Esempio n. 1
0
def restore_online_signal(h5_dataset,
                          signal_name,
                          band=None,
                          spatial_filter=None,
                          smoothing_factor=0.999):
    df, fs, channels, p_names = load_data(h5_dataset)
    n_channels = len(channels)

    with h5py.File(h5_dataset) as f:
        last_block = len(df.block_number.unique())
        if spatial_filter is None:
            spatial_filter = f['protocol{}/signals_stats/Signal/spatial_filter'
                               .format(last_block)][:]
        if band is None:
            band = f['protocol{}/signals_stats/Signal/bandpass'.format(
                last_block)][:]

    xml_settings = load_xml_str_from_hdf5_dataset(h5_dataset, 'settings.xml')
    params = xml_file_to_params(xml_settings)
    signals_params_list = params['vSignals']['DerivedSignal']
    signals_names = [s['sSignalName'] for s in signals_params_list]
    signal = signals_params_list[signals_names.index(signal_name)]

    signal['fBandpassLowHz'], signal['fBandpassHighHz'] = band
    signal['sTemporalFilterType'] = 'butter'
    signal['fSmoothingFactor'] = smoothing_factor
    signal = DerivedSignal.from_params(0, fs, n_channels, channels, signal,
                                       spatial_filter)

    time_series = signal.update(df[channels].values)
    return signal, time_series
Esempio n. 2
0
File: xml_.py Progetto: voxxys/nfb
def load_signal(filename, channels_labels):
    signal = xml_file_to_odict(filename)
    default = vectors_defaults['vSignals']['DerivedSignal'][0].copy()
    for key, value in default.items():
        default[key] = signal.get(key, value)
    signal = default

    if isinstance(signal['SpatialFilterMatrix'], str):
        if signal['SpatialFilterMatrix'] == '':
            spatial_filter = None
        else:
            spatial_filter = read_spatial_filter(signal['SpatialFilterMatrix'],
                                                 channels_labels)
    elif isinstance(signal['SpatialFilterMatrix'], list):
        spatial_filter = array(signal['SpatialFilterMatrix']).astype(float)
    else:
        raise TypeError(
            '\'SpatialFilterMatrix\' must be string or list (vector)')

    s = DerivedSignal(
        bandpass_high=signal['fBandpassHighHz'],
        bandpass_low=signal['fBandpassLowHz'],
        name=signal['sSignalName'],
        n_channels=len(channels_labels),
        spatial_filter=spatial_filter,
        disable_spectrum_evaluation=signal['bDisableSpectrumEvaluation'],
        n_samples=signal['fFFTWindowSize'],
        smoothing_factor=signal['fSmoothingFactor'])
    return s
Esempio n. 3
0
def restore_online_signal(h5_dataset, signal_name, band=None, spatial_filter=None, smoothing_factor=0.999):
    df, fs, channels, p_names = load_data(h5_dataset)
    n_channels = len(channels)

    with h5py.File(h5_dataset) as f:
        last_block = len(df.block_number.unique())
        if spatial_filter is None:
            spatial_filter = f['protocol{}/signals_stats/Signal/spatial_filter'.format(last_block)][:]
        if band is None:
            band = f['protocol{}/signals_stats/Signal/bandpass'.format(last_block)][:]

    xml_settings = load_xml_str_from_hdf5_dataset(h5_dataset, 'settings.xml')
    params = xml_file_to_params(xml_settings)
    signals_params_list = params['vSignals']['DerivedSignal']
    signals_names = [s['sSignalName'] for s in signals_params_list]
    signal = signals_params_list[signals_names.index(signal_name)]

    signal['fBandpassLowHz'], signal['fBandpassHighHz'] = band
    signal['sTemporalFilterType'] = 'butter'
    signal['fSmoothingFactor'] = smoothing_factor
    signal = DerivedSignal.from_params(0, fs, n_channels, channels, signal, spatial_filter)

    time_series = signal.update(df[channels].values)
    return signal, time_series
Esempio n. 4
0
File: mu_pz.py Progetto: voxxys/nfb
            labels_, fs_ = get_lsl_info_from_xml(f['stream_info.xml'][0])
            print(labels_)
            channels = [
                label for label in labels_ if label not in ['A1', 'A2', 'AUX']
            ]
            print(labels_)

            pz_index = channels.index('Pz')
            raw = raw - np.dot(raw[:, [pz_index]], np.ones((1, raw.shape[1])))

            del channels[pz_index]
            raw = raw[:, np.arange(raw.shape[1]) != pz_index]

            signal = DerivedSignal(ind=0,
                                   name='Signal',
                                   bandpass_low=9,
                                   bandpass_high=14,
                                   spatial_filter=np.array([0]),
                                   n_channels=raw.shape[1])
            w = SignalsSSDManager([signal],
                                  raw,
                                  ch_names_to_2d_pos(channels),
                                  channels,
                                  None,
                                  None, [],
                                  sampling_freq=fs_)
            w.exec_()

            rejections = signal.rejections.get_list()
            new_rejections[experiment] = rejections
    with open(new_rejections_file, 'wb') as pkl:
        pickle.dump(new_rejections, pkl)
Esempio n. 5
0
    #channels = [b[0] for b in mat_file['EEGchanslabels'][0]]

    #print(np.shape(channels))
    #print(np.shape(x))
    #print(np.shape(marks))
    channels = [
        'Fc1', 'Fc3', 'Fc5', 'C1', 'C3', 'C5', 'Cp1', 'Cp3', 'Cp5', 'Cz', 'Pz',
        'Cp2', 'Cp4', 'Cp6', 'C2', 'C4', 'C6', 'Fc2', 'Fc4', 'Fc6'
    ]
    n_ch = len(channels)
    from pynfb.signals import CompositeSignal
    signals = [
        DerivedSignal(ind=k,
                      source_freq=500,
                      name='Signal' + str(k),
                      bandpass_low=0 + k,
                      bandpass_high=1 + 10 * k,
                      spatial_filter=np.array([k]),
                      n_channels=n_ch) for k in range(3)
    ]
    signals += [CompositeSignal(signals, '', 'Composite', 3, fs=500)]
    signals += [BCISignal(500, channels, 'bci', n_ch)]
    app = QtGui.QApplication([])

    x = np.random.randn(5000, n_ch)
    from pynfb.widgets.helpers import ch_names_to_2d_pos

    #x[2500:3000, channels.index('Cz')] /= 50

    x = x[:50000]
    #marks = marks[:50000]
Esempio n. 6
0
from pynfb.signals import DerivedSignal, CompositeSignal
from pynfb.io.hdf5 import save_signals

signals = [DerivedSignal(name='One'),
           DerivedSignal(name='Two')]
signals += [CompositeSignal(signals, 'One+Two', name='Three')]

save_signals('signals_info.hdf5', signals, group_name='protocol1')