Esempio n. 1
0
def calibrate_variables(args, pool) -> HyperParameters:
  sampling = MixedVariableSampling(mask, {
    # Real numbers are sampled via Latin Hypercube Sampling
    'real': get_sampling('real_lhs'),

    # Integer numbers are sampled via Uniform Random Sampling
    'int': get_sampling('int_random')
  })

  crossover = MixedVariableCrossover(mask, {
    'real': get_crossover('real_sbx', prob=0.9, eta=3.0),
    'int': get_crossover('real_sbx', prob=0.9, eta=3.0)
  })

  mutation = MixedVariableMutation(mask, {
    # Real numbers are mutated via polynomial mutation
    'real': get_mutation('real_pm', eta=3.0),

    # Integer numbers are mutated via polynomial mutation
    'int': get_mutation('int_pm', eta=3.0)
  })

  problem = MetaProblem(args, parallelization=('starmap', pool.starmap))
  algorithm = NSGA2(
    pop_size=EXECUTIONS_FOR_ITERATION,
    sampling=sampling,
    crossover=crossover,
    mutation=mutation,
    eliminate_duplicates=True,
  )
  termination = utils.get_termination_for_variables(max_iterations=MAX_ITERATIONS)

  res, \
    best_solution, \
    min_average, \
    min_stddev = utils.get_minimizer(problem, algorithm, termination)

  best_solution = res.X[0]
  min_average = res.F[0][0]
  min_stddev = res.F[0][1]

  mutation_probability = get_var(best_solution, 'mutation_probability')
  crossover_rate = get_var(best_solution, 'crossover_rate')
  mu = get_var(best_solution, 'mu')
  lambda_ = get_var(best_solution, 'lambda')
  k = get_var(best_solution, 'k')

  hyperparameters = HyperParameters(
    mutation_probability=mutation_probability,
    crossover_rate=crossover_rate,
    mu=mu,
    lambda_=lambda_,
    k=k
  )
  
  save_csv(args, best_solution, min_average, min_stddev)

  return hyperparameters
    def get_mutation(self):
        mask = []
        for name in (self.space.numeric_names + self.space.enum_names):
            if self.space.paras[name].is_discrete_after_transform:
                mask.append('int')
            else:
                mask.append('real')

        mutation = MixedVariableMutation(mask, {
            'real' : get_mutation('real_pm', eta = 20), 
            'int'  : get_mutation('int_pm', eta = 20)
        })
        return mutation
Esempio n. 3
0
    def test_multiObjOptimization(self):
        algorithm = NSGA2(pop_size=10,
                          n_offsprings=10,
                          sampling=get_sampling("real_random"),
                          crossover=get_crossover("real_sbx", prob=0.9,
                                                  eta=15),
                          mutation=get_mutation("real_pm", eta=20),
                          eliminate_duplicates=True)
        termination = get_termination("n_gen", 5)
        bayer = self.datasetUtils.readCFAImages()
        twoComplement = self.datasetUtils.twoComplementMatrix(bayer)
        twoComplement = twoComplement.astype("float32")
        problem = MyProblem(twoComplement)
        res = minimize(problem,
                       algorithm,
                       termination,
                       save_history=True,
                       verbose=True)

        # Objective Space
        res.F = 1 / res.F
        plot = Scatter(title="Objective Space")
        plot.add(res.F)
        plot.show()
        print("Best filter{}".format(np.reshape(res.opt[-1].X, [2, 2])))
def optimizer():
    return NSGA2(pop_size=5,
                 n_offsprings=7,
                 sampling=get_sampling("real_random"),
                 crossover=get_crossover("real_sbx", prob=0.9, eta=15),
                 mutation=get_mutation("real_pm", eta=20),
                 eliminate_duplicates=True)
Esempio n. 5
0
async def optimize(evaluate, configs):
    # config
    # D = 8  decision space dimension
    # N0 = 100  initial population
    # Ng = 100  total generation
    # seed = None  random seed
    D, Ng, N0, seed = itemgetter('D', 'Ng', 'N0', 'seed')(configs)

    problem = Evaluator(evaluate, D)
    algorithm = NSGA2(pop_size=N0,
                      n_offsprings=N0,
                      sampling=get_sampling('real_random'),
                      crossover=get_crossover('real_sbx', prob=0.9, eta=15),
                      mutation=get_mutation('real_pm', eta=20),
                      eliminate_duplicates=True)
    termination = get_termination('n_gen', Ng)
    await asyncio.sleep(0)
    res = minimize(problem,
                   algorithm,
                   termination,
                   seed=seed,
                   save_history=True,
                   verbose=False)
    gbest = (res.X, res.F)

    return gbest
Esempio n. 6
0
def solve(seed):
    print(f"Starting seed {seed}")

    folder = os.path.join(
        os.path.dirname(
            os.path.dirname(os.path.dirname(os.path.realpath(__file__)))),
        "results")

    start = time.time()
    method = get_algorithm("ga",
                           pop_size=20,
                           sampling=get_sampling("int_random"),
                           crossover=get_crossover("int_sbx",
                                                   prob=1.0,
                                                   eta=3.0),
                           mutation=get_mutation("int_pm", eta=3.0),
                           eliminate_duplicates=True,
                           callback=MyCallback(folder))

    res = minimize(ISCSO2019(),
                   method,
                   termination=('n_eval', 10000),
                   seed=seed,
                   verbose=True)
    end = time.time()
    elapsed = end - start

    np.savetxt(os.path.join(folder, f"ga_{seed}.x"),
               res.pop.get("X").astype(np.int))
    np.savetxt(os.path.join(folder, f"ga_{seed}.f"), res.pop.get("F"))
    np.savetxt(os.path.join(folder, f"ga_{seed}.g"), res.pop.get("G"))

    print(f"Finished seed {seed} - runtime: {elapsed}")
Esempio n. 7
0
def test_mutation_bin(name):
    mut = get_mutation(name)
    method = NSGA2(pop_size=20,
                   crossover=get_crossover('bin_ux'),
                   mutation=mut)
    minimize(get_problem("zdt5"), method, ("n_gen", 20))
    assert True
Esempio n. 8
0
    def solve(self, problem, X, Y, mode, bound=None, n_gen=None):
        '''
        Solve the multi-objective problem
        '''
        # initialize population
        sampling = self._get_sampling(X, Y, bound, mode)
        # setup algorithm
        if mode == 1:
            algo = self.algo_type(sampling=sampling,
                      crossover=get_crossover("bin_ux"),
                      mutation=get_mutation("bin_bitflip", prob=1/X.shape[1]), eliminate_duplicates=True)
        else:
            algo = self.algo_type(sampling=sampling, **self.algo_kwargs)

        # optimization
        if n_gen is None:
            res = minimize(problem, algo, ('n_gen', self.n_gen), seed=self.seed)
        else:
            res = minimize(problem, algo, ('n_gen', n_gen), seed=self.seed)
        # construct solution
        self.solution = {'x': res.pop.get('X'), 'y': res.pop.get('F'), 'algo': res.algorithm}
        
        # fill the solution in case less than batch size
        pop_size = len(self.solution['x'])
        if pop_size < self.batch_size:
            indices = np.concatenate([np.arange(pop_size), np.random.choice(np.arange(pop_size), self.batch_size - pop_size)])
            self.solution['x'] = np.array(self.solution['x'])[indices]
            self.solution['y'] = np.array(self.solution['y'])[indices]
        return self.solution
Esempio n. 9
0
def calibrate_final_tuning(args, pool, hyperparameters: HyperParameters):
  sampling = MixedVariableSampling(mask, {
    # Integer numbers are sampled via Uniform Random Sampling
    'int': get_sampling('int_random')
  })

  crossover = MixedVariableCrossover(mask, {
    'int': get_crossover('real_sbx', prob=0.9, eta=3.0)
  })

  mutation = MixedVariableMutation(mask, {
    # Integer numbers are mutated via polynomial mutation
    'int': get_mutation('int_pm', eta=3.0)
  })
  
  problem = MetaProblem(args, hyperparameters=hyperparameters, parallelization=None)
  algorithm = NSGA2(
    pop_size=EXECUTIONS_FOR_ITERATION,
    sampling=sampling,
    crossover=crossover,
    mutation=mutation,
    eliminate_duplicates=True,
  )
  termination = utils.get_termination_for_final_tuning(time=ITERATIONS_TIME)

  res, \
    best_solution, \
    min_average, \
    min_stddev = utils.get_minimizer(problem, algorithm, termination)
  
  save_csv(args, best_solution, min_average, min_stddev)
Esempio n. 10
0
def gen_index_MOO(lo,
                  hi,
                  size,
                  s_metric,
                  c_metric,
                  d_metric,
                  dist=None,
                  sort=0.0,
                  clustered=0.0,
                  dispersed=0.0):
    max_error = 0.25
    prob = SCDArrayGen(lo, hi, size, s_metric, c_metric, d_metric, sort,
                       clustered, dispersed)
    alg = NSGA2(
        pop_size=100,
        sampling=get_sampling("int_random"),
        crossover=get_crossover("int_two_point"),
        mutation=get_mutation("int_pm"),
    )
    res = minimize(prob, alg, seed=3)

    #optionally screen out solutions that still deviated from the desired values by too much
    # mask = res.F < max_error
    # masksum = np.sum(mask, axis=1) == 3
    return res.X
Esempio n. 11
0
    def test_pymoo_nsgaii(self):
        moo_algorithm = NSGA2(pop_size=40,
                              n_offsprings=10,
                              sampling=get_sampling("real_random"),
                              crossover=get_crossover("real_sbx",
                                                      prob=0.9,
                                                      eta=15),
                              mutation=get_mutation("real_pm", eta=20),
                              eliminate_duplicates=True)

        problem = ProblemConstraint()

        algorithm = Pymoo(problem)
        algorithm.options['verbose_level'] = 0
        algorithm.options['n_iterations'] = 40
        algorithm.options['algorithm'] = moo_algorithm
        algorithm.run()

        f_1 = []
        f_2 = []
        for individual in problem.last_population():
            f_1.append(individual.costs[0])
            f_2.append(individual.costs[1])

        # print(len(problem.individuals))
        # for individual in problem.individuals:
        #    print(individual)

        self.assertLess(min(f_1), 1.5)
        self.assertGreater(max(f_1), 74)
        self.assertLess(max(f_2), 1.5)
        self.assertGreater(max(f_2), 0.75)
def mut_int(x, eta, low, up, prob):

    if x.shape[0] == x.size:
        x = x.reshape(-1, 1)
        mut = np.full((x.shape), np.nan)
        mut = mutation(get_mutation("int_pm", eta=eta, prob=prob),
                       x,
                       xl=low,
                       xu=up)
    else:
        mut = np.full((x.shape), np.nan)
        for i in range((x.shape[1])):
            mut[:, i] = mutation(get_mutation("int_pm", eta=eta, prob=prob),
                                 x[:, i].reshape(1, -1),
                                 xl=low,
                                 xu=up)
    return mut
Esempio n. 13
0
def test_mutation_perm(name):
    mut = get_mutation(name, prob=0.95)
    method = GA(pop_size=20,
                crossover=get_crossover('perm_erx'),
                mutation=mut,
                sampling=PermutationRandomSampling())
    minimize(create_random_tsp_problem(10), method, ("n_gen", 20))
    assert True
Esempio n. 14
0
def get_operators(config):
    if config.config == "DeepMindBigGAN":
        mask = ["real"]*config.dim_z + ["bool"]*config.num_classes
        
        real_sampling = None
        if config.config == "DeepMindBigGAN":
            real_sampling = TruncatedNormalRandomSampling()

        sampling = MixedVariableSampling(mask, {
            "real": real_sampling,
            "bool": BinaryRandomSampling(prob=5/1000)
        })

        crossover = MixedVariableCrossover(mask, {
            "real": get_crossover("real_sbx", prob=1.0, eta=3.0),
            "bool": get_crossover("bin_hux", prob=0.2)
        })

        mutation = MixedVariableMutation(mask, {
            "real": get_mutation("real_pm", prob=0.5, eta=3.0),
            "bool": get_mutation("bin_bitflip", prob=10/1000)
        })

        return dict(
            sampling=sampling,
            crossover=crossover,
            mutation=mutation
        )
    
    elif config.config.split("_")[0] == "StyleGAN2":
        return dict(
            sampling=NormalRandomSampling(),
            crossover=get_crossover("real_sbx", prob=1.0, eta=3.0),
            mutation=get_mutation("real_pm", prob=0.5, eta=3.0)
        )
    
    elif config.config == "GPT2":
        return dict(
            sampling=get_sampling("int_random"),
            crossover=get_crossover("int_sbx", prob=1.0, eta=3.0),
            mutation=get_mutation("int_pm", prob=0.5, eta=3.0)
        )

    else:
        raise Exception("Unknown config")
Esempio n. 15
0
def run(countryname, capacity):
    problem = ScheduleProblem(country_name=countryname, critical_capacity=capacity, record_all=True)


    algorithm = NSGA2(
        pop_size=100,
        n_offsprings=100,
        sampling=get_sampling("int_random"),
        crossover=get_crossover("int_sbx", prob=0.9, eta=15),
        mutation=get_mutation("int_pm", eta=20),
        eliminate_duplicates=True
    )

    termination = get_termination("n_gen", 100)
    res = minimize(problem,
                algorithm,
                termination,
                seed=1,
                pf=problem.pareto_front(use_cache=False),
                save_history=True,
                verbose=True)

    # create the performance indicator object with reference point (4,4)
    metric = Hypervolume(ref_point=np.array([1.0, 1.0]))

    # collect the population in each generation
    pop_each_gen = [a.pop for a in res.history]

    with open("./experiments/ga_{}_lastpop.json".format(countryname), 'w') as f:
        json.dump( {"df":[e.to_dict() for e in problem.last[0]],"x":problem.last[1].tolist()}, f)

    with open("./experiments/ga_{}_lastobj.json".format(countryname), 'w') as f:
        json.dump( {"deaths": problem.last_objectives[0].tolist(), "activity":problem.last_objectives[1].tolist()} , f)

    # Objective Space
    fig = plt.figure()
    plot = Scatter(title = "Objective Space")
    plot.add(res.F)
    plt.savefig("./experiments/ga_{}_objective.png".format(countryname))

    # receive the population in each generation
    obj_and_feasible_each_gen = [pop[pop.get("feasible")[:,0]].get("F") for pop in pop_each_gen]

    # calculate for each generation the HV metric
    hv = [metric.calc(f) for f in obj_and_feasible_each_gen]

    # function evaluations at each snapshot
    n_evals = np.array([a.evaluator.n_eval for a in res.history])

    # visualize the convergence curve
    fig = plt.figure()
    plt.plot(n_evals, hv, '-o')
    plt.title("Convergence")
    plt.xlabel("Function Evaluations")
    plt.ylabel("Hypervolume")
    plt.savefig("./experiments/ga_{}_hypervolume.png".format(countryname))
    plt.show()
Esempio n. 16
0
def Get_Algorithm_Instance(reference_directions,
                           pop_size=None,
                           crossover_probability=1.0,
                           mutation_probability=None):
    crossover = get_crossover("real_sbx", prob=crossover_probability, eta=30)
    mutation = get_mutation("real_pm", prob=mutation_probability, eta=20)
    return NSGA3(ref_dirs=reference_directions,
                 pop_size=pop_size,
                 crossover=crossover,
                 mutation=mutation)
Esempio n. 17
0
 def set_algorithm(self):
     self.algorithm = NSGA2(pop_size=self.pop_size,
                            n_offsprings=self.n_offsprings,
                            sampling=get_sampling("real_lhs"),
                            crossover=get_crossover("real_sbx",
                                                    prob=0.9,
                                                    eta=15),
                            mutation=get_mutation("real_pm", eta=20),
                            eliminate_duplicates=True)
     self.termination = get_termination("n_gen", self.n_gen)
Esempio n. 18
0
 def test_nsga2(self):
     moo_algorithm = NSGA2(pop_size=10,
                           n_offsprings=10,
                           sampling=get_sampling("real_random"),
                           crossover=get_crossover("real_sbx",
                                                   prob=0.9,
                                                   eta=15),
                           mutation=get_mutation("real_pm", eta=20),
                           eliminate_duplicates=True)
     self.moo(moo_algorithm)
def test_surrogate_optimize_with_all_selection_and_infill_methods(
        infill, surrogate_select_method):
    # Define original problem
    try:
        problem = benchmarks.zdt3()

        # Sample
        randomSample = sampling.rand(problem, 15)

        # Define surrogate ensemble

        # Define Optimizer
        optimizer = NSGA2(pop_size=20,
                          n_offsprings=10,
                          sampling=get_sampling("real_random"),
                          crossover=get_crossover("real_sbx", prob=0.9,
                                                  eta=15),
                          mutation=get_mutation("real_pm", eta=20),
                          eliminate_duplicates=True)

        # Define termination criteria

        termination = get_termination("n_gen", 10)

        # Define infill criteria

        infill_method = infill

        # Define surrogate selection

        surrogate_selection_function = surrogate_select_method
        # Optimize

        samples = copy.deepcopy(randomSample)
        surrogate_ensemble = [
            LinearRegression(),
            KNeighborsRegressor(),
            DecisionTreeRegressor(),
        ]
        res = surrogate_optimization.optimize(problem,
                                              optimizer,
                                              termination,
                                              surrogate_ensemble,
                                              samples,
                                              infill_method,
                                              surrogate_selection_function,
                                              n_infill=2,
                                              max_samples=20)
    except Exception as e:
        raise pytest.fail(
            "infill: {0} /n and surrogate_selection: {1}/n raise a error: {2}".
            format(infill, surrogate_select_method, e))
Esempio n. 20
0
    def _next(self, archive, predictor, K):
        """ searching for next K candidate for high-fidelity evaluation (lower level) """

        # the following lines corresponding to Algo 1 line 10 / Fig. 3(b) in the paper
        # get non-dominated architectures from archive
        F = np.column_stack(([x[1] for x in archive], [x[2] for x in archive]))
        front = NonDominatedSorting().do(F, only_non_dominated_front=True)
        # non-dominated arch bit-strings
        nd_X = np.array([self.search_space.encode(x[0])
                         for x in archive])[front]

        # initialize the candidate finding optimization problem
        problem = AuxiliarySingleLevelProblem(
            self.search_space, predictor, self.sec_obj, {
                'n_classes': self.n_classes,
                'model_path': self.supernet_path
            })

        # initiate a multi-objective solver to optimize the problem
        method = get_algorithm(
            "nsga2",
            pop_size=40,
            sampling=nd_X,  # initialize with current nd archs
            crossover=get_crossover("int_two_point", prob=0.9),
            mutation=get_mutation("int_pm", eta=1.0),
            eliminate_duplicates=True)

        # kick-off the search
        res = minimize(problem,
                       method,
                       termination=('n_gen', 20),
                       save_history=True,
                       verbose=True)

        # check for duplicates
        not_duplicate = np.logical_not([
            x in [x[0] for x in archive]
            for x in [self.search_space.decode(x) for x in res.pop.get("X")]
        ])

        # the following lines corresponding to Algo 1 line 11 / Fig. 3(c)-(d) in the paper
        # form a subset selection problem to short list K from pop_size
        indices = self._subset_selection(res.pop[not_duplicate], F[front, 1],
                                         K)
        pop = res.pop[not_duplicate][indices]

        candidates = []
        for x in pop.get("X"):
            candidates.append(self.search_space.decode(x))

        # decode integer bit-string to config and also return predicted top1_err
        return candidates, predictor.predict(pop.get("X"))
Esempio n. 21
0
    def _ga(self) -> object:
        sampling = get_sampling("int_random")
        crossover = get_crossover("int_sbx")
        mutation = get_mutation("int_pm")

        algorithm = get_algorithm("ga",
                                  pop_size=self._tamanho_populacao,
                                  sampling=sampling,
                                  crossover=crossover,
                                  mutation=mutation,
                                  eliminate_duplicates=True)

        return algorithm
Esempio n. 22
0
def run_multiJ(dict_t):
    # def run_multiJ():
    mask = [
        "real", "int", "real", "real", "int", "int", "int", "int", "int",
        "int", "int"
    ]
    sampling = MixedVariableSampling(mask, {
        "real": get_sampling("real_random"),
        "int": get_sampling("int_random")
    })
    crossover = MixedVariableCrossover(
        mask, {
            "real": get_crossover("real_sbx", prob=1.0, eta=3.0),
            "int": get_crossover("int_sbx", prob=1.0, eta=3.0)
        })
    mutation = MixedVariableMutation(
        mask, {
            "real": get_mutation("real_pm", eta=3.0),
            "int": get_mutation("int_pm", eta=3.0)
        })
    #[V_gBurn,ng,Tdig,debt_level,V_cng_p,e_priceS,farm1,farm2,farm3,farm4,farm5,farm6,farm7]
    problem = BiogasMultiJ(dict_t)
    # problem = BiogasMultiJ()
    algorithm = NSGA2(
        pop_size=dict_t['NSGA_pop'],
        sampling=sampling,
        crossover=crossover,
        n_offsprings=dict_t['NSGA_off'],
        mutation=mutation,
        eliminate_duplicates=True,
    )
    res = minimize(problem,
                   algorithm, ("n_gen", dict_t['NSGA_gen']),
                   verbose=True,
                   seed=1,
                   save_history=True)
    return res
Esempio n. 23
0
def runGA():

    start = time.time()

    pop_size = 10
    n_mascons = 1

    algorithm = get_algorithm("ga",
                              pop_size=pop_size,
                              sampling=get_sampling("int_random"),
                              crossover=get_crossover("int_sbx",
                                                      prob=0.9,
                                                      eta=3.0),
                              mutation=get_mutation("int_pm", eta=3.0),
                              eliminate_duplicates=True)

    problem = MasconModel(n_mascons)  #n  #n_p

    res = minimize(problem, algorithm, seed=1, save_history=True, verbose=True)

    end = time.time()
    elapsedTime = (end - start)

    resultWithCoord = getCoordinatesByIndex(res.X)
    repeated_values = getRepeatedValues(res.X.tolist())

    print("Elapsed (after compilation) = %s" % elapsedTime)
    print("Best solution found: %s" % res.X)
    print("Function value: %s" % res.F)

    #Save GA info to database
    gaDict = {
        "properties": {
            "fopt": res.F.tolist(),
            "degree": 165,
            "order": 165,
            "gen": res.algorithm.n_gen,
            "population": pop_size,
            "time": elapsedTime,
            "n_mascons": n_mascons,
            "solution": res.X.tolist(),
            "solution_repeated_values": repeated_values,
        },
        "data": resultWithCoord
    }

    saveJson(gaDict, 'n_' + str(n_mascons))  #save information in a json file
Esempio n. 24
0
def optimize(
    evaluator: FitnessEvaluator,
    free_parameters_range: "OrderedDict[str, Tuple[int, int]]",
    metrics: List[Metric],
    execution_time: Optional[str],
    power_of_2: Optional[List[str]],
) -> float:
    problem = MyProblem(evaluator, free_parameters_range, metrics)

    algorithm = NSGA2(
        repair=MyRepair(power_of_2) if power_of_2 else None,
        pop_size=10 * len(free_parameters_range.keys()),
        n_offsprings=10 * len(free_parameters_range.keys()),
        sampling=get_sampling("int_random"),
        crossover=get_crossover("int_sbx", prob=0.9, eta=15),
        mutation=get_mutation("int_pm", eta=20),
        eliminate_duplicates=True,
    )

    if execution_time:
        termination = get_termination("time", execution_time)
        res = minimize(
            problem,
            algorithm,
            termination,
            seed=1,
            save_history=True,
            verbose=True,
        )
    else:
        res = minimize(
            problem,
            algorithm,
            seed=1,
            save_history=True,
            verbose=True,
        )
    # TODO take this out and write file
    design_space_path = "dovado_work/design_space.csv"
    objective_space_path = "dovado_work/objective_space.csv"
    Path(design_space_path).open("w")
    Path(objective_space_path).open("w")
    np.savetxt(design_space_path, res.X, delimiter=",")
    np.savetxt(objective_space_path, res.F, delimiter=",")
    return res.exec_time
Esempio n. 25
0
def run_nsga(s):
    # Define range for decision variables
    algorithm = NSGA2(pop_size=100,
                      sampling=get_sampling("bin_random"),
                      crossover=get_crossover("real_sbx",
                                              prob=0.9,
                                              prob_per_variable=1.0),
                      mutation=get_mutation("real_pm", prob=0.8),
                      eliminate_duplicates=True)
    termination = get_termination("n_gen", 100)
    problem = FunctionalProblem(1, my_objs, xl=np.array([0]), xu=np.array([1]))
    result = minimize(problem,
                      algorithm,
                      termination,
                      seed=int(s),
                      save_history=True,
                      verbose=True)
    print("function:" + str(result.F))
    print("x:" + str(result.X))
Esempio n. 26
0
def get_operator(name, setup):
    """
    Text.

    Args:
        name (str): Operator name to retrieve.
        setup (dict): Optimization setup parameters.
       
    Returns:
        operator (): Retrieved operator.
    """
    if name == "mutation":
        operator = get_mutation(**setup["operators"][name])
    elif name == "crossover":
        operator = get_crossover(**setup["operators"][name])
    else:
        raise Exception("Invalid operator requested")

    return operator
def run(cross=0.7, ag=None, mut=0.01):
    algorithm = GA(
        pop_size=100,
        sampling=get_sampling("real_random"),
        crossover=get_crossover("real_one_point", prob=cross),
        mutation=get_mutation("real_pm", eta=20, prob=mut),  #bin_bitflip
        n_offsprings=ag,  #ag=1 -> steady-state, ag=None -> geracional
        eliminate_duplicates=True)

    X, F = problem.evaluate(np.random.rand(100, 1),
                            return_values_of=["X", "F"])

    termination = get_termination("n_eval", 25000)

    res = minimize(
        problem,
        algorithm,
        ('n_gen', 200),
        termination,
        seed=10,  # elitismo
        verbose=False)
    return X, F, res
Esempio n. 28
0
    def __init__(self):
        super(SequencePrototypeExperiment, self).__init__()
        self.evaluation_period = 24
        self.pumps = 2

        self.problem = WaterDemandProblem(
            evaluation_period=self.evaluation_period,
            problem_arguments=dict(n_var=self.evaluation_period * self.pumps,
                                   n_obj=3,
                                   n_constr=1,
                                   xl=0,
                                   xu=1,
                                   type_var=np.bool),
        )

        self.algorithm_arguments = dict(nsga2=dict(
            sampling=get_sampling("bin_random"),
            crossover=get_crossover("bin_hux"),
            mutation=get_mutation("bin_bitflip"),
        ))

        self.init_runner()
        self.init_fitness()
Esempio n. 29
0
    def _nsga3(self) -> object:
        sampling = get_sampling("int_random")
        crossover = get_crossover("int_sbx")
        mutation = get_mutation("int_pm")
        # create the reference directions to be used for the optimization
        if self._nome_of_mono is None:
            ref_dirs = get_reference_directions("das-dennis",
                                                len(self._nomes_direcoes_of),
                                                n_partitions=len(
                                                    self._variaveis))
        else:
            ref_dirs = get_reference_directions("das-dennis",
                                                1,
                                                n_partitions=len(
                                                    self._variaveis))

        algorithm = NSGA3(pop_size=self._tamanho_populacao,
                          sampling=sampling,
                          crossover=crossover,
                          mutation=mutation,
                          ref_dirs=ref_dirs,
                          eliminate_duplicates=True)

        return algorithm
Esempio n. 30
0
        pass
    except Exception as e:
        print(e)
        sys.exit()

    if alg_name == "NSGA2":
        sampling_func = MOO_CONFIG["sampling_func"]
        pop_size = alg_specific_args["pop_size"]
        #################
        # set algorithm #
        #################
        algorithm = NSGA2(
            pop_size=pop_size,
            sampling=get_sampling(sampling_func),
            crossover=get_crossover(crossover_func, **crossover_func_args),
            mutation=get_mutation(mutation_func, **mutation_func_args),
            eliminate_duplicates=True
        )
        #####################
        # algorithm logging #
        #####################
        MOO_log(
            msg="algorithm = {}(\n"
            "pop_size={},\n"
            "sampling=get_sampling({}),\n"
            "crossover=get_crossover({},{}),\n"
            "mutation=get_mutation({},{}),\n"
            "eliminate_duplicates=True\n"
            ")".format(
                alg_name,
                pop_size,