Esempio n. 1
0
def dist(spectrum1: sus.MsmsSpectrum, spectrum2: sus.MsmsSpectrum,
         method: str = 'dot'):
    if method == 'dot':
        spectrum1 = copy.copy(spectrum1).scale_intensity(max_intensity=1)
        spec1 = pyopenms.MSSpectrum()
        spec1.set_peaks([spectrum1.mz, spectrum1.intensity])
        spectrum2 = copy.copy(spectrum2).scale_intensity(max_intensity=1)
        spec2 = pyopenms.MSSpectrum()
        spec2.set_peaks([spectrum2.mz, spectrum2.intensity])
        # Third parameter of xCorrelationPrescore is bin size in Da.
        xcorr = pyopenms.XQuestScores().xCorrelationPrescore(spec1, spec2,
                                                             0.005)
        return 1 - xcorr
    else:
        return 0
Esempio n. 2
0
def handle_compressed_frame(allmz, allint, allim, mslevel, rtime, center,
                            width):
    mz = np.concatenate(allmz)
    intens = np.concatenate(allint)
    ims = np.concatenate(allim)

    fda = pyopenms.FloatDataArray()
    fda.setName("Ion Mobility")
    fda.resize(len(mz))
    for k, val in enumerate(ims):
        fda[k] = val

    sframe = pyopenms.MSSpectrum()
    sframe.setMSLevel(mslevel)
    sframe.setRT(rtime)
    sframe.setFloatDataArrays([fda])
    p = pyopenms.Precursor()
    if mslevel == 2:
        p.setMZ(center)
        p.setIsolationWindowUpperOffset(width / 2.0)
        p.setIsolationWindowLowerOffset(width / 2.0)
    sframe.setPrecursors([p])
    sframe.set_peaks((mz, intens))
    sframe.sortByPosition()
    return sframe
Esempio n. 3
0
    def _mergeSpectra(self, tmp):
        """
        Perform spectral merging
         - we pick one spectrum (the first one) as our reference and add
           all other data from the other spectra to it
         - we check that merged spectra have equal precursor m/z and same float array
        """

        merge_spec = pyopenms.MSSpectrum(tmp[0])
        fda = tmp[0].getFloatDataArrays()[0]
        fda.clear()
        allmz = []
        allint = []
        for q in tmp:
            m, i = q.get_peaks()
            allmz.append(m)
            allint.append(i)

            # Sanity checks, precursors of merged spectra and float arrays need to match
            assert q.getPrecursors()[0].getMZ() - merge_spec.getPrecursors()[0].getMZ() < 1e-5
            assert len(q.getFloatDataArrays()) == len(merge_spec.getFloatDataArrays())
            assert q.getFloatDataArrays()[0].getName() == merge_spec.getFloatDataArrays()[0].getName()

            # TODO this is not very efficient, fix in pyOpenMS!
            for d in q.getFloatDataArrays()[0]:
                fda.push_back(d)

        mz = np.concatenate(allmz)
        intens = np.concatenate(allint)

        # create merge spec
        merge_spec.set_peaks( (mz, intens) )
        merge_spec.setFloatDataArrays([fda])
        merge_spec.sortByPosition()
        return merge_spec
Esempio n. 4
0
def _write_spectra_mzml(filename: str, spectra: Iterable[sus.MsmsSpectrum]) \
        -> None:
    """
    Write the given spectra to an mzML file.

    Parameters
    ----------
    filename : str
        The mzML file name where the spectra will be written.
    spectra : Iterable[sus.MsmsSpectrum]
        The spectra to be written to the mzML file.
    """
    experiment = pyopenms.MSExperiment()
    for spectrum in tqdm.tqdm(spectra, desc='Spectra written', unit='spectra'):
        mzml_spectrum = pyopenms.MSSpectrum()
        mzml_spectrum.setMSLevel(2)
        mzml_spectrum.setNativeID(spectrum.identifier)
        precursor = pyopenms.Precursor()
        precursor.setMZ(spectrum.precursor_mz)
        precursor.setCharge(spectrum.precursor_charge)
        mzml_spectrum.setPrecursors([precursor])
        mzml_spectrum.set_peaks([spectrum.mz, spectrum.intensity])
        if hasattr(spectrum, 'retention_time'):
            mzml_spectrum.setRT(spectrum.retention_time)
        if hasattr(spectrum, 'filename'):
            mzml_spectrum.setMetaValue('filename',
                                       str.encode(spectrum.filename))
        if hasattr(spectrum, 'scan'):
            mzml_spectrum.setMetaValue('scan', str.encode(str(spectrum.scan)))
        if hasattr(spectrum, 'cluster'):
            mzml_spectrum.setMetaValue('cluster',
                                       str.encode(str(spectrum.cluster)))
        experiment.addSpectrum(mzml_spectrum)
    pyopenms.MzMLFile().store(filename, experiment)
Esempio n. 5
0
 def toMSSpectrum(self):
     """converts to pyopenms.MSSpectrum"""
     spec = pyopenms.MSSpectrum()
     spec.setRT(self.rt)
     spec.setMSLevel(self.msLevel)
     ins = spec.getInstrumentSettings()
     pol = {
         '0': pyopenms.IonSource.Polarity.POLNULL,
         '+': pyopenms.IonSource.Polarity.POSITIVE,
         '-': pyopenms.IonSource.Polarity.NEGATIVE
     }[self.polarity]
     ins.setPolarity(pol)
     spec.setInstrumentSettings(ins)
     oms_pcs = []
     for mz, I in self.precursors:
         p = pyopenms.Precursor()
         p.setMZ(mz)
         p.setIntensity(I)
         oms_pcs.append(p)
     spec.setPrecursors(oms_pcs)
     if IS_PYOPENMS_2:
         mz = self.peaks[:, 0]
         I = self.peaks[:, 1]
         spec.set_peaks((mz, I))
     else:
         spec.set_peaks(self.peaks)
     spec.updateRanges()
     return spec
def handle_stack(stack, mslevel):
    # print "Size", len(stack), mslevel
    scan_nr_ = stack[0].split()
    assert (len(scan_nr_) == 2)
    scan_nr = int(scan_nr_[1])
    rt_ = stack[1].split()
    assert (len(rt_) == 3)
    rt = float(rt_[2]) * 60
    # Convert to mz/int pairs
    pairs = [
        it.split() for it in stack[3:]
        if len(it.strip()) > 0 and float(it.split()[1]) > 0.0
    ]
    #mz = [float(it.split()[0]) for it in stack[3:] if len(it.strip()) > 0]
    #intensity = [float(it.split()[1]) for it in stack[3:] if len(it.strip()) > 0]
    try:
        mz = [float(it[0]) for it in pairs]
        intensity = [float(it[1]) for it in pairs]
    except ValueError:
        print("Could not convert", len(stack), "with pairs", len(pairs))
        return
    assert len(mz) == len(intensity)
    #
    print("Handle scan at rt", rt)
    peaks = np.ndarray(shape=(len(mz), 2), dtype=np.float32)
    peaks[:, 0] = mz
    peaks[:, 1] = intensity
    s = pyopenms.MSSpectrum()
    s.set_peaks(peaks)
    s.setRT(rt)
    s.setMSLevel(1)
    outexp.addSpectrum(s)
Esempio n. 7
0
def testPeakTypeEstimator():
    """
    @tests:
     PeakTypeEstimator.__init__
     PeakTypeEstimator.estimateType
    """

    pyopenms.PeakTypeEstimator().estimateType(pyopenms.MSSpectrum())
Esempio n. 8
0
def fft_pick(spec, fft_low_cutoff, fft_high_cutoff):
    # filter spec
    filtered_spec = fft_filter_spec(spec, fft_low_cutoff, fft_high_cutoff)
    # apply pyopenms peakpicker on filtered spec
    picker = pyopenms.PeakPickerHiRes()
    newspec_out = pyopenms.MSSpectrum()
    picker.pick(filtered_spec, newspec_out)
    return newspec_out
Esempio n. 9
0
def convertToMSSpectrum(input_):
    spectrum = pyopenms.MSSpectrum()
    for p in input_:
        rp = pyopenms.Peak1D()
        rp.setMZ(p.getMZ())
        rp.setIntensity(p.getIntensity())
        spectrum.push_back(rp)
    return spectrum
Esempio n. 10
0
def getSwathExperiment(nr_scans, nr_swathes, precusorsisolation):
    exp = pyopenms.MSExperiment()
    for spec_cnt in range(1, nr_scans):
        ms1_spec = pyopenms.MSSpectrum()
        ms1_spec.setMSLevel(1)
        ms1_spec.setRT(spec_cnt * 10)
        middle_scan = nr_scans / 2
        intensity = norm.pdf((spec_cnt - middle_scan) / 4.0)
        pk_list = [[500.01, intensity * 3000], [510.05, intensity * 3000]]
        peaks = numpy.array(pk_list, dtype=numpy.float32)
        ms1_spec.set_peaks(peaks)
        exp.addSpectrum(ms1_spec)
        # Swath 1: 500.01, 500.15, 500.25
        # Swath 2: 501.01, 501.15, 501.25
        # Swath 3: 502.01, 502.15, 502.25
        # Swath 4: 504.01, 504.15, 504.25
        # Swath 5: 505.01, 505.15, 505.25
        for i in range(nr_swathes):
            middle_scan = nr_scans / 2 + i  # shift the middle of the gaussian by one in each scan
            intensity = norm.pdf((spec_cnt - middle_scan) / 4.0)
            intensity *= 1.2  # 20% higher intensity in each swath
            spec = pyopenms.MSSpectrum()
            spec.setMSLevel(2)
            spec.setRT(spec_cnt * 10 + i + 1)
            prec = pyopenms.Precursor()
            if precusorsisolation == "OpenSwath":
                prec.setIsolationWindowLowerOffset(400 + i * 25)
                prec.setIsolationWindowUpperOffset(425 + i * 25)
            elif precusorsisolation == "Pwiz":
                prec.setIsolationWindowLowerOffset(12.5)
                prec.setIsolationWindowUpperOffset(12.5)
            elif precusorsisolation == "Missing":
                pass
            else:
                raise Exception(
                    "precusorsisolation needs to be {Missing,Pwiz,OpenSwath}")
            prec.setMZ(400 + i * 25 + 12.5)
            spec.setPrecursors([prec])
            pk_list = [[500.01 + i, intensity * 3000],
                       [500.15 + i, intensity * 3000 / 2.0],
                       [500.25 + i, intensity * 3000 / 3.0]]
            peaks = numpy.array(pk_list, dtype=numpy.float32)
            spec.set_peaks(peaks)
            exp.addSpectrum(spec)
    return exp
    def testMSSpectrum(self):
        spec = pyopenms.MSSpectrum()
        p = pyopenms.Peak1D()
        p.setMZ(500.0)
        p.setIntensity(1e5)
        spec.push_back(p)

        p_back, = list(spec)
        assert isinstance(p_back, pyopenms.Peak1D)
        assert p_back.getMZ() == 500.0
        assert p_back.getIntensity() == 1e5
Esempio n. 12
0
def main(options):
    
    # generate fragmentationtype lookup
    lookup = {}
    methods = pyopenms.ActivationMethod()
    for attr in dir(methods):
        value = getattr(methods,attr)
        if isinstance(value,int):
            lookup[value] = attr
    
    print "loading MS Experiment "
    exp = pyopenms.MSExperiment()
    fh = pyopenms.FileHandler()
    fh.loadExperiment(options.infile,exp)
    
    print "checking spectra types:"
    fragmentationTypes = {}
    for s in exp:
        typ = getSpectrumType(s,lookup)
        cont = continousSpectrumCheck(s)
        fragmentationTypes[typ] = fragmentationTypes.get(typ, [] ) + [cont]


    isContinousSpectrum = {}
    for typ in fragmentationTypes:
        check = percentile75(fragmentationTypes[typ])
        isContinousSpectrum[typ] = check
        if check == True:
            print "\t" + typ + " has continous spectra data"
        else:
            print "\t" + typ + " has centroided spectra data"

    print "picking spectra"
    expNew = pyopenms.MSExperiment()
    picker = pyopenms.PeakPickerHiRes()
    for s in exp:
        typ = getSpectrumType(s,lookup)
        if isContinousSpectrum[typ] == True:
            newSpec = pyopenms.MSSpectrum()
            picker.pick(s,newSpec)
            expNew.addSpectrum(newSpec)
        else:
            expNew.addSpectrum(s)
    
    print "saving file to ",options.outfile
    mzFile = pyopenms.MzMLFile()
    fileoptions = mzFile.getOptions()
    fileoptions.setCompression(True)
    mzFile.setOptions(fileoptions)
    mzFile.store(options.outfile,expNew)
    print "finished"
Esempio n. 13
0
def testMSExperiment():
    """
    @tests:
     MSExperiment.__init__
     MSExperiment.getLoadedFilePath
     MSExperiment.getMaxMZ
     MSExperiment.getMaxRT
     MSExperiment.getMetaValue
     MSExperiment.getMinMZ
     MSExperiment.getMinRT
     MSExperiment.push_back
     MSExperiment.setLoadedFilePath
     MSExperiment.setMetaValue
     MSExperiment.size
     MSExperiment.sortSpectra
     MSExperiment.updateRanges
     MSExperiment.__eq__
     MSExperiment.__ge__
     MSExperiment.__getitem__
     MSExperiment.__gt__
     MSExperiment.__iter__
     MSExperiment.__le__
     MSExperiment.__lt__
     MSExperiment.__ne__
     MSExperiment.clearMetaInfo
     MSExperiment.getKeys
     MSExperiment.isMetaEmpty
     MSExperiment.metaValueExists
     MSExperiment.removeMetaValue
    """
    mse = pyopenms.MSExperiment()
    _testMetaInfoInterface(mse)
    mse.updateRanges()
    mse.sortSpectra(True)
    assert isinstance(mse.getMaxRT(), float)
    assert isinstance(mse.getMinRT(), float)
    assert isinstance(mse.getMaxMZ(), float)
    assert isinstance(mse.getMinMZ(), float)
    assert isinstance(mse.getLoadedFilePath(), str)
    mse.setLoadedFilePath("")
    assert mse.size() == 0

    mse.push_back(pyopenms.MSSpectrum())
    assert mse.size() == 1

    assert mse[0] is not None

    assert isinstance(list(mse), list)

    assert mse == mse
    assert not mse != mse
Esempio n. 14
0
        def run_list_conversions(self):

            pc = pyopenms.Precursor()
            allpcs = 500 * [pc]
            li = []
            for i in range(500):
                if (i + 1) % 100 == 0:
                    show_mem("%4d runs" % i)
                spec = pyopenms.MSSpectrum()
                spec.setPrecursors(allpcs)
                spec.setPrecursors(allpcs)
                li.append(spec)
                del spec
            del li
Esempio n. 15
0
        def set_spec_peaks(self):

            data = np.zeros((10000, 2), dtype=np.float32)
            li = []
            for i in range(1000):
                if (i + 1) % 100 == 0:
                    show_mem("%4d specs processed" % i)
                spec = pyopenms.MSSpectrum()
                spec.set_peaks((data[:, 0], data[:, 1]))
                spec.set_peaks((data[:, 0], data[:, 1]))
                spec.set_peaks((data[:, 0], data[:, 1]))
                li.append(spec)

            for spec in li:
                del spec
            del data
Esempio n. 16
0
def fft_filter_spec(spec, fft_low_cutoff, fft_high_cutoff):
    # get raw data
    peaks = spec.get_peaks()
    mz_values, intensities = peaks.T

    # fft filter on intensities
    fft = scipy.fft(intensities)
    fft[:fft_low_cutoff+1] = 0
    fft[fft_high_cutoff:] = 0
    filtered_intensities = scipy.ifft(fft).real
    peaks[:, 1] = filtered_intensities

    # build pyopenms.MSSpectrum from filtered raw data
    new_spec = pyopenms.MSSpectrum()
    new_spec.set_peaks(peaks)
    return new_spec
Esempio n. 17
0
def four_d_spectrum_to_experiment(spec):
    """Function that converts a 4D spectrum object which contains retention
    time, ion mobility, mass to charge, and intensity data, into a new
    experiment where the ion mobility becomes the retention time of
    each of its new spectra and vice versa.

    Args:
        spec (MSSpectrum): An OpenMS MSSpectrum object.

    Returns:
        MSExperiment: A new MSExperiment where each MSSpectrum object is a 3D
        spectrum from the original where the retention time and ion mobility
        has been swapped.
    """
    ion_mobility_to_peaks = zip(spec.getFloatDataArrays()[0],
                                *spec.get_peaks())

    new_exp = ms.MSExperiment()
    new_mz, new_int = [], []
    curr_im = None

    for im, mz, intensity in sorted(ion_mobility_to_peaks,
                                    key=lambda x: (x[0], x[1], x[2])):
        if im != curr_im:
            if curr_im:
                new_spec = ms.MSSpectrum()
                new_spec.setRT(curr_im)
                new_spec.set_peaks((new_mz, new_int))

                rt_fda = ms.FloatDataArray()
                for i in new_mz:
                    rt_fda.push_back(spec.getRT())

                new_spec.setFloatDataArrays([rt_fda])
                new_exp.addSpectrum(new_spec)
                new_mz, new_int = [], []

            curr_im = im

        new_mz.append(mz)
        new_int.append(intensity)

    return new_exp
Esempio n. 18
0
def store_frame(frame_id, filename, q, verbose=False):
    """
    Store a single frame as an individual mzML file

    Note that this is the easiest way to visualize and process the data but
    involves a few hacks, namely storing the IM axis as the RT of each
    spectrum. 
    """
    # Get a projected mass spectrum:
    q = conn.execute(
        "SELECT NumScans FROM Frames WHERE Id={0}".format(frame_id))
    num_scans = q.fetchone()[0]

    # Get the mapping of the ion mobility axis
    scan_number_axis = np.arange(num_scans, dtype=np.float64)
    ook0_axis = td.scanNumToOneOverK0(frame_id, scan_number_axis)

    # Get a new MSExperiment from OpenMS
    e = pyopenms.MSExperiment()

    for k, scan in enumerate(td.readScans(frame_id, 0, num_scans)):
        index = np.array(scan[0], dtype=np.float64)
        mz = td.indexToMz(frame_id, index)
        intens = scan[1]

        # Store data in OpenMS Spectrum file -> each TOF push is an individual
        # spectrum and we set the "RT" to be the ion mobility dimension
        s = pyopenms.MSSpectrum()
        s.set_peaks((mz, intens))
        s.setRT(ook0_axis[k])
        e.addSpectrum(s)

        if verbose: print "scan ", k
        if len(mz) > 0 and verbose:

            print "  len: ", len(mz), len(intens)
            print "  at ook0", ook0_axis[k]
            print "  len: ", mz, intens
            for p in s:
                print p.getMZ(), p.getIntensity()

    # Store file at designated position
    pyopenms.MzMLFile().store(filename, e)
    def testMSSpectrum(self):
        spec = pyopenms.MSSpectrum()
        p = pyopenms.Peak1D()
        p.setMZ(500.0)
        p.setIntensity(1e5)
        spec.push_back(p)

        p_back, = list(spec)
        assert isinstance(p_back, pyopenms.Peak1D)
        assert p_back.getMZ() == 500.0
        assert p_back.getIntensity() == 1e5

        spec.updateRanges()
        assert isinstance(spec.getMinMZ(), float)
        assert isinstance(spec.getMaxMZ(), float)
        assert isinstance(spec.getMinIntensity(), float)
        assert isinstance(spec.getMaxIntensity(), float)

        assert spec.getMinIntensity() == 1e5
        assert spec.getMaxIntensity() == 1e5
Esempio n. 20
0
target = read_csv_faster(config.target)
source = read_csv_faster(config.source)

super_spectrum_mz = []
for i in target['feature']:
    super_spectrum_mz.append(float(i))

mz = []
for i in source['feature']:
    mz.append(float(i))

spectrums = []
based_intensity = np.transpose(source['mz_exp'])
for i in range(based_intensity.shape[0]):
    peak_intensity = based_intensity[i]
    spectrum = pyopenms.MSSpectrum()
    spectrum.set_peaks([mz, peak_intensity])
    spectrum.sortByPosition()
    spectrums.append(spectrum)

super_spectrum_mz = np.array(super_spectrum_mz)
print(super_spectrum_mz.shape)

aligned_intensities = []
aligner = pyopenms.SpectrumAlignment()
target_spectrum = pyopenms.MSSpectrum()
target_spectrum.set_peaks(
    [super_spectrum_mz, np.zeros_like(super_spectrum_mz)])
target_spectrum.sortByPosition()

for spectrum in spectrums:
Esempio n. 21
0
def store_frame(frame_id, td, conn, exp, verbose=False, compressFrame=True):
    """
    Store a single frame as an individual mzML file

    Note that there are two ways to store the data:
      (i) Multiple spectra per frame (for visualization), compressFrame is False. This is the
      easiest way to visualize and process the data but involves a few hacks,
      namely storing the IM axis as the RT of each spectrum.

      (ii) One spectrum per frame, compressFrame is True. This puts all peaks
      into a single spectrum (while storing the IM data in an extra array).
      This is more efficient for storage and allows analysis that is ignorant
      of the IM dimension.
    """
    # Get a projected mass spectrum:
    q = conn.execute("SELECT NumScans, Time, Polarity, MsMsType FROM Frames WHERE Id={0}".format(frame_id))
    tmp = q.fetchone()
    num_scans = tmp[0]
    time = tmp[1]
    pol = tmp[2]
    msms = int(tmp[3])

    center = -1
    width = -1
    mslevel = 1
    if msms == 2:
        q = conn.execute("SELECT TriggerMass, IsolationWidth, PrecursorCharge, CollisionEnergy FROM FrameMsMsInfo WHERE Frame={0}".format(frame_id))
        tmp = q.fetchone()
        center = float(tmp[0])
        width = float(tmp[1])
        mslevel = 2

    if verbose:
        print "mslevel", mslevel, msms

    # Get the mapping of the ion mobility axis
    scan_number_axis = np.arange(num_scans, dtype=np.float64)
    ook0_axis = td.scanNumToOneOverK0(frame_id, scan_number_axis)

    allmz = []
    allint = []
    allim = []

    # Traverse in reversed order to get low ion mobilities first
    for k, scan in reversed(list(enumerate(td.readScans(frame_id, 0, num_scans)))):
        index = np.array(scan[0], dtype=np.float64)
        mz = td.indexToMz(frame_id, index)
        intens = scan[1]
        drift_time = ook0_axis [k] 
        if compressFrame:
            allmz.append(mz)
            allint.append(intens)
            allim.append([drift_time for k in mz])
            continue

        # Store data in OpenMS Spectrum file -> each TOF push is an individual
        # spectrum and we store the ion mobility in the precursor. The frame
        # can be reconstructed by grouping all spectra with the same RT.
        s = pyopenms.MSSpectrum()
        s.setMSLevel(mslevel)
        s.set_peaks( (mz, intens) ) 
        s.setRT(time)
        p = pyopenms.Precursor()
        p.setDriftTime(drift_time)
        if msms == 2:
            p.setMZ(center)
            p.setIsolationWindowUpperOffset(width / 2.0)
            p.setIsolationWindowLowerOffset(width / 2.0)
        s.setPrecursors([p])
        exp.consumeSpectrum(s)


    if compressFrame:
        mz = np.concatenate(allmz)
        intens = np.concatenate(allint)
        ims = np.concatenate(allim)
        # print "   leeen", len(mz), len(intens)

        fda = pyopenms.FloatDataArray()
        fda.setName("Ion Mobility")
        fda.resize(len(mz))
        for k,val in enumerate(ims):
            fda[k] = val

        sframe = pyopenms.MSSpectrum()
        sframe.setMSLevel(mslevel)
        sframe.setRT(time)
        sframe.setFloatDataArrays([fda])
        p = pyopenms.Precursor()
        if msms == 2:
            p.setMZ(center)
            p.setIsolationWindowUpperOffset(width / 2.0)
            p.setIsolationWindowLowerOffset(width / 2.0)
        sframe.setPrecursors([p])
        sframe.set_peaks( (mz, intens) )
        sframe.sortByPosition()
        exp.consumeSpectrum(sframe)
Esempio n. 22
0
    def bin_spectrum(self, spec: ms.MSSpectrum) -> None:
        """Bins a single spectrum in two passes.

        Keyword arguments:
        spec: the spectrum to bin
        """
        points = util.get_spectrum_points(spec)
        points.sort(key=itemgetter(3))  # Ascending IM

        temp_bins = [[], [[]]]  # 2D spectra
        new_bins = [[], [[]]]  # Final 1D spectra

        for i in range(self.num_bins):
            for j in range(2):
                temp_bins[j].append([])
                new_bins[j].append([])

        for i in range(len(points)):  # Assign points to bins
            bin_idx = int((points[i][3] - self.im_start) / self.bin_size)
            if bin_idx >= self.num_bins:
                bin_idx = self.num_bins - 1
            temp_bins[0][bin_idx].append(points[i])

            bin_idx = int((points[i][3] - self.im_offset) / self.bin_size) + 1
            if points[i][3] < self.im_offset:
                bin_idx = 0
            elif bin_idx > self.num_bins:
                bin_idx = self.num_bins
            temp_bins[1][bin_idx].append(points[i])

        for i in range(self.num_bins):  # First pass
            if len(temp_bins[0][i]) == 0:
                continue

            temp_bins[0][i].sort(key=itemgetter(1))  # Ascending m/z
            mz_start, curr_mz = 0, temp_bins[0][i][0][1]
            running_intensity = 0

            for j in range(len(temp_bins[0][i])):
                if self.within_epsilon(curr_mz, temp_bins[0][i][j][1]):
                    running_intensity += temp_bins[0][i][j][2]
                else:  # Reached a new m/z slice
                    point = list(
                        temp_bins[0][i][mz_start])  # Prevents aliasing
                    point[2] = running_intensity
                    new_bins[0][i].append(point)
                    mz_start, curr_mz = j, temp_bins[0][i][j][1]
                    running_intensity = temp_bins[0][i][j][2]

            point = list(
                temp_bins[0][i][mz_start])  # Take care of the last slice
            point[2] = running_intensity
            new_bins[0][i].append(point)

            transpose = list(zip(*new_bins[0][i]))
            new_spec = ms.MSSpectrum()  # The final binned spectrum
            im_fda = ms.FloatDataArray()
            for im in transpose[3]:
                im_fda.push_back(im)

            new_spec.setRT(spec.getRT())
            new_spec.set_peaks((list(transpose[1]), list(transpose[2])))
            new_spec.setFloatDataArrays([im_fda])
            self.exps[0][i].addSpectrum(new_spec)

        for i in range(self.num_bins + 1):  # Second pass
            if len(temp_bins[1][i]) == 0:
                continue

            temp_bins[1][i].sort(key=itemgetter(1))
            mz_start, curr_mz = 0, temp_bins[1][i][0][1]
            running_intensity = 0

            for j in range(len(temp_bins[1][i])):
                if self.within_epsilon(curr_mz, temp_bins[1][i][j][1]):
                    running_intensity += temp_bins[1][i][j][2]
                else:
                    point = list(temp_bins[1][i][mz_start])
                    point[2] = running_intensity
                    new_bins[1][i].append(point)
                    mz_start, curr_mz = j, temp_bins[1][i][j][1]
                    running_intensity = temp_bins[1][i][j][2]

            point = list(temp_bins[1][i][mz_start])
            point[2] = running_intensity
            new_bins[1][i].append(point)

            transpose = list(zip(*new_bins[1][i]))
            new_spec = ms.MSSpectrum()
            im_fda = ms.FloatDataArray()
            for im in transpose[3]:
                im_fda.push_back(im)

            new_spec.setRT(spec.getRT())
            new_spec.set_peaks((list(transpose[1]), list(transpose[2])))
            new_spec.setFloatDataArrays([im_fda])
            self.exps[1][i].addSpectrum(new_spec)
Esempio n. 23
0
def store_frame(frame_id, td, conn, exp, verbose=False, compressFrame=True):
    """
    Store a single frame as an individual mzML file

    Note that there are two ways to store the data:
      (i) Multiple spectra per frame (for visualization), compressFrame is False. This is the
      easiest way to visualize and process the data but involves a few hacks,
      namely storing the IM axis as the RT of each spectrum.

      (ii) One spectrum per frame, compressFrame is True. This puts all peaks
      into a single spectrum (while storing the IM data in an extra array).
      This is more efficient for storage and allows analysis that is ignorant
      of the IM dimension.

      Note that msms = 2 means that we have an MS2 scan whereas msms = 8 stands
      for pasef scan.
    """
    # Get a projected mass spectrum:
    q = conn.execute(
        "SELECT NumScans, Time, Polarity, MsMsType FROM Frames WHERE Id={0}".
        format(frame_id))
    tmp = q.fetchone()
    num_scans = tmp[0]
    time = tmp[1]
    pol = tmp[2]
    msms = int(tmp[3])

    center = -1
    width = -1
    next_scan_switch = -1
    mslevel = 1
    scan_data = []
    scan_data_it = 0

    # Check whether we have a MS2 or a PASEF scan
    if msms == 2:
        q = conn.execute(
            "SELECT TriggerMass, IsolationWidth, PrecursorCharge, CollisionEnergy FROM FrameMsMsInfo WHERE Frame={0}"
            .format(frame_id))
        tmp = q.fetchone()
        center = float(tmp[0])
        width = float(tmp[1])
        mslevel = 2
    elif msms == 8:
        q = conn.execute(
            "SELECT IsolationMz, IsolationWidth, ScanNumBegin, ScanNumEnd, CollisionEnergy FROM PasefFrameMsMsInfo WHERE Frame={0} ORDER BY IsolationMz ASC"
            .format(frame_id))
        scandata = q.fetchall()
        tmp = scandata[scan_data_it]
        center = float(tmp[0])
        width = float(tmp[1])
        scan_start = int(tmp[2])
        scan_end = int(tmp[3])
        next_scan_switch = scan_start
        mslevel = 2

    if verbose:
        print "mslevel", mslevel, msms

    # Get the mapping of the ion mobility axis
    scan_number_axis = np.arange(num_scans, dtype=np.float64)
    ook0_axis = td.scanNumToOneOverK0(frame_id, scan_number_axis)

    allmz = []
    allint = []
    allim = []

    # Traverse in reversed order to get low ion mobilities first
    for k, scan in reversed(
            list(enumerate(td.readScans(frame_id, 0, num_scans)))):
        index = np.array(scan[0], dtype=np.float64)
        mz = td.indexToMz(frame_id, index)
        intens = scan[1]
        drift_time = ook0_axis[k]
        if compressFrame:
            allmz.append(mz)
            allint.append(intens)
            allim.append([drift_time for dr_time in mz])

            # We have multiple MS2 spectra in each frame, we need to separate
            # them based on the information from PasefFrameMsMsInfo which
            # indicates the switch scan and the isolation parameter for each
            # quadrupole isolation.
            if next_scan_switch != -1 and next_scan_switch == k:

                if verbose:
                    print "Switch to new scan at", k, "with mapping", scandata

                sframe = handle_compressed_frame(allmz, allint, allim, mslevel,
                                                 time, center, width)
                exp.consumeSpectrum(sframe)
                allmz = []
                allint = []
                allim = []
                if k == 0: continue

                scan_data_it += 1
                tmp = scandata[scan_data_it]
                center = float(tmp[0])
                width = float(tmp[1])
                scan_start = int(tmp[2])
                scan_end = int(tmp[3])
                next_scan_switch = scan_start
            continue

        # Store data in OpenMS Spectrum file -> each TOF push is an individual
        # spectrum and we store the ion mobility in the precursor. The frame
        # can be reconstructed by grouping all spectra with the same RT.
        s = pyopenms.MSSpectrum()
        s.setMSLevel(mslevel)
        s.set_peaks((mz, intens))
        s.setRT(time)
        p = pyopenms.Precursor()
        p.setDriftTime(drift_time)
        if mslevel == 2:
            p.setMZ(center)
            p.setIsolationWindowUpperOffset(width / 2.0)
            p.setIsolationWindowLowerOffset(width / 2.0)
        s.setPrecursors([p])
        exp.consumeSpectrum(s)

    if compressFrame and next_scan_switch == -1:
        sframe = handle_compressed_frame(allmz, allint, allim, mslevel, time,
                                         center, width)
        exp.consumeSpectrum(sframe)
Esempio n. 24
0
    def pick_spectra(self, spec: ms.MSSpectrum, peak_radius: int = 1, window_radius: float = 0.015,
                     pp_mode: str = 'int', min_int_mult: float = 0.10, strict: bool = True) -> ms.MSSpectrum():
        """Peak picks a single spectrum.

        Keyword arguments:
        spec: the spectrum to peak pick
        peak_radius: the minimum peak radius of a peak set
        window_radius: the maximum m/z window radius of a peak set
        pp_mode: the mode to use ('ltr' or 'int')
        min_int_mult: a multiplier to the maximum peak intensity in a set (for differentiating
            between signal and noise)
        strict: if False, allow a single increase in intensity in either direction

        Returns: the peak picked spectrum.
        """
        num_peaks = spec.size()
        spec.sortByPosition()

        peak_idx = []  # Intensity lookup table
        picked = [False] * num_peaks

        if pp_mode == 'int':
            for i in range(num_peaks):
                peak_idx.append([spec[i].getIntensity(), i])
            peak_idx = sorted(peak_idx, reverse=True)

        picked_spec = ms.MSSpectrum()
        picked_spec.setMSLevel(1)
        picked_spec.setRT(spec.getRT())

        for idx in range(num_peaks):  # Begin peak picking
            i = idx if pp_mode == 'ltr' else peak_idx[idx][1]
            if picked[i]:
                continue

            init_intensity = spec[i].getIntensity()
            total_intensity = spec[i].getIntensity()
            init_position = spec[i].getPos()
            left_picked, right_picked = 0, 0
            low_bound, high_bound = i, i

            sFlag = False  # Flag for when strict is False
            threshold = peak_radius

            for j in range(i - 1, -1, -1):  # Walk left
                if picked[j] or abs(spec[j].getPos() - init_position) > window_radius:
                    break

                if spec[j].getIntensity() > spec[j + 1].getIntensity():
                    if strict or sFlag or j + 1 == i:  # Don't start with an abnormal peak
                        break
                    sFlag = True
                    threshold += 1  # End the peak set with a lower peak ("increase peak_radius")

                total_intensity += spec[j].getIntensity()
                left_picked += 1
                low_bound -= 1

                if left_picked >= threshold and spec[j].getIntensity() <= init_intensity * min_int_mult:
                    break

            if left_picked < threshold:
                continue
            sFlag = False
            threshold = peak_radius

            for j in range(i + 1, num_peaks):  # Walk right
                if picked[j] or abs(spec[j].getPos() - init_position) > window_radius:
                    break

                if spec[j].getIntensity() > spec[j - 1].getIntensity():
                    if strict or sFlag or j - 1 == i:
                        break
                    sFlag = True
                    threshold += 1

                total_intensity += spec[j].getIntensity()
                right_picked += 1
                high_bound += 1

                if right_picked >= threshold and spec[j].getIntensity() <= init_intensity * min_int_mult:
                    break

            if right_picked < threshold:
                continue

            total_position = 0
            for j in range(low_bound, high_bound + 1):
                picked[j] = True
                if total_intensity != 0:
                    total_position += spec[j].getPos() * (spec[j].getIntensity() / total_intensity)

            p = ms.Peak1D()
            p.setIntensity(total_intensity)
            p.setPos(total_position)
            picked_spec.push_back(p)

        return picked_spec
Esempio n. 25
0
def testMSSpectrum():
    """
    @tests:
     MSSpectrum.clear
     MSSpectrum.clearMetaInfo
     MSSpectrum.findNearest
     MSSpectrum.getAcquisitionInfo
     MSSpectrum.getComment
     MSSpectrum.getDataProcessing
     MSSpectrum.getInstrumentSettings
     MSSpectrum.getKeys
     MSSpectrum.getMSLevel
     MSSpectrum.getMetaValue
     MSSpectrum.getName
     MSSpectrum.getNativeID
     MSSpectrum.getPeptideIdentifications
     MSSpectrum.getPrecursors
     MSSpectrum.getProducts
     MSSpectrum.getRT
     MSSpectrum.getSourceFile
     MSSpectrum.getType
     MSSpectrum.get_peaks
     MSSpectrum.intensityInRange
     MSSpectrum.isMetaEmpty
     MSSpectrum.metaValueExists
     MSSpectrum.push_back
     MSSpectrum.removeMetaValue
     MSSpectrum.setAcquisitionInfo
     MSSpectrum.setComment
     MSSpectrum.setDataProcessing
     MSSpectrum.setInstrumentSettings
     MSSpectrum.setMSLevel
     MSSpectrum.setMetaValue
     MSSpectrum.setName
     MSSpectrum.setNativeID
     MSSpectrum.setPeptideIdentifications
     MSSpectrum.setPrecursors
     MSSpectrum.setProducts
     MSSpectrum.setRT
     MSSpectrum.setSourceFile
     MSSpectrum.setType
     MSSpectrum.set_peaks
     MSSpectrum.size
     MSSpectrum.unify
     MSSpectrum.updateRanges
     MSSpectrum.__eq__
     MSSpectrum.__ge__
     MSSpectrum.__getitem__
     MSSpectrum.__gt__
     MSSpectrum.__le__
     MSSpectrum.__lt__
     MSSpectrum.__ne__
     """
    spec = pyopenms.MSSpectrum()
    _testMetaInfoInterface(spec)

    testSpectrumSetting(spec)

    spec.setRT(3.0)
    assert spec.getRT() == 3.0
    spec.setMSLevel(2)
    assert spec.getMSLevel() == 2
    spec.setName("spec")
    assert spec.getName() == "spec"

    p = pyopenms.Peak1D()
    p.setMZ(1000.0)
    p.setIntensity(200.0)

    spec.push_back(p)
    assert spec.size() == 1
    assert spec[0] == p

    spec.updateRanges()
    assert isinstance(spec.findNearest(0.0), int)

    assert spec == spec
    assert not spec != spec

    assert spec.get_peaks().shape == (1, 2), spec.get_peaks().shape
Esempio n. 26
0
 def _plot(self,
           ax,
           color,
           top=True,
           verificative=True,
           show_iden=True,
           highlight=True):
     target = self if self.is_sorted() else self.sort_by_mz()
     if verificative:
         temp = target.clip().remove_precursor(copy=False).rank_transform(
             copy=False)
         mz, intensity = temp.mz, temp.intensity
     else:
         mz, intensity = target._binning(target.mz, target.intensity)
     rects = ax.bar(mz,
                    intensity,
                    width=1,
                    color=color,
                    linewidth=0,
                    snap=False)
     if show_iden or highlight:
         identification = target.get_identification(
         ) if not self.override_iden else self.override_iden
         if identification:
             tpp_string = identification.to_tpp_string()
             title = identification.to_string(tpp_string)
             if self.override_iden: title = 'Overridden: ' + title
             if show_iden:
                 y_loc = 0.9 if top else 0.1
                 ax.text(0.5,
                         y_loc,
                         title,
                         horizontalalignment='center',
                         verticalalignment='center',
                         transform=ax.transAxes,
                         fontsize=12)
             if highlight:
                 tspec = om.MSSpectrum()
                 try:
                     aa_sequence = om.AASequence.fromString(tpp_string)
                 except Exception:
                     logging.info(
                         'String "{}" cannot be understood by pyopenms.AASequence.'
                         .format(tpp_string))
                     aa_sequence = None
                 if aa_sequence:
                     Spectrum.tsg.getSpectrum(tspec, aa_sequence, 1,
                                              identification.charge)
                     ions_mz = tspec.get_peaks()[0].astype(np.uint32)
                     annotations = tspec.getStringDataArrays()[0]
                     temp_dict = {}
                     colors = {
                         'b': 'blue',
                         'y': 'red',
                         'a': 'green',
                         'c': 'teal',
                         'x': 'purple',
                         'z': 'orange'
                     }
                     for i in range(len(ions_mz)):
                         temp_dict[ions_mz[i]] = annotations[i]
                     for i in range(len(mz)):
                         if mz[i] in temp_dict.keys():
                             ion_name = temp_dict[mz[i]].decode()
                             color = colors[ion_name[0]]
                             rect = rects[i]
                             height = rect.get_height()
                             pos_x = rect.get_x() + rect.get_width() / 2.
                             pos_y = height + 0.01 * (1
                                                      if height > 0 else -1)
                             ax.text(pos_x,
                                     pos_y,
                                     ion_name,
                                     fontsize=6,
                                     ha='center',
                                     va='center',
                                     color=color)
                             rect.set_color(color)
     return
Esempio n. 27
0
    def load(self, ifname: str, peakMap: pyopenms.MSExperiment):
        inF = open(ifname, 'r')

        lines = inF.read().splitlines()
        curLine = 0
        nLines = len(lines)

        #generate spectrum list
        spectraList = list()
        while curLine < nLines:
            if lines[curLine] == 'BEGIN IONS':
                spectrum = pyopenms.MSSpectrum()
                spectrum.setMSLevel(2)
                precursor = pyopenms.Precursor()

                curLine += 1
                while curLine < nLines:
                    if lines[curLine][0].isalpha():
                        match = re.search('^([A-Z]+)=(.+)$', lines[curLine])
                        if match.group(1) == 'TITLE':
                            titleData = match.group(2).split(',')

                            for s in titleData:
                                if re.search('^scan[_=]', s):
                                    match = re.search('^scan[_=]([0-9]+)', s)
                                    assert (len(match.groups()) == 1)
                                    spectrum.setNativeID('scan={}'.format(
                                        match.group(1)))

                        elif match.group(1) == 'PEPMASS':
                            preMZ = [
                                float(x) for x in match.group(2).split(' ')
                            ]
                            assert (len(preMZ) <= 2)
                            precursor.setMZ(preMZ[0])
                            if len(preMZ) > 1:
                                precursor.setIntensity(preMZ[1])

                        elif match.group(1) == 'CHARGE':
                            match = re.search('^([0-9])[+-]{0,1}$',
                                              match.group(2))
                            assert (len(match.groups()) == 1)
                            precursor.setCharge(int(match.group(1)))

                        elif match.group(1) == 'RTINSECONDS':
                            spectrum.setRT(float(match.group(2)))

                    elif lines[curLine][0].isnumeric():
                        while curLine < nLines and lines[curLine] != 'END IONS':
                            ion = [float(x) for x in lines[curLine].split(' ')]
                            assert (len(ion) == 2)
                            ion_temp = pyopenms.Peak1D()
                            ion_temp.setMZ(ion[0])
                            ion_temp.setIntensity(ion[1])
                            spectrum.push_back(ion_temp)
                            curLine += 1

                        break

                    curLine += 1
                spectrum.setPrecursors([precursor])
                spectraList.append(spectrum)

            curLine += 1

        peakMap.setSpectra(spectraList)
Esempio n. 28
0
def store_frame(frame_id,
                td,
                conn,
                exp,
                verbose=False,
                compressFrame=True,
                keep_frames=False):
    """
    Store a single frame as an individual mzML file

    Note that there are two ways to store the data:
      (i) Multiple spectra per frame (for visualization), compressFrame is False. This is the
      easiest way to visualize and process the data but involves a few hacks,
      namely storing the IM axis as the RT of each spectrum.

      (ii) One spectrum per frame, compressFrame is True. This puts all peaks
      into a single spectrum (while storing the IM data in an extra array).
      This is more efficient for storage and allows analysis that is ignorant
      of the IM dimension.

      Note that msms = 2 means that we have an MS2 scan whereas msms = 8 stands
      for pasef scan. (New tdf 5.1 has msms = 9 for pasef scan)
    """
    # Get a projected mass spectrum:
    q = conn.execute(
        "SELECT NumScans, Time, Polarity, MsMsType FROM Frames WHERE Id={0}".
        format(frame_id))
    tmp = q.fetchone()
    num_scans = tmp[0]
    time = tmp[1]
    pol = tmp[2]
    msms = int(tmp[3])

    center = -1
    width = -1
    next_scan_switch = -1
    mslevel = 1
    scan_data = []
    scan_data_it = 0

    in_scan = False
    scandata = None

    # Check whether we have a MS2 or a PASEF scan
    if msms == 2:
        q = conn.execute(
            "SELECT TriggerMass, IsolationWidth, PrecursorCharge, CollisionEnergy FROM FrameMsMsInfo WHERE Frame={0}"
            .format(frame_id))
        tmp = q.fetchone()
        center = float(tmp[0])
        width = float(tmp[1])
        mslevel = 2
    # new tdf 5.1 has pasef scan msms = 9
    elif msms == 9:
        q = conn.execute(
            "SELECT IsolationMz, IsolationWidth, ScanNumBegin, ScanNumEnd, CollisionEnergy, Frame FROM DiaFrameMsMsWindows INNER JOIN DiaFrameMsMsInfo ON DiaFrameMsMsWindows.WindowGroup = DiaFrameMsMsInfo.WindowGroup WHERE Frame={0} ORDER BY  ScanNumBegin DESC"
            .format(frame_id))
        scandata = q.fetchall()
        tmp = scandata[scan_data_it]
        center = float(tmp[0])
        width = float(tmp[1])
        scan_start = int(tmp[2])
        scan_end = int(tmp[3])
        next_scan_switch = scan_end
        # Check if we already are in the new scan (if there is no
        # gap between scans, happens for diaPASEF):
        if next_scan_switch == num_scans:
            next_scan_switch = scan_start
            in_scan = True

        mslevel = 2
    elif msms == 8:
        q = conn.execute(
            "SELECT IsolationMz, IsolationWidth, ScanNumBegin, ScanNumEnd, CollisionEnergy FROM PasefFrameMsMsInfo WHERE Frame={0} ORDER BY ScanNumBegin DESC"
            .format(frame_id))
        scandata = q.fetchall()
        tmp = scandata[scan_data_it]
        center = float(tmp[0])
        width = float(tmp[1])
        scan_start = int(tmp[2])
        scan_end = int(tmp[3])
        next_scan_switch = scan_end
        # Check if we already are in the new scan (if there is no
        # gap between scans, happens for diaPASEF):
        if next_scan_switch == num_scans:
            next_scan_switch = scan_start
            in_scan = True

        mslevel = 2
    else:
        # MS1
        pass

    if verbose:
        print("Frame", frame_id, "mslevel", mslevel, msms,
              "contains nr scans:", num_scans, "and nr pasef scans",
              len(scandata) if scandata else -1)
        print("Scandata for PASEF:", scandata)
    if keep_frames:
        next_scan_switch = -1

    # Get the mapping of the ion mobility axis
    scan_number_axis = np.arange(num_scans, dtype=np.float64)
    ook0_axis = td.scanNumToOneOverK0(frame_id, scan_number_axis)

    nr_scans_created = 0
    allmz = []
    allint = []
    allim = []

    # Traverse in reversed order to get low ion mobilities first (and high scan times first)
    for k, scan in reversed(
            list(enumerate(td.readScans(frame_id, 0, num_scans)))):
        index = np.array(scan[0], dtype=np.float64)
        mz = td.indexToMz(frame_id, index)
        intens = scan[1]
        drift_time = ook0_axis[k]
        if compressFrame:
            allmz.append(mz)
            allint.append(intens)
            allim.append([drift_time for dr_time in mz])

            # We have multiple MS2 spectra in each frame, we need to separate
            # them based on the information from PasefFrameMsMsInfo which
            # indicates the switch scan and the isolation parameter for each
            # quadrupole isolation.
            if next_scan_switch >= 0 and next_scan_switch >= k:

                if verbose:
                    print("Switch to new scan at", k, "/", next_scan_switch,
                          "store scan of size", len(allmz))

                if in_scan:
                    # Only store spectrum when actually inside a scan, skip the "between scan" pushes
                    sframe = handle_compressed_frame(allmz, allint, allim,
                                                     mslevel, time, center,
                                                     width)
                    sframe.setNativeID("frame=%s_scan=%s" %
                                       (frame_id, next_scan_switch))
                    exp.consumeSpectrum(sframe)
                    nr_scans_created += 1

                allmz = []
                allint = []
                allim = []
                if k == 0: continue

                if in_scan:
                    scan_data_it += 1

                    if scan_data_it >= len(scandata):
                        if verbose:
                            print(
                                "LEFT the last scan, nothing else to do here")
                        next_scan_switch = -2
                        continue

                    # Already prepare for next scan
                    tmp = scandata[scan_data_it]
                    center = float(tmp[0])
                    width = float(tmp[1])
                    scan_start = int(tmp[2])
                    scan_end = int(tmp[3])

                    in_scan = False
                    next_scan_switch = scan_end

                    if verbose:
                        print("LEAVING scan now, next scan starts at:",
                              next_scan_switch)

                    # Check if we already are in the new scan (if there is no
                    # gap between scans, happens for diaPASEF):
                    if k == next_scan_switch:
                        if verbose:
                            print("STARTING new scan immediately at", k, ":",
                                  center - width / 2.0, center + width / 2.0,
                                  "scan will end at:", next_scan_switch)
                        next_scan_switch = scan_start
                        in_scan = True
                else:
                    in_scan = True
                    next_scan_switch = scan_start
                    if verbose:
                        print("STARTING new scan at", k, ":",
                              center - width / 2.0, center + width / 2.0,
                              "scan will end at:", next_scan_switch)

            continue

        # Store data in OpenMS Spectrum file -> each TOF push is an individual
        # spectrum and we store the ion mobility in the precursor. The frame
        # can be reconstructed by grouping all spectra with the same RT.
        s = pyopenms.MSSpectrum()
        s.setMSLevel(mslevel)
        s.set_peaks((mz, intens))
        s.setRT(time)
        s.setNativeID("frame=%s spec %s" % (frame_id, k))
        p = pyopenms.Precursor()
        p.setDriftTime(drift_time)
        if mslevel == 2:
            p.setMZ(center)
            p.setIsolationWindowUpperOffset(width / 2.0)
            p.setIsolationWindowLowerOffset(width / 2.0)
        s.setPrecursors([p])
        exp.consumeSpectrum(s)

    # Store data compressed for cases where the whole frame represents a single spectrum (e.g. MS1)
    if compressFrame and next_scan_switch == -1:
        sframe = handle_compressed_frame(allmz, allint, allim, mslevel, time,
                                         center, width)
        sframe.setNativeID("frame=%s" % frame_id)
        exp.consumeSpectrum(sframe)
        nr_scans_created += 1

    if scandata is not None and (nr_scans_created != len(scandata)):
        raise Exception("Something went quite wrong here, we expected",
                        len(scandata), "scans, but only created",
                        nr_scans_created)