Esempio n. 1
0
    def ngsolve_vector_array_factory(length, dim, seed):

        if dim not in NGSOLVE_spaces:
            mesh = ngmsh.Mesh(dim=1)
            if dim > 0:
                pids = []
                for i in range(dim + 1):
                    pids.append(
                        mesh.Add(ngmsh.MeshPoint(ngmsh.Pnt(i / dim, 0, 0))))
                for i in range(dim):
                    mesh.Add(ngmsh.Element1D([pids[i], pids[i + 1]], index=1))

            NGSOLVE_spaces[dim] = NGSolveVectorSpace(
                ngs.L2(ngs.Mesh(mesh), order=0))

        U = NGSOLVE_spaces[dim].zeros(length)
        np.random.seed(seed)
        for v, a in zip(U._list, np.random.random((length, dim))):
            v.to_numpy()[:] = a
        if np.random.randint(2):
            UU = NGSOLVE_spaces[dim].zeros(length)
            for v, a in zip(UU._list, np.random.random((length, dim))):
                v.real_part.to_numpy()[:] = a
            for u, uu in zip(U._list, UU._list):
                u.imag_part = uu.real_part
        return U
Esempio n. 2
0
 def _create_ngsolve_space(dim):
     if dim not in _NGSOLVE_spaces:
         mesh = ngmsh.Mesh(dim=1)
         if dim > 0:
             pids = []
             for i in range(dim + 1):
                 pids.append(mesh.Add(ngmsh.MeshPoint(ngmsh.Pnt(i / dim, 0, 0))))
             for i in range(dim):
                 mesh.Add(ngmsh.Element1D([pids[i], pids[i + 1]], index=1))
         _NGSOLVE_spaces[dim] = NGSolveVectorSpace(ngs.L2(ngs.Mesh(mesh), order=0))
     return _NGSOLVE_spaces[dim]
def discretize_ngsolve():
    from ngsolve import (ngsglobals, Mesh, H1, CoefficientFunction, LinearForm,
                         SymbolicLFI, BilinearForm, SymbolicBFI, grad,
                         TaskManager)
    from netgen.csg import CSGeometry, OrthoBrick, Pnt
    import numpy as np

    ngsglobals.msg_level = 1

    geo = CSGeometry()
    obox = OrthoBrick(Pnt(-1, -1, -1), Pnt(1, 1, 1)).bc("outer")

    b = []
    b.append(
        OrthoBrick(Pnt(-1, -1, -1), Pnt(0.0, 0.0,
                                        0.0)).mat("mat1").bc("inner"))
    b.append(
        OrthoBrick(Pnt(-1, 0, -1), Pnt(0.0, 1.0, 0.0)).mat("mat2").bc("inner"))
    b.append(
        OrthoBrick(Pnt(0, -1, -1), Pnt(1.0, 0.0, 0.0)).mat("mat3").bc("inner"))
    b.append(
        OrthoBrick(Pnt(0, 0, -1), Pnt(1.0, 1.0, 0.0)).mat("mat4").bc("inner"))
    b.append(
        OrthoBrick(Pnt(-1, -1, 0), Pnt(0.0, 0.0, 1.0)).mat("mat5").bc("inner"))
    b.append(
        OrthoBrick(Pnt(-1, 0, 0), Pnt(0.0, 1.0, 1.0)).mat("mat6").bc("inner"))
    b.append(
        OrthoBrick(Pnt(0, -1, 0), Pnt(1.0, 0.0, 1.0)).mat("mat7").bc("inner"))
    b.append(
        OrthoBrick(Pnt(0, 0, 0), Pnt(1.0, 1.0, 1.0)).mat("mat8").bc("inner"))
    box = (obox - b[0] - b[1] - b[2] - b[3] - b[4] - b[5] - b[6] - b[7])

    geo.Add(box)
    for bi in b:
        geo.Add(bi)
    # domain 0 is empty!

    mesh = Mesh(geo.GenerateMesh(maxh=0.3))

    # H1-conforming finite element space
    V = H1(mesh, order=NGS_ORDER, dirichlet="outer")
    v = V.TestFunction()
    u = V.TrialFunction()

    # Coeff as array: variable coefficient function (one CoefFct. per domain):
    sourcefct = CoefficientFunction([1 for i in range(9)])

    with TaskManager():
        # the right hand side
        f = LinearForm(V)
        f += SymbolicLFI(sourcefct * v)
        f.Assemble()

        # the bilinear-form
        mats = []
        coeffs = [[0, 1, 0, 0, 0, 0, 0, 0, 1], [0, 0, 1, 0, 0, 0, 0, 1, 0],
                  [0, 0, 0, 1, 0, 0, 1, 0, 0], [0, 0, 0, 0, 1, 1, 0, 0, 0]]
        for c in coeffs:
            diffusion = CoefficientFunction(c)
            a = BilinearForm(V, symmetric=False)
            a += SymbolicBFI(diffusion * grad(u) * grad(v),
                             definedon=(np.where(np.array(c) == 1)[0] +
                                        1).tolist())
            a.Assemble()
            mats.append(a.mat)

    from pymor.bindings.ngsolve import NGSolveVectorSpace, NGSolveMatrixOperator, NGSolveVisualizer

    space = NGSolveVectorSpace(V)
    op = LincombOperator(
        [NGSolveMatrixOperator(m, space, space) for m in mats], [
            ProjectionParameterFunctional('diffusion', (len(coeffs), ), (i, ))
            for i in range(len(coeffs))
        ])

    h1_0_op = op.assemble([1] * len(coeffs)).with_(name='h1_0_semi')

    F = space.zeros()
    F._list[0].real_part.impl.vec.data = f.vec
    F = VectorOperator(F)

    return StationaryModel(op,
                           F,
                           visualizer=NGSolveVisualizer(mesh, V),
                           products={'h1_0_semi': h1_0_op},
                           parameter_space=CubicParameterSpace(
                               op.parameter_type, 0.1, 1.))
Esempio n. 4
0
def discretize_ngsolve():
    from ngsolve import (ngsglobals, Mesh, H1, CoefficientFunction, LinearForm, SymbolicLFI,
                         BilinearForm, SymbolicBFI, grad, TaskManager)
    from netgen.csg import CSGeometry, OrthoBrick, Pnt
    import numpy as np

    ngsglobals.msg_level = 1

    geo = CSGeometry()
    obox = OrthoBrick(Pnt(-1, -1, -1), Pnt(1, 1, 1)).bc("outer")

    b = []
    b.append(OrthoBrick(Pnt(-1, -1, -1), Pnt(0.0, 0.0, 0.0)).mat("mat1").bc("inner"))
    b.append(OrthoBrick(Pnt(-1,  0, -1), Pnt(0.0, 1.0, 0.0)).mat("mat2").bc("inner"))
    b.append(OrthoBrick(Pnt(0,  -1, -1), Pnt(1.0, 0.0, 0.0)).mat("mat3").bc("inner"))
    b.append(OrthoBrick(Pnt(0,   0, -1), Pnt(1.0, 1.0, 0.0)).mat("mat4").bc("inner"))
    b.append(OrthoBrick(Pnt(-1, -1,  0), Pnt(0.0, 0.0, 1.0)).mat("mat5").bc("inner"))
    b.append(OrthoBrick(Pnt(-1,  0,  0), Pnt(0.0, 1.0, 1.0)).mat("mat6").bc("inner"))
    b.append(OrthoBrick(Pnt(0,  -1,  0), Pnt(1.0, 0.0, 1.0)).mat("mat7").bc("inner"))
    b.append(OrthoBrick(Pnt(0,   0,  0), Pnt(1.0, 1.0, 1.0)).mat("mat8").bc("inner"))
    box = (obox - b[0] - b[1] - b[2] - b[3] - b[4] - b[5] - b[6] - b[7])

    geo.Add(box)
    for bi in b:
        geo.Add(bi)
    # domain 0 is empty!

    mesh = Mesh(geo.GenerateMesh(maxh=0.3))

    # H1-conforming finite element space
    V = H1(mesh, order=NGS_ORDER, dirichlet="outer")
    v = V.TestFunction()
    u = V.TrialFunction()

    # Coeff as array: variable coefficient function (one CoefFct. per domain):
    sourcefct = CoefficientFunction([1 for i in range(9)])

    with TaskManager():
        # the right hand side
        f = LinearForm(V)
        f += SymbolicLFI(sourcefct * v)
        f.Assemble()

        # the bilinear-form
        mats = []
        coeffs = [[0, 1, 0, 0, 0, 0, 0, 0, 1],
                  [0, 0, 1, 0, 0, 0, 0, 1, 0],
                  [0, 0, 0, 1, 0, 0, 1, 0, 0],
                  [0, 0, 0, 0, 1, 1, 0, 0, 0]]
        for c in coeffs:
            diffusion = CoefficientFunction(c)
            a = BilinearForm(V, symmetric=False)
            a += SymbolicBFI(diffusion * grad(u) * grad(v), definedon=(np.where(np.array(c) == 1)[0] + 1).tolist())
            a.Assemble()
            mats.append(a.mat)

    from pymor.bindings.ngsolve import NGSolveVectorSpace, NGSolveMatrixOperator, NGSolveVisualizer

    space = NGSolveVectorSpace(V)
    op = LincombOperator([NGSolveMatrixOperator(m, space, space) for m in mats],
                         [ProjectionParameterFunctional('diffusion', (len(coeffs),), (i,)) for i in range(len(coeffs))])

    h1_0_op = op.assemble([1] * len(coeffs)).with_(name='h1_0_semi')

    F = space.zeros()
    F._list[0].impl.vec.data = f.vec
    F = VectorFunctional(F)

    return StationaryDiscretization(op, F, visualizer=NGSolveVisualizer(mesh, V),
                                    products={'h1_0_semi': h1_0_op},
                                    parameter_space=CubicParameterSpace(op.parameter_type, 0.1, 1.))