"id": "word_vectors id", "description": "word_vectors description", "date": "2020-12-31", "vector": {} }] }] } tags = [{"tag": "tag"}] files = [{ "file_uri": "http://example.org/files/file.uri", # File name or URL "format": "application/excel", # The file format, physical medium, or dimensions of the resource. "location": "100", # Page number or sheet name for the table "note": "file note text" # file note }] response = create_and_import.create_document_dataset( dataset_id=dataset_id, repository_id=repository_id, published=published, overwrite=overwrite, metadata_information=metadata_information, document_description=document_description, tags=tags, files=files) print(response) # upload temporary thumbnail thumbnail_path = utils.text_to_thumbnail("Document\nDataset") create_and_import.upload_thumbnail(dataset_id, thumbnail_path)
create_and_import.set_api_url('http://training.ihsn.org/index.php/api/') api_key = 'cf16a23a3cfc6a928f63dd3c8daf8796' create_and_import.set_api_key(api_key) ######################################### # create_survey_dataset_from_DDI example ######################################### file = "SURVEY_DATASET_SAMPLE_02.xml" overwrite = "yes" repository_id = "central" access_policy = "open" published = 1 response = create_and_import.create_survey_dataset_from_DDI( file=file, overwrite=overwrite, repository_id=repository_id, access_policy=access_policy, # data_remote_url=data_remote_url, # rdf=rdf, # published=published ) print(response) # upload temporary thumbnail dataset_id = response['survey']['idno'] thumbnail_path = utils.text_to_thumbnail("Survey\nDataset") create_and_import.upload_thumbnail(dataset_id, thumbnail_path)
"name": "album name", "description": "album description", "owner": "album owner", "uri": "album uri" }], "tags": [{ "tag": "tag" }], "files": [{ "file_uri": "http://example.org/image_description/files/file.uri", # File name or URL "format": "file format", # The file format, physical medium, or dimensions of the resource. "note": "file note", "show": True # Show the image file on the page }] } response = create_and_import.create_image_dataset( dataset_id=dataset_id, repository_id=repository_id, published=published, overwrite=overwrite, metadata_information=metadata_information, image_description=image_description) print(response) # upload temporary thumbnail thumbnail_path = utils.text_to_thumbnail("Image\nDataset") create_and_import.upload_thumbnail(dataset_id, thumbnail_path)
"name": "Related document name", "type": "isPartOf" # "isPartOf""hasPart""isVersionOf""isFormatOf""hasFormat""references""isReferencedBy""isBasedOn""isBasisFor""requires""isRequiredBy" }] } files = [{ "file_uri": "http://example.org/files/file.uri", # File name or URL "format": "file format", # The file format, physical medium, or dimensions of the resource. "location": "file location", "note": "file note" }] tags = [{"tag": "tag"}] additional = {"additional": "additional info"} response = create_and_import.create_table_dataset( dataset_id=dataset_id, repository_id=repository_id, published=published, overwrite=overwrite, metadata_information=metadata_information, table_description=table_description, files=files, tags=tags, additional=additional) print(response) # upload temporary thumbnail thumbnail_path = utils.text_to_thumbnail("Table\nDataset") create_and_import.upload_thumbnail(dataset_id, thumbnail_path)
"data_quality_info lineage statement" # Data quality lineage statement }, "spatial_representation_info": { # Resource spatial representation - Spatial representation information for the dataset (resource). Best practice is to include metadata for spatial representation if the described resource is a georeferenced dataset. "topology_level": "geometryOnly", # Topology Level Code: {geometryOnly, topology1D, planarGraph, fullPlanarGraph, surfaceGraph, fullSurfaceGraph, topology3D, fullTopology3D, abstract} "Geometric_object_code": "complex" # Geometric Object Type Code codes ={complex, composite, curve, point, solid, surface} }, "reference_system_info": { # Resource’s spatial reference system - Description of the spatial and/or temporal reference systems used in the dataset. "code": "EPSG:5701", # reference_system Identifier Code "code_space": "urn:ogc:def:crs" # spatial reference system code_space } } additional = {"additional": "additional info"} response = create_and_import.create_geospatial_dataset( dataset_id=dataset_id, repository_id=repository_id, published=published, overwrite=overwrite, metadata_maintenance=metadata_maintenance, dataset_description=dataset_description, additional=additional) print(response) # upload temporary thumbnail thumbnail_path = utils.text_to_thumbnail("Geospatial\nDataset") create_and_import.upload_thumbnail(dataset_id, thumbnail_path)
"word_vectors": [{ "id": "Vector Model ID", "description": "Vector Model Description", "date": "2020-12-31", "vector": {} }], "series_groups": [ # Series included in groups { "name": "series_group name", "version": "series_group version", "uri": "http://example.org/series_groups/uri" } ] } additional = {} # Any other custom metadata not covered by the schema response = create_and_import.create_timeseries_dataset( dataset_id=dataset_id, repository_id=repository_id, access_policy=access_policy, published=published, overwrite=overwrite, metadata_creation=metadata_creation, series_description=series_description, additional=additional) print(response) # upload temporary thumbnail thumbnail_path = utils.text_to_thumbnail("Timeseries\nDataset") create_and_import.upload_thumbnail(dataset_id, thumbnail_path)
"isPartOf" # Valid values: "isPartOf" "hasPart" "isVersionOf" "isFormatOf" "hasFormat" "references" "isReferencedBy" "isBasedOn" "isBasisFor" "requires" "isRequiredBy" }], "tags": [{ "tag": "tag" }] } files = [{ "file_uri": "http://example.org/files/file.uri", # Provide file name, path or URL "format": "file format", # The file format, physical medium, or dimensions of the resource. "location": "file location", "note": "file note" }] additional = {"additional": "additional info"} response = create_and_import.create_visualization_dataset( dataset_id=dataset_id, repository_id=repository_id, published=published, overwrite=overwrite, metadata_information=metadata_information, visualization_description=visualization_description, files=files, additional=additional) print(response) # upload temporary thumbnail thumbnail_path = utils.text_to_thumbnail("Visualization\nDataset") create_and_import.upload_thumbnail(dataset_id, thumbnail_path)