Esempio n. 1
0
    def setUpClass(cls):

        # test problem 1
        G = np.array([[6, 2, 1], [2, 5, 2], [1, 2, 4]])
        A = np.array([[1, 0, 1], [0, 1, 1]])
        b = np.array([3, 0])
        c = np.array([-8, -3, -3])

        cls.model = create_basic_dense_qp(G, A, b, c)
        cls.pyomo_nlp = PyomoNLP(cls.model)
        cls.coupling_vars = [
            cls.pyomo_nlp.variable_idx(cls.model.x[0]),
            cls.pyomo_nlp.variable_idx(cls.model.x[2])
        ]
        cls.nlp = AdmmNLP(cls.pyomo_nlp, cls.coupling_vars, rho=2.0)

        # test problem 2
        cls.model2 = create_model2()
        cls.pyomo_nlp2 = PyomoNLP(cls.model2)
        cls.coupling_vars2 = [
            cls.pyomo_nlp2.variable_idx(cls.model2.x[1]),
            cls.pyomo_nlp2.variable_idx(cls.model2.x[3]),
            cls.pyomo_nlp2.variable_idx(cls.model2.x[5])
        ]
        cls.nlp2 = AdmmNLP(cls.pyomo_nlp2, cls.coupling_vars2, rho=1.0)

        # test problem 3
        cls.model3 = create_basic_model()
        cls.pyomo_nlp3 = PyomoNLP(cls.model3)
        cls.coupling_vars3 = [cls.pyomo_nlp3.variable_idx(cls.model3.x[1])]
        cls.nlp3 = AdmmNLP(cls.pyomo_nlp3, cls.coupling_vars3, rho=1.0)
Esempio n. 2
0
    def test_z_estimates(self):

        z_estimates = np.array([5.0, 5.0])
        nlp = AdmmNLP(self.pyomo_nlp,
                      self.coupling_vars,
                      rho=2.0,
                      z_estimates=z_estimates)
        self.assertTrue(np.allclose(nlp.z_estimates, z_estimates))
        z_estimates = np.array([6.0, 5.0])
        nlp.z_estimates = z_estimates
        self.assertTrue(np.allclose(nlp.z_estimates, z_estimates))
        self.assertEqual(len(nlp.create_vector_z()), 2)
Esempio n. 3
0
    def test_objective(self):

        w_estimates = np.array([5.0, 5.0])
        z_estimates = np.array([2.0, 2.0])
        rho = 2.0
        nlp = AdmmNLP(self.pyomo_nlp,
                      self.coupling_vars,
                      rho=rho,
                      w_estimates=w_estimates,
                      z_estimates=z_estimates)

        hessian_base = self.model.hessian_f
        c = self.model.grad_f
        A = np.array([[1, 0, 0], [0, 0, 1]], dtype=np.double)
        x = nlp.create_vector_x()
        x.fill(1.0)
        f = 0.5 * x.transpose().dot(hessian_base.dot(x)) + c.dot(x)
        difference = A.dot(x) - z_estimates
        f += w_estimates.dot(difference)
        f += 0.5 * rho * np.linalg.norm(difference)**2
        self.assertEqual(f, nlp.objective(x))
Esempio n. 4
0
    def test_w_estimates(self):

        w_estimates = np.array([5.0, 5.0])
        nlp = AdmmNLP(self.pyomo_nlp,
                      self.coupling_vars,
                      rho=2.0,
                      w_estimates=w_estimates)
        self.assertTrue(np.allclose(nlp.w_estimates(), w_estimates))
        w_estimates = np.array([6.0, 5.0])
        nlp.set_w_estimates(w_estimates)
        self.assertTrue(np.allclose(nlp.w_estimates(), w_estimates))
        self.assertEqual(len(nlp.create_vector_w()), 2)
Esempio n. 5
0
    def test_grad_objective(self):

        w_estimates = np.array([5.0, 5.0])
        z_estimates = np.array([2.0, 2.0])
        rho = 2.0
        nlp = AdmmNLP(self.pyomo_nlp,
                      self.coupling_vars,
                      rho=rho,
                      w_estimates=w_estimates,
                      z_estimates=z_estimates)

        hessian_base = self.model.hessian_f
        c = self.model.grad_f
        A = np.array([[1, 0, 0], [0, 0, 1]], dtype=np.double)
        x = nlp.create_vector_x()
        x.fill(1.0)

        df = hessian_base.dot(x) + c
        df += A.transpose().dot(w_estimates)
        df += rho * (A.transpose().dot(A).dot(x) -
                     A.transpose().dot(z_estimates))

        self.assertTrue(np.allclose(df, nlp.grad_objective(x)))
Esempio n. 6
0
    def setUpClass(cls):

        # test problem 1
        G = np.array([[6, 2, 1], [2, 5, 2], [1, 2, 4]])
        A = np.array([[1, 0, 1], [0, 1, 1]])
        b = np.array([3, 0])
        c = np.array([-8, -3, -3])

        cls.model = create_basic_dense_qp(G, A, b, c)
        cls.pyomo_nlp = PyomoNLP(cls.model)
        cls.coupling_vars = [
            cls.pyomo_nlp.variable_idx(cls.model.x[0]),
            cls.pyomo_nlp.variable_idx(cls.model.x[2])
        ]
        cls.nlp = AdmmNLP(cls.pyomo_nlp, cls.coupling_vars, rho=2.0)
Esempio n. 7
0
    def test_z_estimates(self):

        z_estimates = np.array([5.0, 5.0])
        nlp = AdmmNLP(self.pyomo_nlp,
                       self.coupling_vars,
                       rho=2.0,
                       z_estimates=z_estimates)
        self.assertTrue(np.allclose(nlp.z_estimates(), z_estimates))
        z_estimates = np.array([6.0, 5.0])
        nlp.set_z_estimates(z_estimates)
        self.assertTrue(np.allclose(nlp.z_estimates(), z_estimates))
        self.assertEqual(len(nlp.create_vector_z()), 2)
Esempio n. 8
0
    def test_w_estimates(self):

        w_estimates = np.array([5.0, 5.0])
        nlp = AdmmNLP(self.pyomo_nlp,
                      self.coupling_vars,
                      rho=2.0,
                      w_estimates=w_estimates)
        self.assertTrue(np.allclose(nlp.w_estimates(), w_estimates))
        w_estimates = np.array([6.0, 5.0])
        nlp.set_w_estimates(w_estimates)
        self.assertTrue(np.allclose(nlp.w_estimates(), w_estimates))
        self.assertEqual(len(nlp.create_vector_w()), 2)
Esempio n. 9
0
    def test_grad_objective(self):

        w_estimates = np.array([5.0, 5.0])
        z_estimates = np.array([2.0, 2.0])
        rho = 2.0
        nlp = AdmmNLP(self.pyomo_nlp,
                      self.coupling_vars,
                      rho=rho,
                      w_estimates=w_estimates,
                      z_estimates=z_estimates)

        hessian_base = self.model.hessian_f
        c = self.model.grad_f
        A = np.array([[1, 0, 0], [0, 0, 1]], dtype=np.double)
        x = nlp.create_vector_x()
        x.fill(1.0)

        df = hessian_base.dot(x) + c
        df += A.transpose().dot(w_estimates)
        df += rho * (A.transpose().dot(A).dot(x) - A.transpose().dot(z_estimates))

        self.assertTrue(np.allclose(df, nlp.grad_objective(x)))

        # second nlp
        w_estimates = np.array([1.0, 2.0, 3.0])
        z_estimates = np.array([3.0, 4.0, 5.0])
        nlp = AdmmNLP(self.pyomo_nlp2,
                      self.coupling_vars2,
                      rho=3.0,
                      w_estimates=w_estimates,
                      z_estimates=z_estimates)

        m = self.model2
        transform = AdmmModel()
        aug_model = transform.create_using(m,
                                           complicating_vars=[m.x[1], m.x[3], m.x[5]],
                                           z_estimates=z_estimates,
                                           w_estimates=w_estimates,
                                           rho=3.0)
        nl = PyomoNLP(aug_model)

        x = nlp.create_vector_x()
        self.assertTrue(np.allclose(nlp.grad_objective(x), nl.grad_objective(x)))

        # third nlp
        w_estimates = np.array([1.0])
        z_estimates = np.array([3.0])
        nlp = AdmmNLP(self.pyomo_nlp3,
                      self.coupling_vars3,
                      rho=8.0,
                      w_estimates=w_estimates,
                      z_estimates=z_estimates)

        m = self.model3
        transform = AdmmModel()
        aug_model = transform.create_using(m,
                                           complicating_vars=[m.x[1]],
                                           z_estimates=z_estimates,
                                           w_estimates=w_estimates,
                                           rho=8.0)
        nl = PyomoNLP(aug_model)

        x = nlp.create_vector_x()
        x.fill(1.0)
        self.assertTrue(np.allclose(nlp.grad_objective(x), nl.grad_objective(x)))
Esempio n. 10
0
    def test_objective(self):

        w_estimates = np.array([5.0, 5.0])
        z_estimates = np.array([2.0, 2.0])
        rho = 2.0
        nlp = AdmmNLP(self.pyomo_nlp,
                       self.coupling_vars,
                       rho=rho,
                       w_estimates=w_estimates,
                       z_estimates=z_estimates)

        hessian_base = self.model.hessian_f
        c = self.model.grad_f
        A = np.array([[1, 0, 0], [0, 0, 1]], dtype=np.double)
        x = nlp.create_vector_x()
        x.fill(1.0)
        f = 0.5 * x.transpose().dot(hessian_base.dot(x)) + c.dot(x)
        difference = A.dot(x) - z_estimates
        f += w_estimates.dot(difference)
        f += 0.5 * rho * np.linalg.norm(difference)**2
        self.assertEqual(f, nlp.objective(x))

        # second nlp
        w_estimates = np.array([1.0, 2.0, 3.0])
        z_estimates = np.array([3.0, 4.0, 5.0])
        nlp = AdmmNLP(self.pyomo_nlp2,
                      self.coupling_vars2,
                      rho=5.0,
                      w_estimates=w_estimates,
                      z_estimates=z_estimates)

        m = self.model2
        transform = AdmmModel()
        aug_model = transform.create_using(m,
                                           complicating_vars=[m.x[1], m.x[3], m.x[5]],
                                           z_estimates=z_estimates,
                                           w_estimates=w_estimates,
                                           rho=5.0)
        nl = PyomoNLP(aug_model)

        x = nlp.create_vector_x()
        self.assertAlmostEqual(nlp.objective(x), nl.objective((x)))

        # third nlp
        w_estimates = np.array([1.0])
        z_estimates = np.array([3.0])
        nlp = AdmmNLP(self.pyomo_nlp3,
                      self.coupling_vars3,
                      rho=7.0,
                      w_estimates=w_estimates,
                      z_estimates=z_estimates)

        m = self.model3
        transform = AdmmModel()
        aug_model = transform.create_using(m,
                                           complicating_vars=[m.x[1]],
                                           z_estimates=z_estimates,
                                           w_estimates=w_estimates,
                                           rho=7.0)
        nl = PyomoNLP(aug_model)

        x = nlp.create_vector_x()
        self.assertAlmostEqual(nlp.objective(x), nl.objective((x)))
Esempio n. 11
0
    def test_hessian_lag(self):

        hessian_base = self.model.hessian_f
        ata = np.array([[1, 0, 0], [0, 0, 0], [0, 0, 1]], dtype=np.double)
        rho = self.nlp.rho
        admm_hessian = hessian_base + ata * rho
        x = self.nlp.create_vector_x()
        y = self.nlp.create_vector_y()
        hess_lag = self.nlp.hessian_lag(x, y)
        dense_hess_lag = hess_lag.todense()
        self.assertTrue(np.allclose(dense_hess_lag, admm_hessian))

        # second nlp
        w_estimates = np.array([1.0, 2.0, 3.0])
        z_estimates = np.array([3.0, 4.0, 5.0])
        nlp = AdmmNLP(self.pyomo_nlp2,
                      self.coupling_vars2,
                      rho=7.0,
                      w_estimates=w_estimates,
                      z_estimates=z_estimates)

        m = self.model2
        transform = AdmmModel()
        aug_model = transform.create_using(m,
                                           complicating_vars=[m.x[1], m.x[3], m.x[5]],
                                           z_estimates=z_estimates,
                                           w_estimates=w_estimates,
                                           rho=7.0)
        nl = PyomoNLP(aug_model)

        x = nlp.create_vector_x()
        y = nlp.create_vector_y()
        hess_lag = nlp.hessian_lag(x, y)
        dense_hess_lag = hess_lag.todense()
        hess_lagp = nl.hessian_lag(x, y)
        dense_hess_lagp = hess_lagp.todense()
        self.assertTrue(np.allclose(dense_hess_lag, dense_hess_lagp))

        # third nlp
        w_estimates = np.array([1.0])
        z_estimates = np.array([3.0])
        nlp = AdmmNLP(self.pyomo_nlp3,
                      self.coupling_vars3,
                      rho=1.0,
                      w_estimates=w_estimates,
                      z_estimates=z_estimates)

        m = self.model3
        transform = AdmmModel()
        aug_model = transform.create_using(m,
                                           complicating_vars=[m.x[1]],
                                           z_estimates=z_estimates,
                                           w_estimates=w_estimates,
                                           rho=1.0)
        nl = PyomoNLP(aug_model)
        x = nlp.create_vector_x()
        y = nlp.create_vector_y()
        hess_lag = nlp.hessian_lag(x, y)
        dense_hess_lag = hess_lag.todense()
        hess_lagp = nl.hessian_lag(x, y)
        dense_hess_lagp = hess_lagp.todense()

        self.assertTrue(np.allclose(dense_hess_lag, dense_hess_lagp))
Esempio n. 12
0
    def test_grad_objective(self):

        w_estimates = np.array([5.0, 5.0])
        z_estimates = np.array([2.0, 2.0])
        rho = 2.0
        nlp = AdmmNLP(self.pyomo_nlp,
                      self.coupling_vars,
                      rho=rho,
                      w_estimates=w_estimates,
                      z_estimates=z_estimates)

        hessian_base = self.model.hessian_f
        c = self.model.grad_f
        A = np.array([[1, 0, 0], [0, 0, 1]], dtype=np.double)
        x = nlp.create_vector_x()
        x.fill(1.0)

        df = hessian_base.dot(x) + c
        df += A.transpose().dot(w_estimates)
        df += rho * (A.transpose().dot(A).dot(x) -
                     A.transpose().dot(z_estimates))

        self.assertTrue(np.allclose(df, nlp.grad_objective(x)))

        # second nlp
        w_estimates = np.array([1.0, 2.0, 3.0])
        z_estimates = np.array([3.0, 4.0, 5.0])
        nlp = AdmmNLP(self.pyomo_nlp2,
                      self.coupling_vars2,
                      rho=3.0,
                      w_estimates=w_estimates,
                      z_estimates=z_estimates)

        m = self.model2
        transform = AdmmModel()
        aug_model = transform.create_using(
            m,
            complicating_vars=[m.x[1], m.x[3], m.x[5]],
            z_estimates=z_estimates,
            w_estimates=w_estimates,
            rho=3.0)
        nl = PyomoNLP(aug_model)

        x = nlp.create_vector_x()
        self.assertTrue(
            np.allclose(nlp.grad_objective(x), nl.grad_objective(x)))

        # third nlp
        w_estimates = np.array([1.0])
        z_estimates = np.array([3.0])
        nlp = AdmmNLP(self.pyomo_nlp3,
                      self.coupling_vars3,
                      rho=8.0,
                      w_estimates=w_estimates,
                      z_estimates=z_estimates)

        m = self.model3
        transform = AdmmModel()
        aug_model = transform.create_using(m,
                                           complicating_vars=[m.x[1]],
                                           z_estimates=z_estimates,
                                           w_estimates=w_estimates,
                                           rho=8.0)
        nl = PyomoNLP(aug_model)

        x = nlp.create_vector_x()
        x.fill(1.0)
        self.assertTrue(
            np.allclose(nlp.grad_objective(x), nl.grad_objective(x)))
Esempio n. 13
0
    def test_objective(self):

        w_estimates = np.array([5.0, 5.0])
        z_estimates = np.array([2.0, 2.0])
        rho = 2.0
        nlp = AdmmNLP(self.pyomo_nlp,
                      self.coupling_vars,
                      rho=rho,
                      w_estimates=w_estimates,
                      z_estimates=z_estimates)

        hessian_base = self.model.hessian_f
        c = self.model.grad_f
        A = np.array([[1, 0, 0], [0, 0, 1]], dtype=np.double)
        x = nlp.create_vector_x()
        x.fill(1.0)
        f = 0.5 * x.transpose().dot(hessian_base.dot(x)) + c.dot(x)
        difference = A.dot(x) - z_estimates
        f += w_estimates.dot(difference)
        f += 0.5 * rho * np.linalg.norm(difference)**2
        self.assertEqual(f, nlp.objective(x))

        # second nlp
        w_estimates = np.array([1.0, 2.0, 3.0])
        z_estimates = np.array([3.0, 4.0, 5.0])
        nlp = AdmmNLP(self.pyomo_nlp2,
                      self.coupling_vars2,
                      rho=5.0,
                      w_estimates=w_estimates,
                      z_estimates=z_estimates)

        m = self.model2
        transform = AdmmModel()
        aug_model = transform.create_using(
            m,
            complicating_vars=[m.x[1], m.x[3], m.x[5]],
            z_estimates=z_estimates,
            w_estimates=w_estimates,
            rho=5.0)
        nl = PyomoNLP(aug_model)

        x = nlp.create_vector_x()
        self.assertAlmostEqual(nlp.objective(x), nl.objective((x)))

        # third nlp
        w_estimates = np.array([1.0])
        z_estimates = np.array([3.0])
        nlp = AdmmNLP(self.pyomo_nlp3,
                      self.coupling_vars3,
                      rho=7.0,
                      w_estimates=w_estimates,
                      z_estimates=z_estimates)

        m = self.model3
        transform = AdmmModel()
        aug_model = transform.create_using(m,
                                           complicating_vars=[m.x[1]],
                                           z_estimates=z_estimates,
                                           w_estimates=w_estimates,
                                           rho=7.0)
        nl = PyomoNLP(aug_model)

        x = nlp.create_vector_x()
        self.assertAlmostEqual(nlp.objective(x), nl.objective((x)))
Esempio n. 14
0
    def test_hessian_lag(self):

        hessian_base = self.model.hessian_f
        ata = np.array([[1, 0, 0], [0, 0, 0], [0, 0, 1]], dtype=np.double)
        rho = self.nlp.rho
        admm_hessian = hessian_base + ata * rho
        x = self.nlp.create_vector_x()
        y = self.nlp.create_vector_y()
        hess_lag = self.nlp.hessian_lag(x, y)
        dense_hess_lag = hess_lag.todense()
        self.assertTrue(np.allclose(dense_hess_lag, admm_hessian))

        # second nlp
        w_estimates = np.array([1.0, 2.0, 3.0])
        z_estimates = np.array([3.0, 4.0, 5.0])
        nlp = AdmmNLP(self.pyomo_nlp2,
                      self.coupling_vars2,
                      rho=7.0,
                      w_estimates=w_estimates,
                      z_estimates=z_estimates)

        m = self.model2
        transform = AdmmModel()
        aug_model = transform.create_using(
            m,
            complicating_vars=[m.x[1], m.x[3], m.x[5]],
            z_estimates=z_estimates,
            w_estimates=w_estimates,
            rho=7.0)
        nl = PyomoNLP(aug_model)

        x = nlp.create_vector_x()
        y = nlp.create_vector_y()
        hess_lag = nlp.hessian_lag(x, y)
        dense_hess_lag = hess_lag.todense()
        hess_lagp = nl.hessian_lag(x, y)
        dense_hess_lagp = hess_lagp.todense()
        self.assertTrue(np.allclose(dense_hess_lag, dense_hess_lagp))

        # third nlp
        w_estimates = np.array([1.0])
        z_estimates = np.array([3.0])
        nlp = AdmmNLP(self.pyomo_nlp3,
                      self.coupling_vars3,
                      rho=1.0,
                      w_estimates=w_estimates,
                      z_estimates=z_estimates)

        m = self.model3
        transform = AdmmModel()
        aug_model = transform.create_using(m,
                                           complicating_vars=[m.x[1]],
                                           z_estimates=z_estimates,
                                           w_estimates=w_estimates,
                                           rho=1.0)
        nl = PyomoNLP(aug_model)
        x = nlp.create_vector_x()
        y = nlp.create_vector_y()
        hess_lag = nlp.hessian_lag(x, y)
        dense_hess_lag = hess_lag.todense()
        hess_lagp = nl.hessian_lag(x, y)
        dense_hess_lagp = hess_lagp.todense()

        self.assertTrue(np.allclose(dense_hess_lag, dense_hess_lagp))