sim = Simulation() sim.add("h'=a", 1, plot=True) sim.add_data(t=t, h=h, plot=True) sim.params(a=1) sim.run(0, 12) # <markdowncell> # ### Fit the model parameter, $a$ # # Specifying the prior probability distribution for $a$ as uniform between -10 and 10. # <codecell> model = MCMCModel(sim, {'a': [-10, 10]}) model.fit(iter=25000) # <markdowncell> # What is the best fit parameter value? # <codecell> model.a # <markdowncell> # ### Rerun the model # <codecell>
sim=Simulation() sim.add("h'=a",1,plot=True) sim.add_data(t=t,h=h,plot=True) sim.params(a=1) sim.run(0,12) # <markdowncell> # ### Fit the model parameter, $a$ # # Specifying the prior probability distribution for $a$ as uniform between -10 and 10. # <codecell> model=MCMCModel(sim,{'a':[-10,10]}) model.fit(iter=25000) # <markdowncell> # What is the best fit parameter value? # <codecell> model.a # <markdowncell> # ### Rerun the model # <codecell>
data_t=[0,1,2,3] data_mouse=[2,5,7,19] sim=Simulation() # get a simulation object sim.add("mice'=b*mice - d*mice", # the equations 2, # initial value plot=True) # display a plot, which is the default sim.add_data(t=data_t,mice=data_mouse,plot=True) sim.params(b=1.1,d=0.08) # specify the parameters sim.run(5) # <codecell> model=MCMCModel(sim,{'b':[0,10]}) model.fit(iter=25000) # <codecell> model.b # <codecell> sim.run(5) # <codecell> model.plot_distributions() # <codecell>
data_mouse = [2, 5, 7, 19] sim = Simulation() # get a simulation object sim.add( "mice'=b*mice - d*mice", # the equations 2, # initial value plot=True) # display a plot, which is the default sim.add_data(t=data_t, mice=data_mouse, plot=True) sim.params(b=1.1, d=0.08) # specify the parameters sim.run(5) # <codecell> model = MCMCModel(sim, {'b': [0, 10]}) model.fit(iter=25000) # <codecell> model.b # <codecell> sim.run(5) # <codecell> model.plot_distributions() # <codecell>
sim.add("S'=-beta(t)*(S*I)/N", N, plot=False) sim.add("E'=-beta(t)*(S*I)/N - (E/invk)", 135, plot=1) sim.add("I'=(E/invk) - (1/invGamma *I)", 136, plot=1) sim.add("R'=(1/invGamma*I)", 0, plot=False) sim.params(N=N, k=1 / 6.3, q=0.1000, invGamma=5.5000, invk=6.3) sim.functions(beta) sim.add_data(t=numOfDays, I=numOfCases, plot=1) sim.run(0, 350) # <codecell> model = MCMCModel( sim, { 'beta0': [0, 1], 'invGamma': [3.5, 10.7], 'beta1': [0, 1], 'q': [0, 100], 'tau': [100, 150], 'invk': [5, 22] }) #model = MCMCModel(sim,{'invGamma':[3.5,10.7],'q':[0,10]}) model.fit(iter=500) model.plot_distributions() # <codecell> Beta0 = model.beta0 # <codecell> Beta1 = model.beta1