ellipse = {"x": translated_ellipse[:, 1], "y": translated_ellipse[:, 0]}

    return circle, ellipse
Esempio n. 6
0
    def _matches_fraction(self,
                          dicom_dataset,
                          fraction_number,
                          gantry_tol=3,
                          meterset_tol=0.5):
        filtered = self._filter_cps()
        dicom_metersets = get_fraction_group_beam_sequence_and_meterset(
            dicom_dataset, fraction_number)[1]

        dicom_fraction = convert_to_one_fraction_group(dicom_dataset,
                                                       fraction_number)

        gantry_angles = get_gantry_angles_from_dicom(dicom_fraction)

        delivery_metersets = filtered._metersets(  # pylint: disable = protected-access
            gantry_angles, gantry_tol)

        try:
            maximmum_diff = np.max(
                np.abs(
                    np.array(dicom_metersets) - np.array(delivery_metersets)))
        except ValueError:
            maximmum_diff = np.inf

        return maximmum_diff <= meterset_tol
Esempio n. 7
0
def dicom_dose_interpolate(interp_coords, dicom_dose_dataset):
    """Interpolates across a DICOM dose dataset.

    Parameters
    ----------
    interp_coords : tuple(z, y, x)
        A tuple of coordinates in DICOM order, z axis first, then y, then x
        where x, y, and z are DICOM axes.
    dose : pydicom.Dataset
        An RT DICOM Dose object
    """

    interp_z = np.array(interp_coords[0], copy=False)[:, None, None]
    interp_y = np.array(interp_coords[1], copy=False)[None, :, None]
    interp_x = np.array(interp_coords[2], copy=False)[None, None, :]

    coords, dicom_dose_dataset = zyx_and_dose_from_dataset(dicom_dose_dataset)
    interpolation = scipy.interpolate.RegularGridInterpolator(
        coords, dicom_dose_dataset)

    try:
        result = interpolation((interp_z, interp_y, interp_x))
    except ValueError:
        print(f"coords: {coords}")
        raise

    return result
Esempio n. 8
0
    def _fraction_number(self, dicom_template, gantry_tol=3, meterset_tol=0.5):
        fractions = dicom_template.FractionGroupSequence

        if len(fractions) == 1:
            return fractions[0].FractionGroupNumber

        fraction_numbers = [
            fraction.FractionGroupNumber for fraction in fractions
        ]

        fraction_matches = np.array([
            self._matches_fraction(
                dicom_template,
                fraction_number,
                gantry_tol=gantry_tol,
                meterset_tol=meterset_tol,
            ) for fraction_number in fraction_numbers
        ])

        if np.sum(fraction_matches) < 1:
            raise ValueError(
                "A fraction group was not able to be found with the metersets "
                "and gantry angles defined by the tolerances provided. "
                "Please manually define the fraction group number.")

        if np.sum(fraction_matches) > 1:
            raise ValueError(
                "More than one fraction group was found that had metersets "
                "and gantry angles within the tolerances provided. "
                "Please manually define the fraction group number.")

        fraction_number = np.array(fraction_numbers)[fraction_matches]

        return fraction_number
Esempio n. 9
0
def calculate_anti_aliased_mask(contours, dcm_ct, expansion=5):
    transformation_params = get_image_transformation_parameters(dcm_ct)
    dx, dy, Cx, Cy, Ox, Oy = transformation_params

    x_grid, y_grid, ct_size = get_grid(
        dcm_ct, transformation_params=transformation_params)

    new_ct_size = np.array(ct_size) * expansion

    expanded_mask = np.zeros(new_ct_size)

    for xyz in contours:
        x = np.array(xyz[0::3])
        y = np.array(xyz[1::3])
        z = xyz[2::3]

        assert len(set(z)) == 1

        r = (((y - Cy) / dy * Oy)) * expansion + (expansion - 1) * 0.5
        c = (((x - Cx) / dx * Ox)) * expansion + (expansion - 1) * 0.5

        expanded_mask = np.logical_or(
            expanded_mask,
            skimage.draw.polygon2mask(new_ct_size, np.array(list(zip(r, c)))),
        )

    mask = reduce_expanded_mask(expanded_mask, ct_size[0], expansion)
    mask = 2 * mask - 1

    return x_grid, y_grid, mask
Esempio n. 10
0
def find_data_index(file_contents):
    """Searches through the mephysto file for where the BEGIN_DATA and END_DATA
    appear. This region contains only the raw data in column format. Returns a
    list of ranges which span each scan region.
    """
    # Find the positions of BEGIN_DATA
    # Demo of match -- https://regex101.com/r/lR4pS2/5
    begin_data_index = np.array([
        i for i, item in enumerate(file_contents)
        if re.search(r"^\t\tBEGIN_DATA$", item)
    ]).astype(int)

    # Find the positions of END_DATA
    # Demo of match -- https://regex101.com/r/lR4pS2/6
    end_data_index = np.array([
        i for i, item in enumerate(file_contents)
        if re.search(r"^\t\tEND_DATA$", item)
    ]).astype(int)

    # Convert the indices into the range type allowing for easy looping
    data_index = [
        range(begin_data_index[i] + 1, end_data_index[i])
        for i in range(len(begin_data_index))
    ]

    return data_index
Esempio n. 11
0
def find_scan_index(file_contents):
    """Searches through the mephysto file for where the BEGIN_SCAN and END_SCAN
    appear. This region contains all of the information for a given scan within
    the mephysto file. Returns a list of ranges which span each scan region.
    """
    # Find the positions of all BEGIN_SCAN
    # Demo of match -- https://regex101.com/r/lR4pS2/2
    # Demo of ignoring "BEGIN_SCAN_DATA" -- https://regex101.com/r/lR4pS2/4
    # Basic guide to regular expressions (regex):
    #    http://www.regular-expressions.info/quickstart.html
    begin_scan_index = np.array([
        i for i, item in enumerate(file_contents)
        if re.search(r"^\tBEGIN_SCAN\s\s\d+$", item)
    ]).astype(int)

    # Find the positions of all END_SCAN
    # Regex demo here -- https://regex101.com/r/lR4pS2/3
    end_scan_index = np.array([
        i for i, item in enumerate(file_contents)
        if re.search(r"^\tEND_SCAN\s\s\d+$", item)
    ]).astype(int)

    # Convert the indices into the range type allowing for easy looping
    scan_index = [
        range(begin_scan_index[i] + 1, end_scan_index[i])
        for i in range(len(begin_scan_index))
    ]

    return scan_index
Esempio n. 12
0
def calc_min_distance(cube_definition, contours):
    vertices = cube_vertices(cube_definition)

    vectors = cube_vectors(cube_definition)
    unit_vectors = [vector / np.linalg.norm(vector) for vector in vectors]

    plane_norms = np.array(
        [
            unit_vectors[1],
            -unit_vectors[0],
            -unit_vectors[1],
            unit_vectors[0],
            unit_vectors[2],
            -unit_vectors[2],
        ]
    )

    plane_points = np.array(
        [vertices[0], vertices[1], vertices[2], vertices[0], vertices[0], vertices[3]]
    )

    plane_origin_dist = -np.sum(plane_points * plane_norms, axis=1)

    distance_to_planes = np.dot(plane_norms, contours) + plane_origin_dist[:, None]

    min_dist_squared = np.min(distance_to_planes ** 2, axis=0)

    return min_dist_squared
Esempio n. 13
0
    def __init__(self, x=np.array([]), y=np.array([]), meta={}):
        """ create profile

        Parameters
        ----------
        x : np.array, optional
        y : np.array, optional
        meta : dict, optional

        Notes
        -----
        Normally created empty, then filled using a method, which returns
        a new Profile.

        """
        self.x = np.array(x)
        self.y = np.array(y)
        self.meta = meta
        if len(self.x) < 2:
            self.interp = None
        else:
            self.interp = interpolate.interp1d(self.x,
                                               self.y,
                                               bounds_error=False,
                                               fill_value=0.0)
Esempio n. 14
0
def pull_coords_from_contour_sequence(contour_sequence):
    contours_by_slice_raw = [item.ContourData for item in contour_sequence]

    x = [np.array(item[0::3]) for item in contours_by_slice_raw]
    y = [np.array(item[1::3]) for item in contours_by_slice_raw]
    z = [np.array(item[2::3]) for item in contours_by_slice_raw]

    return x, y, z
Esempio n. 15
0
    def field(x, y):
        x = np.array(x, copy=False)
        y = np.array(y, copy=False)
        x_shifted = x - centre[0]
        y_shifted = y - centre[1]
        x_rotated, y_rotated = rotate_coords(x_shifted, y_shifted, theta)

        return width_profile(x_rotated) * length_profile(y_rotated)
Esempio n. 16
0
def create_dose_function(net_od, dose):
    net_od = np.array(net_od, copy=False)
    dose = np.array(dose, copy=False)

    to_minimise = create_to_minimise(net_od, dose)
    result = basinhopping(to_minimise, [np.max(dose) / np.max(net_od), 1, 1])

    return create_cal_fit(*result.x)
Esempio n. 17
0
 def as_array(self, only_coords: bool = True):
     """Return the point as a numpy array."""
     if only_coords:
         return np.array([getattr(self, item) for item in self._coord_list])
     else:
         return np.array([
             getattr(self, item) for item in self._attr_list
             if (getattr(self, item) is not None)
         ])
Esempio n. 18
0
def calculate_coordinates_shell_1d(distance):
    """Output the two points that are of the defined distance in one-dimension
    """
    if distance == 0:
        x_coords = np.array([0])
    else:
        x_coords = np.array([distance, -distance])

    return (x_coords,)
Esempio n. 19
0
    def from_snc_profiler(self, file_name, axis):
        """ import profile form SNC Profiler file

        Parameters
        ----------
        file_name : string
            file name with path, .prs
        axis : string
            'tvs' or 'rad'

        Returns
        -------
        Profile

        Raises
        ------
        TypeError
            if axis invalid

        """

        with open(file_name) as profiler_file:
            munge = "\n".join(profiler_file.readlines())
            munge = munge.replace("\t", "").replace(": ", ":")
            munge = munge.replace(" Time:", "\nTime:")  # BREAK 2-ITEM ROWS
            munge = munge.replace(" Revision:", "\nRevision:")
            munge = munge.replace("Energy:", "\nEnergy:")
            munge = munge.replace("Dose:", "\nDose:")
            munge = munge.replace("Collimator Angle:", "\nCollimator Angle:")
            munge = munge.split("TYPE")[0].split("\n")  # DISCARD NON-METADATA
            munge = [i.split(":", 1) for i in munge if i and ":" in i]
            munge = [i for i in munge if i[1]]  # DISCARD EMPTY ITEMS
            meta = dict(munge)

        with open(file_name) as profiler_file:
            for row in profiler_file.readlines():
                if row[:11] == "Calibration" and "File" not in row:
                    calibs = np.array(row.split())[1:].astype(float)
                elif row[:5] == "Data:":
                    counts = np.array(row.split()[5:145]).astype(float)
                elif row[:15] == "Dose Per Count:":
                    dose_per_count = float(row.split()[-1])
        dose = counts * dose_per_count * calibs

        x_vals = [-11.2 + 0.4 * i for i in range(57)]
        x_prof = list(zip(x_vals, dose[:57]))
        y_vals = [-16.4 + 0.4 * i for i in range(83)]
        y_prof = list(zip(y_vals, dose[57:]))

        if axis == "tvs":
            return Profile().from_tuples(x_prof, meta=meta)
        elif axis == "rad":
            return Profile().from_tuples(y_prof, meta=meta)
        else:
            raise TypeError("axis must be 'tvs' or 'rad'")
Esempio n. 20
0
def calculate_deformability(x_test, y_test, x_data, y_data, z_data):
    """Return the result of the deformability test.

    This function takes an array of test points and loops over
    ``_single_calculate_deformability``.

    The deformability test applies a shift to the spline to determine whether
    or not sufficient information for modelling is available. For further
    details on the deformability test see the *Methods: Defining valid
    prediction regions of the spline* section within
    <http://dx.doi.org/10.1016/j.ejmp.2015.11.002>.

    Parameters
    ----------
    x_test : np.ndarray
        The x coordinate of the point(s) to test
    y_test : np.ndarray
        The y coordinate of the point(s) to test
    x_data : np.ndarray
        The x coordinate of the model data to test
    y_data : np.ndarray
        The y coordinate of the model data to test
    z_data : np.ndarray
        The z coordinate of the model data to test

    Returns
    -------
    deformability : float
        The resulting deformability between 0 and 1
        representing the ratio of deviation the spline model underwent at
        the point in question by introducing an outlier at the point in
        question.

    """
    dim = np.shape(x_test)

    if np.size(dim) == 0:
        deformability = _single_calculate_deformability(
            x_test, y_test, x_data, y_data, z_data)

    elif np.size(dim) == 1:
        deformability = np.array([
            _single_calculate_deformability(x_test[i], y_test[i], x_data,
                                            y_data, z_data)
            for i in range(dim[0])
        ])

    else:
        deformability = np.array([[
            _single_calculate_deformability(x_test[i, j], y_test[i, j], x_data,
                                            y_data, z_data)
            for j in range(dim[1])
        ] for i in range(dim[0])])

    return deformability
Esempio n. 21
0
def delivery_from_tel_plan_contents(tel_contents):
    pattern = get_control_point_pattern()
    all_controlpoint_results = re.findall(pattern, tel_contents)

    mu = np.cumsum([float(result[4])
                    for result in all_controlpoint_results]).tolist()

    iec_gantry_angle = [
        float(result[2]) for result in all_controlpoint_results
    ]
    bipolar_gantry_angle = pymedphys._utilities.transforms.convert_IEC_angle_to_bipolar(  # pylint: disable = protected-access
        iec_gantry_angle).tolist()

    iec_coll_angle = [float(result[3]) for result in all_controlpoint_results]
    bipolar_coll_angle = pymedphys._utilities.transforms.convert_IEC_angle_to_bipolar(  # pylint: disable = protected-access
        iec_coll_angle).tolist()

    mlcs = [
        convert_mlc_string(result[0]) for result in all_controlpoint_results
    ]

    jaw_gap = np.array(
        [float(result[5]) for result in all_controlpoint_results])
    jaw_field_centre = np.array(
        [float(result[6]) for result in all_controlpoint_results])
    jaw_a = jaw_field_centre + jaw_gap / 2
    jaw_b = -(jaw_field_centre - jaw_gap / 2)
    jaws = np.vstack([jaw_a, jaw_b]).T.tolist()

    for i in range(len(mu) - 1, -1, -1):
        result = all_controlpoint_results[i]
        if result[
                1] == "2,2":  #  A nasty hack to attempt to find static fields
            if i == 0:
                mu = [0] + mu
            else:
                mu = mu[0:i] + [mu[i - 1]] + mu[i::]

            bipolar_gantry_angle = (bipolar_gantry_angle[0:i] +
                                    [bipolar_gantry_angle[i]] +
                                    bipolar_gantry_angle[i::])

            bipolar_coll_angle = (bipolar_coll_angle[0:i] +
                                  [bipolar_coll_angle[i]] +
                                  bipolar_coll_angle[i::])

            mlcs = mlcs[0:i] + [mlcs[i]] + mlcs[i::]
            jaws = jaws[0:i] + [jaws[i]] + jaws[i::]
        elif result[1] != "1,1":
            raise ValueError(
                "Detection for static or dynamic control points has fallen down"
            )

    return mu, bipolar_gantry_angle, bipolar_coll_angle, mlcs, jaws
Esempio n. 22
0
def test_if_in_range(point_test, point_start, point_end):
    point_test = np.array(point_test)
    point_start = np.array(point_start)
    point_end = np.array(point_end)

    vector = point_end - point_start
    dot = np.dot(point_test, vector)
    item = [dot, np.dot(vector, point_start), np.dot(vector, point_end)]
    item.sort()

    return item[1] == dot
Esempio n. 23
0
def group_consecutive_logfiles(file_hashes, index):
    times = np.array([index[key]["local_time"]
                      for key in file_hashes]).astype(np.datetime64)

    sort_reference = np.argsort(times)
    file_hashes = file_hashes[sort_reference]
    times = times[sort_reference]

    hours_4 = np.array(60 * 60 * 4).astype(np.timedelta64)
    split_locations = np.where(np.diff(times) >= hours_4)[0] + 1

    return np.split(file_hashes, split_locations)
Esempio n. 24
0
def apply_transform(xx, yy, transform):
    xx = np.array(xx, copy=False)
    yy = np.array(yy, copy=False)

    xx_flat = np.ravel(xx)
    transformed = transform @ np.vstack(
        [xx_flat, np.ravel(yy), np.ones_like(xx_flat)])

    xx_transformed = transformed[0]
    yy_transformed = transformed[1]

    xx_transformed.shape = xx.shape
    yy_transformed.shape = yy.shape

    return xx_transformed, yy_transformed
Esempio n. 25
0
def decode_msq_mlc(raw_bytes):
    """Convert MLCs from Mosaiq SQL byte format to cm floats.
    """
    raw_bytes = mosaiq_mlc_missing_byte_workaround(raw_bytes)

    length = check_all_items_equal_length(raw_bytes, "mlc bytes")

    if length % 2 == 1:
        raise ValueError(
            "There should be an even number of bytes within an MLC record."
        )

    mlc_pos = (
        np.array(
            [
                [
                    struct.unpack("<h", control_point[2 * i : 2 * i + 2])
                    for i in range(len(control_point) // 2)
                ]
                for control_point in raw_bytes
            ]
        )
        / 100
    )

    return mlc_pos
Esempio n. 26
0
def batch_process(image_paths,
                  edge_lengths,
                  bb_diameter=8,
                  penumbra=2,
                  display_figure=True):
    bb_centres = []
    field_centres = []
    field_rotations = []

    for image_path in image_paths:
        bb_centre, field_centre, field_rotation = iview_find_bb_and_field(
            image_path,
            edge_lengths,
            bb_diameter=bb_diameter,
            penumbra=penumbra,
            display_figure=display_figure,
        )

        bb_centres.append(bb_centre)
        field_centres.append(field_centre)
        field_rotations.append(field_rotation)

        if display_figure:
            plt.show()

    data = np.concatenate(
        [bb_centres, field_centres,
         np.array(field_rotations)[:, None]],
        axis=1)
    return pd.DataFrame(
        data=data, columns=["BB x", "BB y", "Field x", "Field y", "Rotation"])
Esempio n. 27
0
def get_dose_grid_structure_mask(structure_name, dcm_struct, dcm_dose):
    x_dose, y_dose, z_dose = xyz_axes_from_dataset(dcm_dose)

    xx_dose, yy_dose = np.meshgrid(x_dose, y_dose)
    points = np.swapaxes(np.vstack([xx_dose.ravel(), yy_dose.ravel()]), 0, 1)

    x_structure, y_structure, z_structure = pull_structure(
        structure_name, dcm_struct)
    structure_z_values = np.array([item[0] for item in z_structure])

    mask = np.zeros((len(y_dose), len(x_dose), len(z_dose)), dtype=bool)

    for z_val in structure_z_values:
        structure_indices = _get_indices(z_structure, z_val)

        for structure_index in structure_indices:
            dose_index = int(np.where(z_dose == z_val)[0])

            assert z_structure[structure_index][0] == z_dose[dose_index]

            structure_polygon = matplotlib.path.Path([
                (x_structure[structure_index][i],
                 y_structure[structure_index][i])
                for i in range(len(x_structure[structure_index]))
            ])
            mask[:, :, dose_index] = mask[:, :, dose_index] | (
                structure_polygon.contains_points(points).reshape(
                    len(y_dose), len(x_dose)))

    return mask
Esempio n. 28
0
def _get_indices(z_list, z_val):
    indices = np.array([item[0] for item in z_list])
    # This will error if more than one contour exists on a given slice
    desired_indices = np.where(indices == z_val)[0]
    # Multiple contour sets per slice not yet implemented

    return desired_indices
Esempio n. 29
0
def find_consecutive_logfiles(field_id_key_map, field_id, filehash, index):
    keys = np.array(field_id_key_map[field_id])

    times = np.array([index[key]["local_time"] for key in keys]).astype(np.datetime64)

    sort_reference = np.argsort(times)
    keys = keys[sort_reference]
    times = times[sort_reference]

    hours_4 = np.array(60 * 60 * 4).astype(np.timedelta64)

    delivery_time = np.array(index[filehash]["local_time"]).astype(np.datetime64)
    within_4_hours_reference = np.abs(delivery_time - times) < hours_4
    within_4_hours = keys[within_4_hours_reference].tolist()

    return within_4_hours
Esempio n. 30
0
def calc_mu_density_return_grid(
    mu,
    mlc,
    jaw,
    grid_resolution=__DEFAULT_GRID_RESOLUTION,
    max_leaf_gap=__DEFAULT_MAX_LEAF_GAP,
    leaf_pair_widths=__DEFAULT_LEAF_PAIR_WIDTHS,
    min_step_per_pixel=__DEFAULT_MIN_STEP_PER_PIXEL,
):
    """DEPRECATED. This is a temporary helper function to provide the old
    api.
    """

    leaf_pair_widths = np.array(leaf_pair_widths)
    mu_density = calc_mu_density(
        mu,
        mlc,
        jaw,
        grid_resolution=grid_resolution,
        max_leaf_gap=max_leaf_gap,
        leaf_pair_widths=leaf_pair_widths,
        min_step_per_pixel=min_step_per_pixel,
    )

    full_grid = get_grid(max_leaf_gap, grid_resolution, leaf_pair_widths)

    grid_xx, grid_yy = np.meshgrid(full_grid["mlc"], full_grid["jaw"])

    return grid_xx, grid_yy, mu_density