def pca(self, X_train, n_components=None, contamination=None): """ Train PCA model from PYOD Parameters __________ X_train: scaled training data contamination: percentage of anomalies in the data n_components: number of components to transform Returns ________ Anomaly scores """ model = PCAOD(n_components=n_components, contamination=contamination) model.fit(X_train) # Predict raw anomaly score labels = model.predict(X_train) # outlier labels (0 or 1) pca_anomaly_scores = model.decision_function(X_train) # outlier scores pca_anomaly_scores = self.min_max_scaler(pca_anomaly_scores) return pca_anomaly_scores, labels
def detect(file, amountanom, realtime): """ Functon to apply a very simple anomaly detector amountanom: The top number of anomalies we want to print realtime: If we want to read the conn.log file in real time (not working) """ # Create a zeek reader on a given log file. Thanks brothon reader = bro_log_reader.BroLogReader(file, tail=realtime) # Create a Pandas dataframe from reader bro_df = pd.DataFrame(reader.readrows()) # In case you need a label, due to some models being able to work in a semisupervized mode, then put it here. For now everything is 'normal', but we are not using this for detection bro_df['label'] = 'normal' # Change the datetime delta value to seconds. Scikit does not now how to work with timedeltas bro_df['durationsec'] = bro_df.duration.apply(lambda x: x.total_seconds()) # Replace the rows without data (with '-') with -1. Even though this may add a bias in the algorithms, is better than not using the lines. bro_df['orig_bytes'] = bro_df['orig_bytes'].replace(to_replace='-', value=-1) bro_df['resp_bytes'] = bro_df['resp_bytes'].replace(to_replace='-', value=-1) bro_df['resp_pkts'] = bro_df['resp_pkts'].replace(to_replace='-', value=-1) bro_df['orig_ip_bytes'] = bro_df['orig_ip_bytes'].replace(to_replace='-', value=-1) bro_df['resp_ip_bytes'] = bro_df['resp_ip_bytes'].replace(to_replace='-', value=-1) # Add the columns from the log file that we know are numbers. This is only for conn.log files. X_train = bro_df[[ 'durationsec', 'orig_bytes', 'id.resp_p', 'resp_bytes', 'orig_ip_bytes', 'resp_pkts', 'resp_ip_bytes' ]] # Our y is the label. But we are not using it now. y = bro_df.label # The X_test is where we are going to search for anomalies. In our case, its the same set of data than X_train. X_test = X_train ################# # Select a model from below # ABOD class for Angle-base Outlier Detection. For an observation, the variance of its weighted cosine scores to all neighbors could be viewed as the outlying score. #clf = ABOD() # LOF #clf = LOF() # CBLOF #clf = CBLOF() # LOCI #clf = LOCI() # LSCP #clf = LSCP() # MCD #clf = MCD() # OCSVM #clf = OCSVM() # PCA. Good and fast! clf = PCA() # SOD #clf = SOD() # SO_GAAL #clf = SO_GALL() # SOS #clf = SOS() # XGBOD #clf = XGBOD() # KNN # Good results but slow #clf = KNN() #clf = KNN(n_neighbors=10) ################# # Fit the model to the train data clf.fit(X_train) # get the prediction on the test data y_test_pred = clf.predict(X_test) # outlier labels (0 or 1) y_test_scores = clf.decision_function(X_test) # outlier scores # Convert the ndarrays of scores and predictions to pandas series scores_series = pd.Series(y_test_scores) pred_series = pd.Series(y_test_pred) # Now use the series to add a new column to the X test X_test['score'] = scores_series.values X_test['pred'] = pred_series.values # Add the score to the bro_df also. So we can show it at the end bro_df['score'] = X_test['score'] # Keep the positive predictions only. That is, keep only what we predict is an anomaly. X_test_predicted = X_test[X_test.pred == 1] # Keep the top X amount of anomalies top10 = X_test_predicted.sort_values(by='score', ascending=False).iloc[:amountanom] ## Print the results # Find the predicted anomalies in the original bro dataframe, where the rest of the data is df_to_print = bro_df.iloc[top10.index] print('\nFlows of the top anomalies') # Only print some columns, not all, so its easier to read. df_to_print = df_to_print.drop([ 'conn_state', 'history', 'local_orig', 'local_resp', 'missed_bytes', 'ts', 'tunnel_parents', 'uid', 'label' ], axis=1) print(df_to_print)
# Generate sample data X_train, y_train, X_test, y_test = \ generate_data(n_train=n_train, n_test=n_test, n_features=2, contamination=contamination, random_state=42) # train PCA detector clf_name = 'PCA' clf = PCA() clf.fit(X_train) # get the prediction labels and outlier scores of the training data y_train_pred = clf.labels_ # binary labels (0: inliers, 1: outliers) y_train_scores = clf.decision_scores_ # raw outlier scores # get the prediction on the test data y_test_pred = clf.predict(X_test) # outlier labels (0 or 1) y_test_scores = clf.decision_function(X_test) # outlier scores # evaluate and print the results print("\nOn Training Data:") evaluate_print(clf_name, y_train, y_train_scores) print("\nOn Test Data:") evaluate_print(clf_name, y_test, y_test_scores) # visualize the results visualize(clf_name, X_train, y_train, X_test, y_test, y_train_pred, y_test_pred, show_figure=True, save_figure=False)
print('{data_file} does not exist. Use generated data'.format( data_file=mat_file)) X, y = generate_data(train_only=True) # load data except IOError: print('{data_file} does not exist. Use generated data'.format( data_file=mat_file)) X, y = generate_data(train_only=True) # load data else: X = mat['X'] y = mat['y'].ravel() for t in range(ite): X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4) # standardizing data for processing X_train_norm, X_test_norm = standardizer(X_train, X_test) # initialize 20 base detectors for combination clf = PCA() clf.fit(X_train_norm) train_scores = clf.decision_scores_ test_scores = clf.decision_function(X_test_norm) print() evaluate_print('PCA Train', y_train, train_scores) evaluate_print('PCA Test', y_test, test_scores)
class TestPCA(unittest.TestCase): def setUp(self): self.n_train = 200 self.n_test = 100 self.contamination = 0.1 self.roc_floor = 0.8 self.X_train, self.y_train, self.X_test, self.y_test = generate_data( n_train=self.n_train, n_test=self.n_test, n_features=10, contamination=self.contamination, random_state=42) self.clf = PCA(contamination=self.contamination, random_state=42) self.clf.fit(self.X_train) def test_parameters(self): assert (hasattr(self.clf, 'decision_scores_') and self.clf.decision_scores_ is not None) assert (hasattr(self.clf, 'labels_') and self.clf.labels_ is not None) assert (hasattr(self.clf, 'threshold_') and self.clf.threshold_ is not None) assert (hasattr(self.clf, '_mu') and self.clf._mu is not None) assert (hasattr(self.clf, '_sigma') and self.clf._sigma is not None) assert (hasattr(self.clf, 'selected_components_') and self.clf.selected_components_ is not None) assert (hasattr(self.clf, 'selected_w_components_') and self.clf.selected_w_components_ is not None) def test_train_scores(self): assert_equal(len(self.clf.decision_scores_), self.X_train.shape[0]) def test_prediction_scores(self): pred_scores = self.clf.decision_function(self.X_test) # check score shapes assert_equal(pred_scores.shape[0], self.X_test.shape[0]) # check performance assert (roc_auc_score(self.y_test, pred_scores) >= self.roc_floor) def test_prediction_labels(self): pred_labels = self.clf.predict(self.X_test) assert_equal(pred_labels.shape, self.y_test.shape) def test_prediction_proba(self): pred_proba = self.clf.predict_proba(self.X_test) assert (pred_proba.min() >= 0) assert (pred_proba.max() <= 1) def test_prediction_proba_linear(self): pred_proba = self.clf.predict_proba(self.X_test, method='linear') assert (pred_proba.min() >= 0) assert (pred_proba.max() <= 1) def test_prediction_proba_unify(self): pred_proba = self.clf.predict_proba(self.X_test, method='unify') assert (pred_proba.min() >= 0) assert (pred_proba.max() <= 1) def test_prediction_proba_parameter(self): with assert_raises(ValueError): self.clf.predict_proba(self.X_test, method='something') def test_fit_predict(self): pred_labels = self.clf.fit_predict(self.X_train) assert_equal(pred_labels.shape, self.y_train.shape) def test_fit_predict_score(self): self.clf.fit_predict_score(self.X_test, self.y_test) self.clf.fit_predict_score(self.X_test, self.y_test, scoring='roc_auc_score') self.clf.fit_predict_score(self.X_test, self.y_test, scoring='prc_n_score') with assert_raises(NotImplementedError): self.clf.fit_predict_score(self.X_test, self.y_test, scoring='something') def test_predict_rank(self): pred_socres = self.clf.decision_function(self.X_test) pred_ranks = self.clf._predict_rank(self.X_test) # assert the order is reserved assert_allclose(rankdata(pred_ranks), rankdata(pred_socres), atol=3) assert_array_less(pred_ranks, self.X_train.shape[0] + 1) assert_array_less(-0.1, pred_ranks) def test_predict_rank_normalized(self): pred_socres = self.clf.decision_function(self.X_test) pred_ranks = self.clf._predict_rank(self.X_test, normalized=True) # assert the order is reserved assert_allclose(rankdata(pred_ranks), rankdata(pred_socres), atol=3) assert_array_less(pred_ranks, 1.01) assert_array_less(-0.1, pred_ranks) def test_model_clone(self): clone_clf = clone(self.clf) def tearDown(self): pass
"""### Angle-based Outlier Detector (Probabilistic Based Model)""" from pyod.models import abod clf_abod = abod.ABOD(contamination=0.1, n_neighbors=5, method='fast') clf_abod.fit(X) y_pred = clf_abod.predict(X) # outlier labels (0 or 1) y_scores = clf_abod.decision_function(X) # outlier scores colors = np.array(['#377eb8', '#ff7f00']) plt.scatter(X[:, 0], X[:, 1], s=10, color=colors[(y_pred - 1) // 2]) clf_abod.fit_predict_score(X[:, 0].reshape(-1,1), y_pred, scoring='roc_auc_score') """### Linear Model PCA""" from pyod.models.pca import PCA clf_pca = PCA() clf_pca.fit(X) y_pred = clf_pca.predict(X) # outlier labels (0 or 1) y_scores = clf_pca.decision_function(X) # outlier scores y_pred colors = np.array(['#377eb8', '#ff7f00']) plt.scatter(X[:, 0], X[:, 1], s=10, color=colors[(y_pred - 1) // 2]) clf_pca.fit_predict_score(X[:, 0].reshape(-1,1), y_pred, scoring='roc_auc_score')
def detect(file, amountanom, realtime, dumptocsv): """ Function to apply a very simple anomaly detector amountanom: The top number of anomalies we want to print realtime: If we want to read the conn.log file in real time (not working) """ # Create a Pandas dataframe from the conn.log bro_df = pd.read_csv( file, sep="\t", comment='#', names=[ 'ts', 'uid', 'id.orig_h', 'id.orig_p', 'id.resp_h', 'id.resp_p', 'proto', 'service', 'duration', 'orig_bytes', 'resp_bytes', 'conn_state', 'local_orig', 'local_resp', 'missed_bytes', 'history', 'orig_pkts', 'orig_ip_bytes', 'resp_pkts', 'resp_ip_bytes', 'tunnel_parents' ]) # In case you need a label, due to some models being able to work in a # semisupervized mode, then put it here. For now everything is # 'normal', but we are not using this for detection bro_df['label'] = 'normal' # Replace the rows without data (with '-') with 0. # Even though this may add a bias in the algorithms, # is better than not using the lines. # Also fill the no values with 0 # Finally put a type to each column bro_df['orig_bytes'].replace('-', '0', inplace=True) bro_df['orig_bytes'] = bro_df['orig_bytes'].fillna(0).astype('int32') bro_df['resp_bytes'].replace('-', '0', inplace=True) bro_df['resp_bytes'] = bro_df['resp_bytes'].fillna(0).astype('int32') bro_df['resp_pkts'].replace('-', '0', inplace=True) bro_df['resp_pkts'] = bro_df['resp_pkts'].fillna(0).astype('int32') bro_df['orig_ip_bytes'].replace('-', '0', inplace=True) bro_df['orig_ip_bytes'] = bro_df['orig_ip_bytes'].fillna(0).astype('int32') bro_df['resp_ip_bytes'].replace('-', '0', inplace=True) bro_df['resp_ip_bytes'] = bro_df['resp_ip_bytes'].fillna(0).astype('int32') bro_df['duration'].replace('-', '0', inplace=True) bro_df['duration'] = bro_df['duration'].fillna(0).astype('float64') # Save dataframe to disk as CSV if dumptocsv != "None": bro_df.to_csv(dumptocsv) # Add the columns from the log file that we know are numbers. This is only for conn.log files. X_train = bro_df[[ 'duration', 'orig_bytes', 'id.resp_p', 'resp_bytes', 'orig_ip_bytes', 'resp_pkts', 'resp_ip_bytes' ]] # Our y is the label. But we are not using it now. y = bro_df.label # The X_test is where we are going to search for anomalies. In our case, its the same set of data than X_train. X_test = X_train ################# # Select a model from below # ABOD class for Angle-base Outlier Detection. For an observation, the # variance of its weighted cosine scores to all neighbors could be # viewed as the outlying score. # clf = ABOD() # LOF # clf = LOF() # CBLOF # clf = CBLOF() # LOCI # clf = LOCI() # LSCP # clf = LSCP() # MCD # clf = MCD() # OCSVM # clf = OCSVM() # PCA. Good and fast! clf = PCA() # SOD # clf = SOD() # SO_GAAL # clf = SO_GALL() # SOS # clf = SOS() # XGBOD # clf = XGBOD() # KNN # Good results but slow # clf = KNN() # clf = KNN(n_neighbors=10) ################# # Fit the model to the train data clf.fit(X_train) # get the prediction on the test data y_test_pred = clf.predict(X_test) # outlier labels (0 or 1) y_test_scores = clf.decision_function(X_test) # outlier scores # Convert the ndarrays of scores and predictions to pandas series scores_series = pd.Series(y_test_scores) pred_series = pd.Series(y_test_pred) # Now use the series to add a new column to the X test X_test['score'] = scores_series.values X_test['pred'] = pred_series.values # Add the score to the bro_df also. So we can show it at the end bro_df['score'] = X_test['score'] # Keep the positive predictions only. That is, keep only what we predict is an anomaly. X_test_predicted = X_test[X_test.pred == 1] # Keep the top X amount of anomalies top10 = X_test_predicted.sort_values(by='score', ascending=False).iloc[:amountanom] # Print the results # Find the predicted anomalies in the original bro dataframe, where the rest of the data is df_to_print = bro_df.iloc[top10.index] print('\nFlows of the top anomalies') # Only print some columns, not all, so its easier to read. df_to_print = df_to_print.drop([ 'conn_state', 'history', 'local_orig', 'local_resp', 'missed_bytes', 'ts', 'tunnel_parents', 'uid', 'label' ], axis=1) print(df_to_print)
#划分测试集和训练集 X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.33) #使用pyod中的PCA算法拟合数据 clf_name = 'PCA' clf = PCA() clf.fit(X_train) #预测得到由0和1组成的数组,1表示离群点,0表示飞离群点 y_train_pred = clf.labels_ # binary labels (0: inliers, 1: outliers) y_train_scores = clf.decision_scores_ # raw outlier scores,The outlier scores of the training data. #预测样本是不是离群点,返回0和1 的数组 y_test_pred = clf.predict(X_test) y_test_scores = clf.decision_function( X_test) # outlier scores,The anomaly score of the input samples. #使用sklearn中的roc_auc_score方法得到auc值,即roc曲线下面的面积 try: sumAuc_train += sklearn.metrics.roc_auc_score(y_train, y_train_scores, average='macro') sumAuc_test += sklearn.metrics.roc_auc_score(y_test, y_test_scores, average='macro') #s=precision_score(y_train, y_train_scores, average='macro') i += 1 print(sumAuc_train, sumAuc_test) except ValueError: print('1') pass
class PCA(CollectiveBaseDetector): """PCA-based outlier detection with both univariate and multivariate time series data. TS data will be first transformed to tabular format. For univariate data, it will be in shape of [valid_length, window_size]. for multivariate data with d sequences, it will be in the shape of [valid_length, window_size]. Parameters ---------- window_size : int The moving window size. step_size : int, optional (default=1) The displacement for moving window. contamination : float in (0., 0.5), optional (default=0.1) The amount of contamination of the data set, i.e. the proportion of outliers in the data set. Used when fitting to define the threshold on the decision function. n_components : int, float, None or string Number of components to keep. It should be smaller than the window_size. if n_components is not set all components are kept:: n_components == min(n_samples, n_features) if n_components == 'mle' and svd_solver == 'full', Minka\'s MLE is used to guess the dimension if ``0 < n_components < 1`` and svd_solver == 'full', select the number of components such that the amount of variance that needs to be explained is greater than the percentage specified by n_components n_components cannot be equal to n_features for svd_solver == 'arpack'. n_selected_components : int, optional (default=None) Number of selected principal components for calculating the outlier scores. It is not necessarily equal to the total number of the principal components. If not set, use all principal components. copy : bool (default True) If False, data passed to fit are overwritten and running fit(X).transform(X) will not yield the expected results, use fit_transform(X) instead. whiten : bool, optional (default False) When True (False by default) the `components_` vectors are multiplied by the square root of n_samples and then divided by the singular values to ensure uncorrelated outputs with unit component-wise variances. Whitening will remove some information from the transformed signal (the relative variance scales of the components) but can sometime improve the predictive accuracy of the downstream estimators by making their data respect some hard-wired assumptions. svd_solver : string {'auto', 'full', 'arpack', 'randomized'} auto : the solver is selected by a default policy based on `X.shape` and `n_components`: if the input data is larger than 500x500 and the number of components to extract is lower than 80% of the smallest dimension of the data, then the more efficient 'randomized' method is enabled. Otherwise the exact full SVD is computed and optionally truncated afterwards. full : run exact full SVD calling the standard LAPACK solver via `scipy.linalg.svd` and select the components by postprocessing arpack : run SVD truncated to n_components calling ARPACK solver via `scipy.sparse.linalg.svds`. It requires strictly 0 < n_components < X.shape[1] randomized : run randomized SVD by the method of Halko et al. tol : float >= 0, optional (default .0) Tolerance for singular values computed by svd_solver == 'arpack'. iterated_power : int >= 0, or 'auto', (default 'auto') Number of iterations for the power method computed by svd_solver == 'randomized'. random_state : int, RandomState instance or None, optional (default None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Used when ``svd_solver`` == 'arpack' or 'randomized'. weighted : bool, optional (default=True) If True, the eigenvalues are used in score computation. The eigenvectors with small eigenvalues comes with more importance in outlier score calculation. standardization : bool, optional (default=True) If True, perform standardization first to convert data to zero mean and unit variance. See http://scikit-learn.org/stable/auto_examples/preprocessing/plot_scaling_importance.html Attributes ---------- decision_scores_ : numpy array of shape (n_samples,) The outlier scores of the training data. The higher, the more abnormal. Outliers tend to have higher scores. This value is available once the detector is fitted. threshold_ : float The threshold is based on ``contamination``. It is the ``n_samples * contamination`` most abnormal samples in ``decision_scores_``. The threshold is calculated for generating binary outlier labels. labels_ : int, either 0 or 1 The binary labels of the training data. 0 stands for inliers and 1 for outliers/anomalies. It is generated by applying ``threshold_`` on ``decision_scores_``. """ def __init__(self, window_size, step_size=1, contamination=0.1, n_components=None, n_selected_components=None, copy=True, whiten=False, svd_solver='auto', tol=0.0, iterated_power='auto', random_state=None, weighted=True, standardization=True): super(PCA, self).__init__(contamination=contamination) self.window_size = window_size self.step_size = step_size # parameters for PCA self.n_components = n_components self.n_selected_components = n_selected_components self.copy = copy self.whiten = whiten self.svd_solver = svd_solver self.tol = tol self.iterated_power = iterated_power self.random_state = random_state self.weighted = weighted self.standardization = standardization # initialize a kNN model self.model_ = PCA_PYOD( n_components=self.n_components, n_selected_components=self.n_selected_components, contamination=self.contamination, copy=self.copy, whiten=self.whiten, svd_solver=self.svd_solver, tol=self.tol, iterated_power=self.iterated_power, random_state=self.random_state, weighted=self.weighted, standardization=self.standardization) def fit(self, X: np.array) -> object: """Fit detector. y is ignored in unsupervised methods. Parameters ---------- X : numpy array of shape (n_samples, n_features) The input samples. y : Ignored Not used, present for API consistency by convention. Returns ------- self : object Fitted estimator. """ X = check_array(X).astype(np.float) # first convert it into submatrices, and flatten it sub_matrices, self.left_inds_, self.right_inds_ = get_sub_matrices( X, self.window_size, self.step_size, return_numpy=True, flatten=True, flatten_order='F') # if self.n_components > sub_matrices.shape[1]: # raise ValueError('n_components exceeds window_size times the number of sequences.') # fit the PCA model self.model_.fit(sub_matrices) self.decision_scores_ = self.model_.decision_scores_ self._process_decision_scores() return self def decision_function(self, X: np.array): """Predict raw anomaly scores of X using the fitted detector. The anomaly score of an input sample is computed based on the fitted detector. For consistency, outliers are assigned with higher anomaly scores. Parameters ---------- X : numpy array of shape (n_samples, n_features) The input samples. Sparse matrices are accepted only if they are supported by the base estimator. Returns ------- anomaly_scores : numpy array of shape (n_samples,) The anomaly score of the input samples. """ check_is_fitted(self, ['model_']) X = check_array(X).astype(np.float) # first convert it into submatrices, and flatten it sub_matrices, X_left_inds, X_right_inds = get_sub_matrices( X, self.window_size, self.step_size, return_numpy=True, flatten=True, flatten_order='F') # return the prediction result by PCA return self.model_.decision_function( sub_matrices), X_left_inds.ravel(), X_right_inds.ravel()
data_dict = load_dataset( dataset, subdataset, "all", ) x_train = data_dict["train"] x_test = data_dict["test"] x_test_labels = data_dict["test_labels"] start = time.time() # data preprocessing for MSCRED od = PCA() od.fit(x_train) # get outlier scores anomaly_score = od.decision_function(x_test) anomaly_label = x_test_labels end = time.time() time = end - start # Make evaluation evaluate_all(anomaly_score, anomaly_label) salience = compute_salience(anomaly_score, anomaly_label) print('time') print(' ', time) print('salience') print(' ', salience)
class TestPCA(unittest.TestCase): def setUp(self): self.n_train = 100 self.n_test = 50 self.contamination = 0.1 self.roc_floor = 0.5 self.X_train, self.y_train, self.X_test, self.y_test = generate_data( n_train=self.n_train, n_test=self.n_test, contamination=self.contamination, random_state=42) self.clf = PCA(contamination=self.contamination) self.clf.fit(self.X_train) def test_sklearn_estimator(self): check_estimator(self.clf) def test_parameters(self): if not hasattr(self.clf, 'decision_scores_') or \ self.clf.decision_scores_ is None: self.assertRaises(AttributeError, 'decision_scores_ is not set') if not hasattr(self.clf, 'labels_') or self.clf.labels_ is None: self.assertRaises(AttributeError, 'labels_ is not set') if not hasattr(self.clf, 'threshold_') or self.clf.threshold_ is None: self.assertRaises(AttributeError, 'threshold_ is not set') if not hasattr(self.clf, 'selected_components_') or \ self.clf.selected_components_ is None: self.assertRaises(AttributeError, 'selected_components_ is not set') if not hasattr(self.clf, 'selected_w_components_') or \ self.clf.selected_w_components_ is None: self.assertRaises(AttributeError, 'selected_w_components_ is not set') def test_train_scores(self): assert_equal(len(self.clf.decision_scores_), self.X_train.shape[0]) def test_prediction_scores(self): pred_scores = self.clf.decision_function(self.X_test) # check score shapes assert_equal(pred_scores.shape[0], self.X_test.shape[0]) assert_greater(roc_auc_score(self.y_test, pred_scores), self.roc_floor) def test_prediction_labels(self): pred_labels = self.clf.predict(self.X_test) assert_equal(pred_labels.shape, self.y_test.shape) def test_prediction_proba(self): pred_proba = self.clf.predict_proba(self.X_test) assert_greater_equal(pred_proba.min(), 0) assert_less_equal(pred_proba.max(), 1) def test_prediction_proba_linear(self): pred_proba = self.clf.predict_proba(self.X_test, method='linear') assert_greater_equal(pred_proba.min(), 0) assert_less_equal(pred_proba.max(), 1) def test_prediction_proba_unify(self): pred_proba = self.clf.predict_proba(self.X_test, method='unify') assert_greater_equal(pred_proba.min(), 0) assert_less_equal(pred_proba.max(), 1) def test_prediction_proba_parameter(self): with assert_raises(ValueError): self.clf.predict_proba(self.X_test, method='something') def test_fit_predict(self): pred_labels = self.clf.fit_predict(self.X_train) assert_equal(pred_labels.shape, self.y_train.shape) def test_fit_predict_score(self): self.clf.fit_predict_score(self.X_test, self.y_test) self.clf.fit_predict_score(self.X_test, self.y_test, scoring='roc_auc_score') self.clf.fit_predict_score(self.X_test, self.y_test, scoring='prc_n_score') with assert_raises(NotImplementedError): self.clf.fit_predict_score(self.X_test, self.y_test, scoring='something') def test_predict_rank(self): pred_socres = self.clf.decision_function(self.X_test) pred_ranks = self.clf._predict_rank(self.X_test) # assert the order is reserved assert_allclose(rankdata(pred_ranks), rankdata(pred_socres), atol=2) assert_array_less(pred_ranks, self.X_train.shape[0] + 1) assert_array_less(-0.1, pred_ranks) def test_predict_rank_normalized(self): pred_socres = self.clf.decision_function(self.X_test) pred_ranks = self.clf._predict_rank(self.X_test, normalized=True) # assert the order is reserved assert_allclose(rankdata(pred_ranks), rankdata(pred_socres), atol=2) assert_array_less(pred_ranks, 1.01) assert_array_less(-0.1, pred_ranks) def tearDown(self): pass
clf_mcd = MCD() clf_lof = LOF() clf_cblof = CBLOF() # clf_lscp = LSCP([clf_knn, clf_pca, clf_mcd ]) # clf_ae = AutoEncoder(epochs=50) clf_mcd.fit(encodings_train) clf_pca.fit(encodings_train) clf_knn.fit(encodings_train) clf_lof.fit(encodings_train) clf_cblof.fit(encodings_train) # clf_lscp.fit(encodings_train) # clf_ae.fit(encodings_train) anomaly_scores_mcd = clf_mcd.decision_function(encodings_train) anomaly_scores_pca = clf_pca.decision_function(encodings_train) anomaly_scores_knn = clf_knn.decision_function(encodings_train) anomaly_scores_lof = clf_lof.decision_function(encodings_train) anomaly_scores_cblof = clf_cblof.decision_function(encodings_train) # anomaly_scores_lscp = clf_lscp.decision_function(encodings_train) # anomaly_scores_ae = clf_ae.predict_proba(encodings_train) # y_test_scores = [] # for x,_ in test_loader: # encodings_test = encoder(torch.Tensor(x).to(device)) # probs = clf.predict_proba(encodings_test.detach().cpu().numpy()) # y_test_scores.extend(probs[:,0]) # y_test_scores = np.array(y_test_scores) y_ind_1 = np.argwhere(y_window.reshape(-1, ) == 1) y_ind_3 = np.argwhere(y_window.reshape(-1, ) == 3)
class TestPCA(unittest.TestCase): def setUp(self): self.n_train = 100 self.n_test = 50 self.contamination = 0.1 self.roc_floor = 0.5 self.X_train, self.y_train, self.X_test, self.y_test = generate_data( n_train=self.n_train, n_test=self.n_test, contamination=self.contamination) self.clf = PCA(contamination=self.contamination) self.clf.fit(self.X_train) def test_sklearn_estimator(self): check_estimator(self.clf) def test_parameters(self): if not hasattr(self.clf, 'decision_scores_') or \ self.clf.decision_scores_ is None: self.assertRaises(AttributeError, 'decision_scores_ is not set') if not hasattr(self.clf, 'labels_') or self.clf.labels_ is None: self.assertRaises(AttributeError, 'labels_ is not set') if not hasattr(self.clf, 'threshold_') or self.clf.threshold_ is None: self.assertRaises(AttributeError, 'threshold_ is not set') if not hasattr(self.clf, 'selected_components_') or \ self.clf.selected_components_ is None: self.assertRaises(AttributeError, 'selected_components_ is not set') if not hasattr(self.clf, 'selected_w_components_') or \ self.clf.selected_w_components_ is None: self.assertRaises(AttributeError, 'selected_w_components_ is not set') def test_train_scores(self): assert_equal(len(self.clf.decision_scores_), self.X_train.shape[0]) def test_prediction_scores(self): pred_scores = self.clf.decision_function(self.X_test) # check score shapes assert_equal(pred_scores.shape[0], self.X_test.shape[0]) # TODO: turn off performance check before a better data generation # method is available. # check performance # assert_greater(roc_auc_score(self.y_test, pred_scores), self.roc_floor) def test_prediction_labels(self): pred_labels = self.clf.predict(self.X_test) assert_equal(pred_labels.shape, self.y_test.shape) def test_prediction_proba(self): pred_proba = self.clf.predict_proba(self.X_test) assert_greater_equal(pred_proba.min(), 0) assert_less_equal(pred_proba.max(), 1) def test_prediction_proba_linear(self): pred_proba = self.clf.predict_proba(self.X_test, method='linear') assert_greater_equal(pred_proba.min(), 0) assert_less_equal(pred_proba.max(), 1) def test_prediction_proba_unify(self): pred_proba = self.clf.predict_proba(self.X_test, method='unify') assert_greater_equal(pred_proba.min(), 0) assert_less_equal(pred_proba.max(), 1) def test_prediction_proba_parameter(self): with assert_raises(ValueError): self.clf.predict_proba(self.X_test, method='something') def test_fit_predict(self): pred_labels = self.clf.fit_predict(self.X_train) assert_equal(pred_labels.shape, self.y_train.shape) def test_evaluate(self): self.clf.fit_predict_evaluate(self.X_test, self.y_test) def tearDown(self): pass
class TestPCA(unittest.TestCase): def setUp(self): self.n_train = 100 self.n_test = 50 self.contamination = 0.1 self.roc_floor = 0.5 self.X_train, self.y_train, self.X_test, self.y_test = generate_data( n_train=self.n_train, n_test=self.n_test, contamination=self.contamination, random_state=42) self.clf = PCA(contamination=self.contamination, random_state=42) self.clf.fit(self.X_train) def test_sklearn_estimator(self): check_estimator(self.clf) def test_parameters(self): assert_true(hasattr(self.clf, 'decision_scores_') and self.clf.decision_scores_ is not None) assert_true(hasattr(self.clf, 'labels_') and self.clf.labels_ is not None) assert_true(hasattr(self.clf, 'threshold_') and self.clf.threshold_ is not None) assert_true(hasattr(self.clf, '_mu') and self.clf._mu is not None) assert_true(hasattr(self.clf, '_sigma') and self.clf._sigma is not None) assert_true(hasattr(self.clf, 'selected_components_') and self.clf.selected_components_ is not None) assert_true(hasattr(self.clf, 'selected_w_components_') and self.clf.selected_w_components_ is not None) def test_train_scores(self): assert_equal(len(self.clf.decision_scores_), self.X_train.shape[0]) def test_prediction_scores(self): pred_scores = self.clf.decision_function(self.X_test) # check score shapes assert_equal(pred_scores.shape[0], self.X_test.shape[0]) assert_greater(roc_auc_score(self.y_test, pred_scores), self.roc_floor) def test_prediction_labels(self): pred_labels = self.clf.predict(self.X_test) assert_equal(pred_labels.shape, self.y_test.shape) def test_prediction_proba(self): pred_proba = self.clf.predict_proba(self.X_test) assert_greater_equal(pred_proba.min(), 0) assert_less_equal(pred_proba.max(), 1) def test_prediction_proba_linear(self): pred_proba = self.clf.predict_proba(self.X_test, method='linear') assert_greater_equal(pred_proba.min(), 0) assert_less_equal(pred_proba.max(), 1) def test_prediction_proba_unify(self): pred_proba = self.clf.predict_proba(self.X_test, method='unify') assert_greater_equal(pred_proba.min(), 0) assert_less_equal(pred_proba.max(), 1) def test_prediction_proba_parameter(self): with assert_raises(ValueError): self.clf.predict_proba(self.X_test, method='something') def test_fit_predict(self): pred_labels = self.clf.fit_predict(self.X_train) assert_equal(pred_labels.shape, self.y_train.shape) def test_fit_predict_score(self): self.clf.fit_predict_score(self.X_test, self.y_test) self.clf.fit_predict_score(self.X_test, self.y_test, scoring='roc_auc_score') self.clf.fit_predict_score(self.X_test, self.y_test, scoring='prc_n_score') with assert_raises(NotImplementedError): self.clf.fit_predict_score(self.X_test, self.y_test, scoring='something') def test_predict_rank(self): pred_socres = self.clf.decision_function(self.X_test) pred_ranks = self.clf._predict_rank(self.X_test) # assert the order is reserved assert_allclose(rankdata(pred_ranks), rankdata(pred_socres), atol=3) assert_array_less(pred_ranks, self.X_train.shape[0] + 1) assert_array_less(-0.1, pred_ranks) def test_predict_rank_normalized(self): pred_socres = self.clf.decision_function(self.X_test) pred_ranks = self.clf._predict_rank(self.X_test, normalized=True) # assert the order is reserved assert_allclose(rankdata(pred_ranks), rankdata(pred_socres), atol=3) assert_array_less(pred_ranks, 1.01) assert_array_less(-0.1, pred_ranks) def tearDown(self): pass