Esempio n. 1
0
def make_angular_hyperplane(data, indices, rng_state):
    left_index = tau_rand_int(rng_state) % indices.shape[0]
    right_index = tau_rand_int(rng_state) % indices.shape[0]
    right_index += left_index == right_index
    right_index = right_index % indices.shape[0]
    left = indices[left_index]
    right = indices[right_index]

    left_norm = norm(data[left])
    right_norm = norm(data[right])

    if left_norm == 0.0:
        left_norm = 1.0

    if right_norm == 0.0:
        right_norm = 1.0

    # Compute the normal vector to the hyperplane (the vector between
    # the two points) and the offset from the origin
    hyperplane_offset = 0.0
    hyperplane_vector = np.empty(data.shape[1], dtype=np.float32)

    for d in range(data.shape[1]):
        hyperplane_vector[d] = (data[left, d] / left_norm) - (data[right, d] /
                                                              right_norm)

    return hyperplane_vector, hyperplane_offset
Esempio n. 2
0
def sparse_correlation(ind1, data1, ind2, data2, n_features):

    mu_x = 0.0
    mu_y = 0.0
    dot_product = 0.0

    if ind1.shape[0] == 0 and ind2.shape[0] == 0:
        return 0.0
    elif ind1.shape[0] == 0 or ind2.shape[0] == 0:
        return 1.0

    for i in range(data1.shape[0]):
        mu_x += data1[i]
    for i in range(data2.shape[0]):
        mu_y += data2[i]

    mu_x /= n_features
    mu_y /= n_features

    shifted_data1 = np.empty(data1.shape[0], dtype=np.float32)
    shifted_data2 = np.empty(data2.shape[0], dtype=np.float32)

    for i in range(data1.shape[0]):
        shifted_data1[i] = data1[i] - mu_x
    for i in range(data2.shape[0]):
        shifted_data2[i] = data2[i] - mu_y

    norm1 = np.sqrt(
        (norm(shifted_data1) ** 2) + (n_features - ind1.shape[0]) * (mu_x ** 2)
    )
    norm2 = np.sqrt(
        (norm(shifted_data2) ** 2) + (n_features - ind2.shape[0]) * (mu_y ** 2)
    )

    dot_prod_inds, dot_prod_data = sparse_mul(ind1, shifted_data1, ind2, shifted_data2)

    common_indices = set(dot_prod_inds)

    for val in dot_prod_data:
        dot_product += val

    for i in range(ind1.shape[0]):
        if ind1[i] not in common_indices:
            dot_product -= shifted_data1[i] * (mu_y)

    for i in range(ind2.shape[0]):
        if ind2[i] not in common_indices:
            dot_product -= shifted_data2[i] * (mu_x)

    all_indices = arr_union(ind1, ind2)
    dot_product += mu_x * mu_y * (n_features - all_indices.shape[0])

    if norm1 == 0.0 and norm2 == 0.0:
        return 0.0
    elif dot_product == 0.0:
        return 1.0
    else:
        return 1.0 - (dot_product / (norm1 * norm2))
Esempio n. 3
0
def sparse_wasserstein_1d(ind1, data1, ind2, data2, p=1):
    result = 0.0
    old_ind = 0
    delta = 0.0
    i1 = 0
    i2 = 0
    cdf1 = 0.0
    cdf2 = 0.0
    l1_norm_x = np.sum(data1)
    l1_norm_y = np.sum(data2)

    norm = lambda x, p: np.power(np.abs(x), p)

    # pass through both index lists
    while i1 < ind1.shape[0] and i2 < ind2.shape[0]:
        j1 = ind1[i1]
        j2 = ind2[i2]

        if j1 == j2:
            result += delta * (j1 - old_ind)
            cdf1 += data1[i1] / l1_norm_x
            cdf2 += data2[i2] / l1_norm_y
            delta = norm(cdf1 - cdf2, p)
            old_ind = j1
            i1 += 1
            i2 += 1
        elif j1 < j2:
            result += delta * (j1 - old_ind)
            cdf1 += data1[i1] / l1_norm_x
            delta = norm(cdf1 - cdf2, p)
            old_ind = j1
            i1 += 1
        else:
            result += delta * (j2 - old_ind)
            cdf2 += data2[i2] / l1_norm_y
            delta = norm(cdf1 - cdf2, p)
            old_ind = j2
            i2 += 1
            # pass over the tails
    while i1 < ind1.shape[0]:
        j1 = ind1[i1]
        result += delta * (j1 - old_ind)
        cdf1 += data1[i1] / l1_norm_x
        delta = norm(cdf1 - cdf2, p)
        old_ind = j1
        i1 += 1

    while i2 < ind2.shape[0]:
        j2 = ind2[i2]
        result += delta * (j2 - old_ind)
        cdf2 += data2[i2] / l1_norm_y
        delta = norm(cdf1 - cdf2, p)
        old_ind = j2
        i2 += 1

    return np.power(result, 1.0 / p)
Esempio n. 4
0
def sparse_cosine(ind1, data1, ind2, data2):
    _, aux_data = sparse_mul(ind1, data1, ind2, data2)
    result = 0.0
    norm1 = norm(data1)
    norm2 = norm(data2)

    for val in aux_data:
        result += val

    if norm1 == 0.0 and norm2 == 0.0:
        return 0.0
    elif norm1 == 0.0 or norm2 == 0.0:
        return 1.0
    else:
        return 1.0 - (result / (norm1 * norm2))
Esempio n. 5
0
def sparse_cosine(ind1, data1, ind2, data2):
    _, aux_data = sparse_mul(ind1, data1, ind2, data2)
    result = 0.0
    norm1 = norm(data1)
    norm2 = norm(data2)

    for i in range(aux_data.shape[0]):
        result += aux_data[i]

    if norm1 == 0.0 and norm2 == 0.0:
        return 0.0
    elif norm1 == 0.0 or norm2 == 0.0:
        return 1.0
    else:
        return 1.0 - (result / (norm1 * norm2))
Esempio n. 6
0
def sparse_alternative_cosine(ind1, data1, ind2, data2):
    _, aux_data = sparse_mul(ind1, data1, ind2, data2)
    result = 0.0
    norm_x = norm(data1)
    norm_y = norm(data2)
    dim = len(aux_data)
    for i in range(dim):
        result += aux_data[i]
    if norm_x == 0.0 and norm_y == 0.0:
        return 0.0
    elif norm_x == 0.0 or norm_y == 0.0:
        return FLOAT32_MAX
    elif result <= 0.0:
        return FLOAT32_MAX
    else:
        return 0.5 * (np.log(norm_x) + np.log(norm_y)) - np.log(result)
Esempio n. 7
0
def angular_random_projection_split(data, indices, rng_state):
    """Given a set of ``graph_indices`` for graph_data points from ``graph_data``, create
    a random hyperplane to split the graph_data, returning two arrays graph_indices
    that fall on either side of the hyperplane. This is the basis for a
    random projection tree, which simply uses this splitting recursively.
    This particular split uses cosine distance to determine the hyperplane
    and which side each graph_data sample falls on.
    Parameters
    ----------
    data: array of shape (n_samples, n_features)
        The original graph_data to be split
    indices: array of shape (tree_node_size,)
        The graph_indices of the elements in the ``graph_data`` array that are to
        be split in the current operation.
    rng_state: array of int64, shape (3,)
        The internal state of the rng
    Returns
    -------
    indices_left: array
        The elements of ``graph_indices`` that fall on the "left" side of the
        random hyperplane.
    indices_right: array
        The elements of ``graph_indices`` that fall on the "left" side of the
        random hyperplane.
    """
    dim = data.shape[1]

    # Select two random points, set the hyperplane between them
    left_index = tau_rand_int(rng_state) % indices.shape[0]
    right_index = tau_rand_int(rng_state) % indices.shape[0]
    right_index += left_index == right_index
    right_index = right_index % indices.shape[0]
    left = indices[left_index]
    right = indices[right_index]

    left_norm = norm(data[left])
    right_norm = norm(data[right])

    if abs(left_norm) < EPS:
        left_norm = 1.0

    if abs(right_norm) < EPS:
        right_norm = 1.0

    # Compute the normal vector to the hyperplane (the vector between
    # the two points)
    hyperplane_vector = np.empty(dim, dtype=np.float32)

    for d in range(dim):
        hyperplane_vector[d] = (data[left, d] / left_norm) - (data[right, d] /
                                                              right_norm)

    hyperplane_norm = norm(hyperplane_vector)
    if abs(hyperplane_norm) < EPS:
        hyperplane_norm = 1.0

    for d in range(dim):
        hyperplane_vector[d] = hyperplane_vector[d] / hyperplane_norm

    # For each point compute the margin (project into normal vector)
    # If we are on lower side of the hyperplane put in one pile, otherwise
    # put it in the other pile (if we hit hyperplane on the nose, flip a coin)
    n_left = 0
    n_right = 0
    side = np.empty(indices.shape[0], np.int8)
    for i in range(indices.shape[0]):
        margin = 0.0
        for d in range(dim):
            margin += hyperplane_vector[d] * data[indices[i], d]

        if abs(margin) < EPS:
            side[i] = tau_rand_int(rng_state) % 2
            if side[i] == 0:
                n_left += 1
            else:
                n_right += 1
        elif margin > 0:
            side[i] = 0
            n_left += 1
        else:
            side[i] = 1
            n_right += 1

    # Now that we have the counts allocate arrays
    indices_left = np.empty(n_left, dtype=np.int32)
    indices_right = np.empty(n_right, dtype=np.int32)

    # Populate the arrays with graph_indices according to which side they fell on
    n_left = 0
    n_right = 0
    for i in range(side.shape[0]):
        if side[i] == 0:
            indices_left[n_left] = indices[i]
            n_left += 1
        else:
            indices_right[n_right] = indices[i]
            n_right += 1

    return indices_left, indices_right, hyperplane_vector, 0.0
Esempio n. 8
0
def sparse_angular_random_projection_split(inds, indptr, data, indices,
                                           rng_state):
    """Given a set of ``graph_indices`` for graph_data points from a sparse graph_data set
    presented in csr sparse format as inds, graph_indptr and graph_data, create
    a random hyperplane to split the graph_data, returning two arrays graph_indices
    that fall on either side of the hyperplane. This is the basis for a
    random projection tree, which simply uses this splitting recursively.
    This particular split uses cosine distance to determine the hyperplane
    and which side each graph_data sample falls on.
    Parameters
    ----------
    inds: array
        CSR format index array of the matrix
    indptr: array
        CSR format index pointer array of the matrix
    data: array
        CSR format graph_data array of the matrix
    indices: array of shape (tree_node_size,)
        The graph_indices of the elements in the ``graph_data`` array that are to
        be split in the current operation.
    rng_state: array of int64, shape (3,)
        The internal state of the rng
    Returns
    -------
    indices_left: array
        The elements of ``graph_indices`` that fall on the "left" side of the
        random hyperplane.
    indices_right: array
        The elements of ``graph_indices`` that fall on the "left" side of the
        random hyperplane.
    """
    # Select two random points, set the hyperplane between them
    left_index = tau_rand_int(rng_state) % indices.shape[0]
    right_index = tau_rand_int(rng_state) % indices.shape[0]
    right_index += left_index == right_index
    right_index = right_index % indices.shape[0]
    left = indices[left_index]
    right = indices[right_index]

    left_inds = inds[indptr[left]:indptr[left + 1]]
    left_data = data[indptr[left]:indptr[left + 1]]
    right_inds = inds[indptr[right]:indptr[right + 1]]
    right_data = data[indptr[right]:indptr[right + 1]]

    left_norm = norm(left_data)
    right_norm = norm(right_data)

    if abs(left_norm) < EPS:
        left_norm = 1.0

    if abs(right_norm) < EPS:
        right_norm = 1.0

    # Compute the normal vector to the hyperplane (the vector between
    # the two points)
    normalized_left_data = (left_data / left_norm).astype(np.float32)
    normalized_right_data = (right_data / right_norm).astype(np.float32)
    hyperplane_inds, hyperplane_data = sparse_diff(left_inds,
                                                   normalized_left_data,
                                                   right_inds,
                                                   normalized_right_data)

    hyperplane_norm = norm(hyperplane_data)
    if abs(hyperplane_norm) < EPS:
        hyperplane_norm = 1.0
    for d in range(hyperplane_data.shape[0]):
        hyperplane_data[d] = hyperplane_data[d] / hyperplane_norm

    # For each point compute the margin (project into normal vector)
    # If we are on lower side of the hyperplane put in one pile, otherwise
    # put it in the other pile (if we hit hyperplane on the nose, flip a coin)
    n_left = 0
    n_right = 0
    side = np.empty(indices.shape[0], np.int8)
    for i in range(indices.shape[0]):
        margin = 0.0

        i_inds = inds[indptr[indices[i]]:indptr[indices[i] + 1]]
        i_data = data[indptr[indices[i]]:indptr[indices[i] + 1]]

        _, mul_data = sparse_mul(hyperplane_inds, hyperplane_data, i_inds,
                                 i_data)
        for val in mul_data:
            margin += val

        if abs(margin) < EPS:
            side[i] = tau_rand_int(rng_state) % 2
            if side[i] == 0:
                n_left += 1
            else:
                n_right += 1
        elif margin > 0:
            side[i] = 0
            n_left += 1
        else:
            side[i] = 1
            n_right += 1

    # Now that we have the counts allocate arrays
    indices_left = np.empty(n_left, dtype=np.int32)
    indices_right = np.empty(n_right, dtype=np.int32)

    # Populate the arrays with graph_indices according to which side they fell on
    n_left = 0
    n_right = 0
    for i in range(side.shape[0]):
        if side[i] == 0:
            indices_left[n_left] = indices[i]
            n_left += 1
        else:
            indices_right[n_right] = indices[i]
            n_right += 1

    hyperplane = np.vstack((hyperplane_inds, hyperplane_data))

    return indices_left, indices_right, hyperplane, 0.0