Esempio n. 1
0
    def test_fit_center_full(self) -> None:

        module = FitCenterModule(name_in='fit1',
                                 image_in_tag='shift',
                                 fit_out_tag='fit_full',
                                 mask_out_tag='mask',
                                 method='full',
                                 mask_radii=(None, 0.1),
                                 sign='positive',
                                 model='gaussian',
                                 guess=(1., 2., 3., 3., 0.01, 0., 0.))

        self.pipeline.add_module(module)
        self.pipeline.run_module('fit1')

        data = self.pipeline.get_data('fit_full')
        assert np.mean(data[:, 0]) == pytest.approx(0.94, rel=0., abs=0.01)
        assert np.mean(data[:, 2]) == pytest.approx(2.07, rel=0., abs=0.01)
        assert np.mean(data[:, 4]) == pytest.approx(0.08, rel=0., abs=0.01)
        assert np.mean(data[:, 6]) == pytest.approx(0.08, rel=0., abs=0.01)
        assert np.mean(data[:, 8]) == pytest.approx(0.24, rel=0., abs=0.01)
        assert data.shape == (10, 14)

        data = self.pipeline.get_data('mask')
        assert np.sum(data) == pytest.approx(103.45599730750453,
                                             rel=self.limit,
                                             abs=0.)
        assert data.shape == (10, 18, 18)
Esempio n. 2
0
    def test_fit_center_full(self) -> None:

        module = FitCenterModule(name_in='fit1',
                                 image_in_tag='shift',
                                 fit_out_tag='fit_full',
                                 mask_out_tag='mask',
                                 method='full',
                                 radius=0.05,
                                 sign='positive',
                                 model='gaussian',
                                 guess=(6., 4., 3., 3., 0.01, 0., 0.))

        self.pipeline.add_module(module)
        self.pipeline.run_module('fit1')

        data = self.pipeline.get_data('fit_full')
        assert np.allclose(np.mean(data[:, 0]), 5.999068486622676, rtol=1e-3, atol=0.)
        assert np.allclose(np.mean(data[:, 2]), 4.000055166165185, rtol=1e-3, atol=0.)
        assert np.allclose(np.mean(data[:, 4]), 0.08106141046470318, rtol=1e-3, atol=0.)
        assert np.allclose(np.mean(data[:, 6]), 0.0810026137349896, rtol=1e-3, atol=0.)
        assert np.allclose(np.mean(data[:, 8]), 0.024462594420743763, rtol=1e-3, atol=0.)
        assert np.allclose(np.mean(data[:, 12]), 3.0281141786814477e-05, rtol=1e-3, atol=0.)
        assert data.shape == (40, 14)

        data = self.pipeline.get_data('mask')
        assert np.allclose(data[0, 43, 45], 0.023556628129942764, rtol=limit, atol=0.)
        assert np.allclose(data[0, 43, 55], 0.0, rtol=limit, atol=0.)
        assert np.allclose(np.mean(data), 0.00010827527282995305, rtol=limit, atol=0.)
        assert data.shape == (40, 78, 78)
Esempio n. 3
0
    def test_fit_center_full(self):

        module = FitCenterModule(name_in='fit1',
                                 image_in_tag='shift',
                                 fit_out_tag='fit_full',
                                 mask_out_tag='mask',
                                 method='full',
                                 radius=0.05,
                                 sign='positive',
                                 model='gaussian',
                                 guess=(6., 4., 3., 3., 0.01, 0., 0.))

        self.pipeline.add_module(module)
        self.pipeline.run_module('fit1')

        data = self.pipeline.get_data('fit_full')
        assert np.allclose(data[0, 0], 5.997834332959175, rtol=limit, atol=0.)
        assert np.allclose(np.mean(data),
                           13.202402625344051,
                           rtol=1e-4,
                           atol=0.)
        assert data.shape == (40, 14)

        data = self.pipeline.get_data('mask')
        assert np.allclose(data[0, 43, 45],
                           0.023556628129942764,
                           rtol=limit,
                           atol=0.)
        assert np.allclose(data[0, 43, 55], 0.0, rtol=limit, atol=0.)
        assert np.allclose(np.mean(data),
                           0.00010827527282995305,
                           rtol=limit,
                           atol=0.)
        assert data.shape == (40, 78, 78)
Esempio n. 4
0
    def test_fit_center_mean(self):

        module = FitCenterModule(name_in='fit2',
                                 image_in_tag='shift',
                                 fit_out_tag='fit_mean',
                                 mask_out_tag=None,
                                 method='mean',
                                 radius=0.05,
                                 sign='positive',
                                 model='moffat',
                                 guess=(6., 4., 3., 3., 0.01, 0., 0., 1.))

        self.pipeline.add_module(module)
        self.pipeline.run_module('fit2')

        data = self.pipeline.get_data('fit_mean')
        assert np.allclose(np.mean(data[:, 0]),
                           5.999072568941366,
                           rtol=1e-3,
                           atol=0.)
        assert np.allclose(np.mean(data[:, 2]),
                           4.000051869708742,
                           rtol=1e-3,
                           atol=0.)
        assert np.allclose(np.mean(data[:, 4]),
                           0.08384036587023312,
                           rtol=1e-3,
                           atol=0.)
        assert np.allclose(np.mean(data[:, 6]),
                           0.08379313488754872,
                           rtol=1e-3,
                           atol=0.)
        assert np.allclose(np.mean(data[:, 8]),
                           0.025631328037795074,
                           rtol=1e-3,
                           atol=0.)
        assert np.allclose(np.mean(data[:, 12]),
                           -0.0011275279023032867,
                           rtol=1e-3,
                           atol=0.)
        assert data.shape == (40, 16)
Esempio n. 5
0
    def test_fit_center_mean(self) -> None:

        module = FitCenterModule(name_in='fit2',
                                 image_in_tag='shift',
                                 fit_out_tag='fit_mean',
                                 mask_out_tag=None,
                                 method='mean',
                                 mask_radii=(None, 0.1),
                                 sign='positive',
                                 model='moffat',
                                 guess=(1., 2., 3., 3., 0.01, 0., 0., 1.))

        self.pipeline.add_module(module)
        self.pipeline.run_module('fit2')

        data = self.pipeline.get_data('fit_mean')
        assert np.mean(data[:, 0]) == pytest.approx(0.94, rel=0., abs=0.01)
        assert np.mean(data[:, 2]) == pytest.approx(2.06, rel=0., abs=0.01)
        assert np.mean(data[:, 4]) == pytest.approx(0.08, rel=0., abs=0.01)
        assert np.mean(data[:, 6]) == pytest.approx(0.08, rel=0., abs=0.01)
        assert np.mean(data[:, 8]) == pytest.approx(0.24, rel=0., abs=0.01)
        assert data.shape == (10, 16)
Esempio n. 6
0
    def test_fit_center_mean(self):

        module = FitCenterModule(name_in='fit2',
                                 image_in_tag='shift',
                                 fit_out_tag='fit_mean',
                                 mask_out_tag=None,
                                 method='mean',
                                 radius=0.05,
                                 sign='positive',
                                 model='moffat',
                                 guess=(6., 4., 3., 3., 0.01, 0., 0., 1.))

        self.pipeline.add_module(module)
        self.pipeline.run_module('fit2')

        data = self.pipeline.get_data('fit_mean')
        assert np.allclose(data[0, 0], 5.999072568941366, rtol=limit, atol=0.)
        assert np.allclose(np.mean(data),
                           14.525054620661948,
                           rtol=1e-4,
                           atol=0.)
        assert data.shape == (40, 16)