Esempio n. 1
0
 def test__newindex(self):
     # Following 3 lines are just to get the mappings
     st = SymbolicTensor('ABcDe', symbol='a', create_tensor=False)
     # one-based input index, voigt notation => (6, 5, 2, 2, 1)
     index = [[1, 2], [1, 3], [2], [2, 2], [1]]
     # Shift to make the index zero based
     index = [item - 1 for sublist in index for item in sublist]
     approx = st._newindex(index, start=1, voigt=True)
     exact = [6, 5, 2, 2, 1]
     assert_equal(approx, exact)
     # sort index 0 and 3
     st = SymbolicTensor('ABcAe', symbol='a', create_tensor=False)
     approx = st._newindex(index, start=1, voigt=True)
     # Unsorted => exact = [6, 5, 2, 2, 1]
     # Sorted   => swap indices 0 and 3
     exact = [2, 5, 2, 6, 1]
     assert_equal(approx, exact)
     # Try setting `voigt=False`, (2, 6, 5) -> (2, 5, 6) -> (2, 1, 3, 1, 2)
     # Note that sorting with `voigt=False`gives the following ordering:
     # (1, 1), (2, 2), (3, 3), (1, 2), (1, 3), (2, 3)
     index = [[2], [1, 2], [1, 3]]
     index = [item - 1 for sublist in index for item in sublist]
     st = SymbolicTensor('aBC', symbol='a', create_tensor=False)
     approx = st._newindex(index, start=1, voigt=False)
     exact = [2, 1, 2, 1, 3]
     assert_equal(approx, exact)
Esempio n. 2
0
 def test__repeated_indices(self):
     name = 'ABcDefgABcDeABc'
     exact = [[0, 7, 12], [1, 8, 13], [2, 9, 14], [3, 10], [4, 11]]
     # Don't try creating a tensor with more than six indices, you'll
     # probably run out of memory.
     approx = SymbolicTensor._repeated_indices(name)
     approx.sort()
     assert_equal(approx, exact)
     name = ['i1', 'j2', 'i1', 'i1', 'j2', 'k1']
     approx = SymbolicTensor._repeated_indices(name)
     approx.sort()
     exact = [[0, 2, 3], [1, 4]]
     assert_equal(approx, exact)
Esempio n. 3
0
def sym_reduce(indices, symbol_name, sym_group):
    # Choose a symmetry group (e.g. '3m')
    sg = RedSgSymOps()
    symops = sg(sym_group)

    # Create a 5th-rank symbolic tensor with indices 1 and 3 interchangeable
    print(indices)
    print(symbol_name)
    st = SymbolicTensor(indices, symbol_name[0], start=1)

    # Solve for the unique tensor elements
    fullsol, polyring = st.sol_details(symops)

    print(fullsol)
Esempio n. 4
0
 def test__parse_name(self):
     name = 'a2,b2,c1,b2,a2,b1'
     approx_dims, approx_repeats = SymbolicTensor._parse_name(name)
     exact_dims = [2, 2, 1, 2, 2, 1]
     exact_repeats = [[0, 4], [1, 3]]
     assert_equal(approx_dims, exact_dims)
     approx_repeats.sort()
     assert_equal(approx_repeats, exact_repeats)
     name = 'ABcAe'
     exact_dims = [2, 2, 1, 2, 1]
     exact_repeats = [[0, 3]]
     approx_dims, approx_repeats = SymbolicTensor._parse_name(name)
     assert_equal(approx_dims, exact_dims)
     approx_repeats.sort()
     assert_equal(approx_repeats, exact_repeats)
def create_linear_system(symbol, superscript, sym_group='622', tdim=2):
    sg = RedSgSymOps()
    print(sg.symops['6parZ3'])
    symops = sg(sym_group)
    symop = symops[0]
    R = Matrix(symop)
    Rsym = Matrix([[Symbol('R_{{{},{}}}'.format(i, j)) for j in range(1, 4)]
                   for i in range(1, 4)])
    print('Rsym=\n', latex(Rsym))
    print('R=\n', latex(R))
    print(symop)
    ivm, vm = SymbolicTensor.voigt_map(2)
    print(ivm)
    print(vm)
    indices0 = list(product(range(3), repeat=tdim))
    indices1 = list(product(range(1, 4), repeat=tdim))
    print(indices0)
    print(indices1)

    lhs = Matrix([[Rsym[I, i] * Rsym[J, j] for (i, j) in indices0]
                  for (I, J) in indices0])
    print(latex(lhs))
    vec = Matrix([[Symbol('c_{{{},{}}}'.format(i, j))] for (i, j) in indices1])
    print(latex(vec))
    vvec = Matrix([[Symbol('c_{{{}}}'.format(vm[k] + 1))] for k in indices0])
    print(latex(vvec))
    lines = []
    frac_lines = []
    redfrac_lines = []
    symbol += '^{{{}}}'.format(superscript)
    for (I, J) in indices:
        line = '&'.join([
            "{}_{{{}{}}} {}_{{{}{}}}".format(symbol, I, i, symbol, J, j)
            for (i, j) in indices
        ])
        lines.append(line)
        Iint = int(I) - 1
        Jint = int(J) - 1
        frac_line = '&'.join([
            "{} \cdot {}".format(symop[Iint, int(i) - 1], symop[Jint,
                                                                int(j) - 1])
            for (i, j) in indices
        ])
        frac_line = frac_line.replace('sqrt(3)', '\\sqrt{3}')
        frac_lines.append(frac_line)
        redfrac_line = '&'.join([
            "{}".format(4 * symop[Iint, int(i) - 1] *
                        symop[Jint, int(j) - 1]) for (i, j) in indices
        ])
        redfrac_line = redfrac_line.replace('sqrt(3)', '\\sqrt{3}')
        redfrac_lines.append(redfrac_line)
    print('\\\\'.join(lines))
    print('\\\\'.join(frac_lines))
    print('\\\\'.join(redfrac_lines))
Esempio n. 6
0
 def test_voigt_map(self):
     exact_vm = {
         (1, 1): 1,
         (2, 2): 2,
         (3, 3): 3,
         (2, 3): 4,
         (3, 2): 4,
         (1, 3): 5,
         (3, 1): 5,
         (1, 2): 6,
         (2, 1): 6
     }
     exact_ivm = {
         1: (1, 1),
         2: (2, 2),
         3: (3, 3),
         4: (2, 3),
         5: (1, 3),
         6: (1, 2)
     }
     approx_ivm, approx_vm = SymbolicTensor.voigt_map(dim=2, start=1)
     assert_equal(approx_vm, exact_vm)
     assert_equal(approx_ivm, exact_ivm)
Esempio n. 7
0
def compare_tables(indices_symbol, symbolnames, colnames, data):
    """
    Parameters
    ----------
    indices_symbol: string
        Tensor symbol, e.g. 'aB' for 2nd-order piezoelectric tensor
    indices: list or tuple of integers
        A list containing tuples with the same length as the number of indices 
        of the tensor of interest.
    colnames : list of strings
        The column names of Chris Kube's tables
    data : 2d array of strings
        The columns of data corresponding to Chris Kube's tensor symmetries
    """
    # Discrepancies
    # 6/mm should be 6/mmm
    # m\bar{3} should be \bar{3}m
    # m3m should be m\bar{3}m
    # 6m2 should be \bar{6}m2
    # m3 should be m\bar{3}
    tex_map = {# triclinic
               '1': '1', '1d': r'$\bar{1}$',
               # monoclinic
               '2': '2', 'm': r'$m$', '2/m': r'$2/m$',
               # orthorhombic
               '222': '222', 'mm2': r'$mm2$', 'mmm': r'$mmm$',
               # tetragonal
               '4': '4', '4d': r'$\bar{4}$', '4/m': '$4/m$', '422': '422',
               '4mm': r'$4mm$', '4d2m': r'$\bar{4}2m$', '4/mmm': r'$4/mmm$',
               # cubic
               '23': '23', 'm3d': r'$m\bar{3}$', '432': '432',
               '4d3m': r'$\bar{4}3m$', 
               'm3dm': r'$m\bar{3}m$',
               # hexagonal 
               '3': '3', '3d': r'$\bar{3}$', '32': '32', '3m': r'$3m$',
               '3dm': r'$\bar{3}m$', '6': '6', '6d': r'$\bar{6}$', 
               '6/m': r'$6/m$', '622': '622', '6mm': r'$6mm$', 
               '6dm2': r'$\bar{6}m2$', '6/mmm': r'$6/mmm$'}
    sg = SgSymOps()
    crystalclasses = sg.flat_ieee.keys()
#     sg = RedSgSymOps()
#     crystalclasses = sg.group.keys()
    # Debug misspellings in Kube tables
#     print('number of crystalclasses = {}'.format(len(crystalclasses)))
#     for crystalclass in crystalclasses:
#         kube_key = tex_map[crystalclass]
#         if kube_key in colnames:
#             colnames.remove(kube_key)
#         else:
#             print(kube_key)
#     print(colnames)
    local_dict = dict((name, Symbol(name)) for name in symbolnames)
    first_letter = symbolnames[0][0]
    differences = False
    # Used for checking if the input file has the correct names
#     for crystalclass in crystalclasses:
#         print(colnames.index(tex_map[crystalclass]))
    for crystalclass in crystalclasses:
#         if crystalclass != '6':
#             continue
        print('Crystal class {}'.format(crystalclass))
        logging.info('Crystal class {}'.format(crystalclass))
        symops = sg(crystalclass)
        st = SymbolicTensor(indices_symbol, first_letter)
        fullsol, R = st.sol_details(symops)
#         print(fullsol)
        inputcol = data[:, colnames.index(tex_map[crystalclass])]
        for inputval, symbolname in zip(inputcol, symbolnames):
            val = fullsol[symbolname]
            parsedval = parse_expr(inputval, local_dict)
            if R(val) != R(parsedval):
                differences = True
                print('{}: val = {}, inputval = {}'.format(symbolname, val, inputval))
                logging.info('{}: val = {}, inputval = {}'.format(symbolname, val, inputval))
    print('Differences = {}'.format(differences))
    logging.info('Differences = {}'.format(differences))
Esempio n. 8
0
 def test__create_slices(self):
     dims = [2, 1, 1, 3]
     exact = [slice(0, 2), slice(2, 3), slice(3, 4), slice(4, 7)]
     approx = SymbolicTensor._create_slices(dims)
     assert_equal(approx, exact)