Esempio n. 1
0
    def test_init(self):
        ts = TimeSeries('test_ts', list(), 'unit', timestamps=list())

        iS = IndexSeries('test_iS', list(), 'unit', ts, timestamps=list())
        self.assertEqual(iS.name, 'test_iS')
        self.assertEqual(iS.unit, 'unit')
        self.assertEqual(iS.indexed_timeseries, ts)
Esempio n. 2
0
def test_show_index_series():
    data = np.array([12, 14, 16, 18, 20, 22, 24, 26])
    indexed_timeseries = TimeSeries(name='Index Series time data',
                                    data=np.random.rand(800).reshape((8, 10, 10)), rate=1.)
    index_series = IndexSeries(name='Sample Index Series', data=data,
                               indexed_timeseries=indexed_timeseries, rate=1.)

    assert isinstance(show_index_series(index_series, default_neurodata_vis_spec), widgets.Widget)
Esempio n. 3
0
def add_stimulus_index(nwbfile, stimulus_index, nwb_template):

    image_index = IndexSeries(name=nwb_template.name,
                              data=stimulus_index['image_index'].values,
                              unit='None',
                              indexed_timeseries=nwb_template,
                              timestamps=stimulus_index['start_time'].values)

    nwbfile.add_stimulus(image_index)
Esempio n. 4
0
 def test_init(self):
     ts = TimeSeries(name='test_ts',
                     data=[1, 2, 3],
                     unit='unit',
                     timestamps=[0.1, 0.2, 0.3])
     iS = IndexSeries(name='test_iS',
                      data=[1, 2, 3],
                      unit='N/A',
                      indexed_timeseries=ts,
                      timestamps=[0.1, 0.2, 0.3])
     self.assertEqual(iS.name, 'test_iS')
     self.assertEqual(iS.unit, 'N/A')
     self.assertIs(iS.indexed_timeseries, ts)
Esempio n. 5
0
########################################
# 2) Next, we add stimuli templates (one for each type of stimulus), and a data series that indexes these templates to
# describe what stimulus was being shown during the experiment.
for stimulus in stimulus_list:
    visual_stimulus_images = ImageSeries(
        name=stimulus,
        source='NA',
        data=dataset.get_stimulus_template(stimulus),
        unit='NA',
        format='raw',
        timestamps=[0.0])
    image_index = IndexSeries(
        name=stimulus,
        source='NA',
        data=dataset.get_stimulus_table(stimulus).frame.values,
        unit='NA',
        indexed_timeseries=visual_stimulus_images,
        timestamps=timestamps[dataset.get_stimulus_table(
            stimulus).start.values])
    nwbfile.add_stimulus_template(visual_stimulus_images)
    nwbfile.add_stimulus(image_index)

########################################
# 3) Besides the two-photon calcium image stack, the running speed of the animal was also recordered in this experiment.
# We can store this data as a TimeSeries, in the acquisition portion of the file.

running_speed = TimeSeries(name='running_speed',
                           source='Allen Brain Observatory: Visual Coding',
                           data=running_data,
                           timestamps=timestamps,
                           unit='cm/s')