Esempio n. 1
0
def get_alorithm(name, method_args):
    if name == 'ga':
        from pymoo.algorithms.so_genetic_algorithm import ga
        return ga(**method_args)
    elif name == 'nsga2':
        from pymoo.algorithms.nsga2 import nsga2
        return nsga2(**method_args)
    elif name == 'rnsga2':
        from pymoo.algorithms.rnsga2 import rnsga2
        return rnsga2(**method_args)
    elif name == 'nsga3':
        from pymoo.algorithms.nsga3 import nsga3
        return nsga3(**method_args)
    elif name == 'unsga3':
        from pymoo.algorithms.unsga3 import unsga3
        return unsga3(**method_args)
    elif name == 'rnsga3':
        from pymoo.algorithms.rnsga3 import rnsga3
        return rnsga3(**method_args)
    elif name == 'moead':
        from pymoo.algorithms.moead import moead
        return moead(**method_args)
    elif name == 'de':
        from pymoo.algorithms.so_de import de
        return de(**method_args)
    else:
        raise Exception("Algorithm not known.")
Esempio n. 2
0
    def test_same_seed_same_result(self):
        problem = get_problem("zdt3")
        algorithm = nsga2(pop_size=100, elimate_duplicates=True)

        res1 = minimize(problem, algorithm, ('n_gen', 20), seed=1)
        res2 = minimize(problem, algorithm, ('n_gen', 20), seed=1)

        self.assertEqual(res1.X.shape, res2.X.shape)
        self.assertTrue(np.all(np.allclose(res1.X, res2.X)))
Esempio n. 3
0
    def test_no_pareto_front_given(self):
        class ZDT1NoPF(ZDT):
            def _evaluate(self, x, out, *args, **kwargs):
                f1 = x[:, 0]
                g = 1 + 9.0 / (self.n_var - 1) * np.sum(x[:, 1:], axis=1)
                f2 = g * (1 - np.power((f1 / g), 0.5))
                out["F"] = np.column_stack([f1, f2])

        algorithm = nsga2(pop_size=100, elimate_duplicates=True)
        minimize(ZDT1NoPF(), algorithm, ('n_gen', 20), seed=1, verbose=True)
Esempio n. 4
0
    def test_crossover(self):

        for crossover in ['real_de', 'real_sbx', 'real_exp']:
            print(crossover)
            method = ga(pop_size=20,
                        crossover=get_crossover(crossover, prob=0.95))
            minimize(get_problem("sphere"), method, ("n_gen", 20))

        for crossover in [
                'bin_ux', 'bin_hux', 'bin_one_point', 'bin_two_point'
        ]:
            print(crossover)
            method = nsga2(pop_size=20,
                           crossover=get_crossover(crossover, prob=0.95))
            minimize(get_problem("zdt5"), method, ("n_gen", 20))
Esempio n. 5
0
def rnsga2(ref_points,
           epsilon=0.001,
           normalization="front",
           weights=None,
           extreme_points_as_reference_points=False,
           **kwargs):
    """


    Parameters
    ----------

    ref_points : {ref_points}

    epsilon : float

    weights : np.array

    normalization : {{'no', 'front', 'ever'}}

    extreme_points_as_reference_points : bool



    Returns
    -------
    rnsga2 : :class:`~pymoo.model.algorithm.Algorithm`
        Returns an RNSGA2 algorithm object.


    """

    rnsga2 = nsga2(**kwargs)

    rnsga2.epsilon = epsilon
    rnsga2.weights = weights
    rnsga2.normalization = normalization
    rnsga2.selection = RandomSelection()
    rnsga2.survival = RankAndModifiedCrowdingSurvival(
        ref_points, epsilon, weights, normalization,
        extreme_points_as_reference_points)

    return rnsga2
Esempio n. 6
0
def solve(fd: FoodDistribution):
    problem = SolverProblem(fd)
    method = nsga2(pop_size=70)
    t = time.time()
    print('start')
    res = minimize(problem,
                   method,
                   termination=('n_gen', 20),
                   seed=2,
                   save_history=True,
                   disp=True)
    print('end: ', time.time() - t)
    plt.figure(1)
    plt.clf()
    for g, a in enumerate(res.history):
        a.opt = a.pop.copy()
        a.opt = a.opt[a.opt.collect(lambda ind: ind.feasible)[:, 0]]
        I = NonDominatedSorting().do(a.opt.get("F"),
                                     only_non_dominated_front=True)
        a.opt = a.opt[I]
        X, F, CV, G = a.opt.get("X", "F", "CV", "G")
        plt.figure(1)
        plt.scatter(F[:, 0], F[:, 1], c=[[g / len(res.history), 0, 0]], s=5**2)
        plt.figure(2)
        plt.clf()
        plt.scatter(F[:, 0], F[:, 1], s=5**2)
        plt.xlabel('remaining demand')
        plt.ylabel('cost')
        plt.savefig('../g_{}.eps'.format(g), format='eps')
    plt.figure(1)
    #plotting.plot(res.F, no_fill=True, show=False)
    plt.xlabel('remaining demand')
    plt.ylabel('cost')
    plt.show()
    plt.savefig('../scatter.eps', format='eps')
    return res.X
Esempio n. 7
0
    n_runs = 100

    # problems to be investigated
    # problems = ['zdt1', 'zdt2', 'zdt3', 'zdt4', 'zdt6']
    problems = setup.keys()

    # path were the files for this experiment are saved
    path = os.path.join(prefix, name)

    for _problem in problems:

        s = setup[_problem]
        problem = s['problem']

        method = nsga2(pop_size=s['pop_size'],
                       crossover=s['crossover'],
                       mutation=s['mutation'],
                       eliminate_duplicates=True)

        termination = s['termination']

        for run in range(1, n_runs + 1):

            fname = "%s_%s.run" % (_problem, run)
            _in = os.path.join(path, fname)
            _out = "results/%s/%s/%s_%s.out" % (name, _problem.replace(
                "_", "/"), _problem, run)

            data = {
                'args': [problem, method, termination],
                'kwargs': {
                    'seed': run,
            f1 = x[:, 0]
            c = anp.sum(x[:, 1:], axis=1)
            g = 1.0 + 9.0 * c / (self.n_var - 1)
            f2 = g * (1 - anp.power((f1 * 1.0 / g), 2))

            out["F"] = anp.column_stack([f1, f2])

    problem = ZDT2(n_var=30)

    # create the algorithm instance by specifying the intended parameters

    # from pymoo.algorithms.NSGAII import NSGAII
    # algorithm = NSGAII("real", pop_size=100, verbose=True)

    from pymoo.algorithms.nsga2 import nsga2
    algorithm = nsga2("real", pop_size=100, verbose=True)

    start_time = time.time()

    # save the history in an object to observe the convergence over generations
    history = []

    # number of generations to run it
    n_gen = 200

    # solve the problem and return the results
    X, F, G = algorithm.solve(problem,
                              evaluator=(100 * n_gen),
                              seed=2,
                              return_only_feasible=False,
                              return_only_non_dominated=False,
    def _calc_pareto_front(self):
        return -15

    def _calc_pareto_set(self):
        return anp.array([
            1,
            1,
        ])


myProblem = myProblem()

method = nsga2(pop_size=50,
               sampling=RandomSampling(var_type=np.int),
               crossover=SimulatedBinaryCrossover(prob=0.9,
                                                  eta=15,
                                                  var_type=np.int),
               mutation=PolynomialMutation(prob=None, eta=20),
               elimate_duplicates=True)

res = minimize(myProblem, method, termination=('n_gen', 50), disp=False)

# print("Best solution found: \nX = %s\nF = %s" % (res.X, res.F))
print("Best solution found: %s" % res.X)
print("Function value: %s" % res.F)
print("Constraint violation: %s" % res.CV)
# plotting.plot(res.F, no_fill=True)
np.save('Best_sol.npy', res.X)
np.save('Func_val.npy', res.F)
Esempio n. 10
0
def run_nsgaii_solver_pb(name):
    # initialize engine
    eng = matlab.engine.start_matlab()
    # add path to matlab benchmarks repertory, for example:
    eng.addpath("../problems")

    # initialize dictionnary
    dict_problems = dict()

    # BK1
    dict_problems["BK1"] = (eng.BK1, 2, 2, np.array([-5,
                                                     -5]), np.array([10, 10]))

    # CL1
    F_p = 10
    sigma_p = 10
    lb = np.array([
        F_p / sigma_p,
        math.sqrt(2) * F_p / sigma_p,
        math.sqrt(2) * F_p / sigma_p,
        F_p / sigma_p,
    ])
    dict_problems["CL1"] = (eng.CL1, 4, 2, np.copy(lb),
                            (3 * F_p / sigma_p) * np.ones(4))

    # Deb41 function
    lb = np.array([0.1, 0.0])
    dict_problems["Deb41"] = (eng.Deb41, 2, 2, lb, np.ones(2))

    # Deb512a function
    dict_problems["Deb512a"] = (eng.Deb512a, 2, 2, np.zeros(2), np.ones(2))

    # Deb512b function
    dict_problems["Deb512b"] = (eng.Deb512b, 2, 2, np.zeros(2), np.ones(2))

    # Deb512c function
    dict_problems["Deb512c"] = (eng.Deb512c, 2, 2, np.zeros(2), np.ones(2))

    # Deb513 function:
    dict_problems["Deb513"] = (eng.Deb513, 2, 2, np.zeros(2), np.ones(2))

    # Deb521a function
    dict_problems["Deb521a"] = (eng.Deb521a, 2, 2, np.zeros(2), np.ones(2))

    # Deb521b function
    dict_problems["Deb521b"] = (eng.Deb521b, 2, 2, np.zeros(2), np.ones(2))

    # Deb53 function
    dict_problems["Deb53"] = (eng.Deb53, 2, 2, np.zeros(2), np.ones(2))

    # DG01 function
    dict_problems["DG01"] = (eng.DG01, 1, 2, -10 * np.ones(1), 13 * np.ones(1))

    # DPAM1 function
    dict_problems["DPAM1"] = (eng.DPAM1, 10, 2, -0.3 * np.ones(10),
                              0.3 * np.ones(10))

    # DTLZ1 function
    dict_problems["DTLZ1"] = (eng.DTLZ1, 7, 3, np.zeros(7), np.ones(7))

    # DTLZ1n2 function
    dict_problems["DTLZ1n2"] = (eng.DTLZ1n2, 2, 2, np.zeros(2), np.ones(2))

    # DTLZ2 function
    dict_problems["DTLZ2"] = (eng.DTLZ2, 12, 3, np.zeros(12), np.ones(12))

    # DTLZn2 function
    dict_problems["DTLZ2n2"] = (eng.DTLZ2n2, 2, 2, np.zeros(2), np.ones(2))

    # DTLZ3 function
    dict_problems["DTLZ3"] = (eng.DTLZ3, 12, 3, np.zeros(12), np.ones(12))

    # DTLZ3n2 function
    dict_problems["DTLZ3n2"] = (eng.DTLZ3n2, 2, 2, np.zeros(2), np.ones(2))

    # DTLZ4 function
    dict_problems["DTLZ4"] = (eng.DTLZ4, 12, 3, np.zeros(12), np.ones(12))

    # DTLZ4n2 function
    dict_problems["DTLZ4n2"] = (eng.DTLZ4n2, 2, 2, np.zeros(2), np.ones(2))

    # DTLZ5 function
    dict_problems["DTLZ5"] = (eng.DTLZ5, 12, 3, np.zeros(12), np.ones(12))

    # DTLZ5n2 function
    dict_problems["DTLZ5n2"] = (eng.DTLZ5n2, 2, 2, np.zeros(2), np.ones(2))

    # DTLZ6 function
    dict_problems["DTLZ6"] = (eng.DTLZ6, 22, 3, np.zeros(22), np.ones(22))

    # DTLZ6n2 function
    dict_problems["DTLZ6n2"] = (eng.DTLZ6n2, 2, 2, np.zeros(2), np.ones(2))

    # ex005 function
    dict_problems["ex005"] = (eng.ex005, 2, 2, np.array([-1,
                                                         1]), np.array([2, 2]))

    # Far1 function
    dict_problems["Far1"] = (eng.Far1, 2, 2, -1 * np.ones(2), np.ones(2))

    # FES1 function
    dict_problems["FES1"] = (eng.FES1, 10, 2, np.zeros(10), np.ones(10))

    # FES2 function
    dict_problems["FES2"] = (eng.FES2, 10, 3, np.zeros(10), np.ones(10))

    # FES3 function
    dict_problems["FES3"] = (eng.FES3, 10, 4, np.zeros(10), np.ones(10))

    # Fonseca function
    dict_problems["Fonseca"] = (eng.Fonseca, 2, 2, -4 * np.ones(2),
                                4 * np.ones(2))

    # I1 function
    dict_problems["I1"] = (eng.I1, 8, 3, np.zeros(8), np.ones(8))

    # I2 function
    dict_problems["I2"] = (eng.I2, 8, 3, np.zeros(8), np.ones(8))

    # I3 function
    dict_problems["I3"] = (eng.I3, 8, 3, np.zeros(8), np.ones(8))

    # I4 function
    dict_problems["I4"] = (eng.I4, 8, 3, np.zeros(8), np.ones(8))

    # I5 function
    dict_problems["I5"] = (eng.I5, 8, 3, np.zeros(8), np.ones(8))

    # IKK1 function
    dict_problems["IKK1"] = (eng.IKK1, 2, 3, -50 * np.ones(2), 50 * np.ones(2))

    # IM1 function
    dict_problems["IM1"] = (eng.IM1, 2, 2, np.ones(2), np.array([4, 2]))

    # Jin1 function
    dict_problems["Jin1"] = (eng.Jin1, 2, 2, np.zeros(2), np.ones(2))

    # Jin2 function
    dict_problems["Jin2"] = (eng.Jin2, 2, 2, np.zeros(2), np.ones(2))

    # Jin3 function
    dict_problems["Jin3"] = (eng.Jin3, 2, 2, np.zeros(2), np.ones(2))

    # Jin4 function
    dict_problems["Jin4"] = (eng.Jin4, 2, 2, np.zeros(2), np.ones(2))

    # Kursawe function
    dict_problems["Kursawe"] = (eng.Kursawe, 3, 2, -5 * np.ones(3),
                                5 * np.ones(3))

    # L1ZDT4 function
    dict_problems["L1ZDT4"] = (
        eng.L1ZDT4,
        10,
        1,
        np.concatenate([np.array([0]), -5 * np.ones(9)]),
        np.concatenate([np.array([1]), 5 * np.ones(9)]),
    )

    # L2ZDT1 function
    dict_problems["L2ZDT1"] = (eng.L2ZDT1, 30, 2, np.zeros(30), np.ones(30))

    # L2ZDT2 function
    dict_problems["L2ZDT2"] = (eng.L2ZDT2, 30, 2, np.zeros(30), np.ones(30))

    # L2ZDT3 function
    dict_problems["L2ZDT3"] = (eng.L2ZDT3, 30, 2, np.zeros(30), np.ones(30))

    # L2ZDT4 function
    dict_problems["L2ZDT4"] = (eng.L2ZDT4, 30, 2, np.zeros(30), np.ones(30))

    # L2ZDT6 function
    dict_problems["L2ZDT6"] = (eng.L2ZDT6, 10, 2, np.zeros(10), np.ones(10))

    # L3ZDT1 function
    dict_problems["L3ZDT1"] = (eng.L3ZDT1, 30, 2, np.zeros(30), np.ones(30))

    # L3ZDT2 function
    dict_problems["L3ZDT2"] = (eng.L3ZDT2, 30, 2, np.zeros(30), np.ones(30))

    # L3ZDT3 function
    dict_problems["L3ZDT3"] = (eng.L3ZDT3, 30, 2, np.zeros(30), np.ones(30))

    # L3ZDT4 function
    dict_problems["L3ZDT4"] = (eng.L3ZDT4, 30, 2, np.zeros(30), np.ones(30))

    # L3ZDT6 function
    dict_problems["L3ZDT6"] = (eng.L3ZDT6, 10, 2, np.zeros(10), np.ones(10))

    # LE1 function
    dict_problems["LE1"] = (eng.LE1, 2, 2, np.zeros(2), np.ones(2))

    # lovison1 function
    dict_problems["lovison1"] = (eng.lovison1, 2, 2, np.zeros(2),
                                 3 * np.ones(2))

    # lovison2 function
    dict_problems["lovison2"] = (eng.lovison2, 2, 2, -0.5 * np.ones(2),
                                 np.array([0, 0.5]))

    # lovison3 function
    dict_problems["lovison3"] = (eng.lovison3, 2, 2, np.array([0, -4]),
                                 np.array([6, 4]))

    # lovison4 function
    dict_problems["lovison4"] = (eng.lovison4, 2, 2, np.array([0, -1]),
                                 np.array([6, 1]))

    # lovison5 function
    dict_problems["lovison5"] = (eng.lovison5, 3, 3, -1 * np.ones(3),
                                 4 * np.ones(3))

    # lovison6 function
    dict_problems["lovison6"] = (eng.lovison6, 3, 3, -1 * np.ones(3),
                                 4 * np.ones(3))

    # LRS1 function
    dict_problems["LRS1"] = (eng.LRS1, 2, 2, -50 * np.ones(2), 50 * np.ones(2))

    # MHHM1 function
    dict_problems["MHHM1"] = (eng.MHHM1, 1, 3, np.zeros(1), np.ones(1))

    # MHHM2 function
    dict_problems["MHHM2"] = (eng.MHHM2, 2, 3, np.zeros(2), np.ones(2))

    # MLF1 function
    dict_problems["MLF1"] = (eng.MLF1, 1, 2, np.zeros(1), 20 * np.ones(1))

    # MLF2 function
    dict_problems["MLF2"] = (eng.MLF2, 2, 2, -2 * np.ones(2), 2 * np.ones(2))

    # MOP1 function
    dict_problems["MOP1"] = (eng.MOP1, 1, 2, -10**(-5) * np.ones(1),
                             10**(5) * np.ones(1))

    # MOP2 function
    dict_problems["MOP2"] = (eng.MOP2, 4, 2, -4 * np.ones(4), 4 * np.ones(4))

    # MOP3 function
    dict_problems["MOP3"] = (eng.MOP3, 2, 2, -math.pi * np.ones(2),
                             math.pi * np.ones(2))

    # MOP4 function
    dict_problems["MOP4"] = (eng.MOP4, 3, 2, -5 * np.ones(3), 5 * np.ones(3))

    # MOP5 function
    dict_problems["MOP5"] = (eng.MOP5, 2, 3, -30 * np.ones(2), 30 * np.ones(2))

    # MOP6 function
    dict_problems["MOP6"] = (eng.MOP6, 2, 2, np.zeros(2), np.ones(2))

    # MOP7 function
    dict_problems["MOP7"] = (eng.MOP7, 2, 3, -400 * np.ones(2),
                             400 * np.ones(2))

    # OKA1 function
    lb = np.array(
        [6 * math.sin(math.pi / 12), -2 * math.pi * math.sin(math.pi / 12)])
    ub = np.array([
        6 * math.sin(math.pi / 12) + 2 * math.pi * math.cos(math.pi / 12),
        6 * math.cos(math.pi / 12),
    ])
    dict_problems["OKA1"] = (eng.OKA1, 2, 2, np.copy(lb), np.copy(ub))

    # OKA2 function
    dict_problems["OKA2"] = (
        eng.OKA2,
        3,
        2,
        np.array([-math.pi, -5, -5]),
        np.array([math.pi, 5, 5]),
    )

    # QV1 function
    dict_problems["QV1"] = (eng.QV1, 10, 2, -5.12 * np.ones(10),
                            5.12 * np.ones(10))

    # Sch1 function
    dict_problems["Sch1"] = (eng.Sch1, 1, 2, np.zeros(1), 5 * np.ones(1))

    # SK1 function
    dict_problems["SK1"] = (eng.SK1, 1, 2, np.array([-10]), np.array([10]))

    # SK2 function
    dict_problems["SK2"] = (eng.SK2, 4, 2, -10 * np.ones(4), 10 * np.ones(4))

    # SP1 function
    dict_problems["SP1"] = (eng.SP1, 2, 2, -1 * np.ones(2), 5 * np.ones(2))

    # SSFYY1 function
    dict_problems["SSFYY1"] = (eng.SSFYY1, 2, 2, -100 * np.ones(2),
                               100 * np.ones(2))

    # SSFYY2 function
    dict_problems["SSFYY2"] = (eng.SSFYY2, 1, 2, -100 * np.ones(1),
                               100 * np.ones(1))

    # TKLY1 function
    dict_problems["TKLY1"] = (eng.TKLY1, 4, 2, np.array([0.1, 0, 0,
                                                         0]), np.ones(4))

    # VFM1 function
    dict_problems["VFM1"] = (eng.VFM1, 2, 3, -2 * np.ones(2), 2 * np.ones(2))

    # VU1 function
    dict_problems["VU1"] = (eng.VU1, 2, 2, -3 * np.ones(2), 3 * np.ones(2))

    # VU2 function
    dict_problems["VU2"] = (eng.VU2, 2, 2, -3 * np.ones(2), 3 * np.ones(2))

    # WFG1 function
    dict_problems["WFG1"] = (eng.WFG1, 8, 3, np.zeros(8),
                             2 * np.linspace(1, 8, 8))

    # WFG2 function
    dict_problems["WFG2"] = (eng.WFG2, 8, 3, np.zeros(8),
                             2 * np.linspace(1, 8, 8))

    # WFG3 function
    dict_problems["WFG3"] = (eng.WFG3, 8, 3, np.zeros(8),
                             2 * np.linspace(1, 8, 8))

    # WFG4 function
    dict_problems["WFG4"] = (eng.WFG4, 8, 3, np.zeros(8),
                             2 * np.linspace(1, 8, 8))

    # WFG5 function
    dict_problems["WFG5"] = (eng.WFG5, 8, 3, np.zeros(8),
                             2 * np.linspace(1, 8, 8))

    # WFG6 function
    dict_problems["WFG6"] = (eng.WFG6, 8, 3, np.zeros(8),
                             2 * np.linspace(1, 8, 8))

    # WFG7 function
    dict_problems["WFG7"] = (eng.WFG7, 8, 3, np.zeros(8),
                             2 * np.linspace(1, 8, 8))

    # WFG8 function
    dict_problems["WFG8"] = (eng.WFG8, 8, 3, np.zeros(8),
                             2 * np.linspace(1, 8, 8))

    # WFG9 function
    dict_problems["WFG9"] = (eng.WFG9, 8, 3, np.zeros(8),
                             2 * np.linspace(1, 8, 8))

    # ZDT1 function
    dict_problems["ZDT1"] = (eng.ZDT1, 30, 2, np.zeros(30), np.ones(30))

    # ZDT2 function
    dict_problems["ZDT2"] = (eng.ZDT2, 30, 2, np.zeros(30), np.ones(30))

    # ZDT3 function
    dict_problems["ZDT3"] = (eng.ZDT3, 30, 2, np.zeros(30), np.ones(30))

    # ZDT4 function
    dict_problems["ZDT4"] = (
        eng.ZDT4,
        10,
        2,
        np.concatenate([np.array([0]), -5 * np.ones(9)]),
        np.concatenate([np.array([1]), 5 * np.ones(9)]),
    )

    # ZDT6 function
    dict_problems["ZDT6"] = (eng.ZDT6, 10, 2, np.zeros(10), np.ones(10))

    # ZLT1 function
    dict_problems["ZLT1"] = (eng.ZLT1, 10, 3, -1000 * np.ones(10),
                             1000 * np.ones(10))

    class MXProblem(Problem):
        def __init__(self, id_problem):  #, n_var, n_obj, xl, xu):
            #super().__init__(n_var=n_var, n_obj=n_obj, xl=xl, xu=xu)
            super().__init__()
            self.id_problem = id_problem
            self.x_cache = []
            self.f_cache = []
            # add problems properties
            probproperties = dict_problems[id_problem]
            self.n_var = probproperties[1]
            self.n_obj = probproperties[2]
            self.xl = probproperties[3]
            self.xu = probproperties[4]

        # x represents a population array
        def _evaluate(self, x, out, *args, **kwargs):
            # convert list of x to list of matlab element
            l_x_matlab = [
                matlab.double(copy.copy(x[i, :].tolist()))
                for i in range(x.shape[0])
            ]

            self.x_cache += x.tolist()

            # get result of the matlab function for the list of x
            l_f_matlab = []
            for elt in l_x_matlab:
                l_f_matlab += [
                    dict_problems[self.id_problem][0](eng.transpose(elt),
                                                      nargout=1)
                ]

            for elt in l_f_matlab:
                self.f_cache += [[elt[i][0] for i in range(elt.size[0])]]

            # convert result to objective function f
            l_f = []
            for elt in l_f_matlab:
                l_f += [[elt[i][0] for i in range(elt.size[0])]]

            l_x_matlab = []
            l_f_matlab = []

            out["F"] = np.asarray(l_f)

    def write_cache(problem, filename):
        with open(filename, "w") as f:
            f.write(str(problem.n_var) + " " + str(problem.n_obj) + "\n")
            for elt_x, elt_f in zip(problem.x_cache, problem.f_cache):
                for x in elt_x:
                    f.write(str(x) + " ")
                for y in elt_f:
                    f.write(str(y) + " ")
                f.write("\n")

    foldername = ""  # add foldername to which cache files will be generated
    for seed in [
            1, 4734, 6652, 3507, 1121, 3500, 5816, 2006, 9622, 6117, 1571,
            4117, 3758, 8045, 6554, 8521, 4889, 5893, 9123, 7238, 3089, 4197,
            6489, 8, 7551, 7621, 4809, 8034, 3487, 3680, 5363, 7786, 104, 8171,
            7505, 7075, 9656, 4569, 3121, 4187, 201, 951, 1093, 3147, 1978,
            1475, 2896, 9814, 8803, 1084
    ]:
        method = nsga2(pop_size=100)
        problem = MXProblem(name)
        minimize(problem,
                 method,
                 termination=("n_gen", 200),
                 seed=seed,
                 save_history=True,
                 disp=False)
        write_cache(problem,
                    foldername + name + "_nsgaii_" + str(seed) + ".txt")
    return 0
Esempio n. 11
0
        x = anp.linspace(0, 1, n_pareto_points)
        return anp.array([x, 1 - anp.power(x, 2)]).T

    def _evaluate(self, x, out, *args, **kwargs):
        f1 = x[:, 0]
        c = anp.sum(x[:, 1:], axis=1)
        g = 1.0 + 9.0 * c / (self.n_var - 1)
        f2 = g * (1 - anp.power((f1 * 1.0 / g), 2))

        out["F"] = anp.column_stack([f1, f2])


problem = ZDT2()

# print(problem)

# # load a test or define your own problem
# problem = get_problem("zdt1")

# get the optimal solution of the problem for the purpose of comparison
pf = problem.pareto_front()

# create the algorithm object
method = nsga2(pop_size=100, elimate_duplicates=True)

# execute the optimization
res = minimize(problem, method, termination=('n_gen', 200), pf=pf, disp=True)

# plot the results as a scatter plot
plotting.plot(pf, res.F, labels=["Pareto-Front", "F"])