Esempio n. 1
0
	# 3-sigma target yield
	yt=YieldTargeting(
		designParams, statParams, opParams, 
		heads, analyses, measures, variables=variables, 
		beta=3.0, wcSpecs=wcList, 
		# Comment out to use default initial point (lo+hi)/2
		# initial=atDesign, 
		initialNominalDesign=True, 
		# Norms for measures with zero goal
		norms={ 'area': 100e-12, 'vgs_drv': 1e-3, 'vds_drv':1e-3 }, 
		tradeoffs=1e-6, # Tradeoff optimization weight, can be overridden in *CbdOptions
		stopWhenAllSatisfied=True, 
		# Initial nominal optimization
		initialCbdOptions={ 
			'debug': 1, 'method': 'global', 'stepTol': 1e-5, 
		}, 
		# Main optimization
		cbdOptions={ 
			'debug': 1, 'method': 'global', 'stepTol': 1e-5, 
		}, wcOptions={ 'debug': 0 }, 
		debug=2, spawnerLevel=1
	)
	atDesign, agg, wc, anCount = yt()
	print(formatParameters(atDesign))
	print(wc.formatResults())
	print(agg.formatResults())
	print(anCount)
	
	# Finalize cOS parallel environment
	cOS.finalize()
	
Esempio n. 2
0
            'area': 100e-12,
            'vgs_drv': 1e-3,
            'vds_drv': 1e-3
        },
        tradeoffs=
        1e-6,  # Tradeoff optimization weight, can be overridden in *CbdOptions
        stopWhenAllSatisfied=True,
        # Initial nominal optimization
        initialCbdOptions={
            'debug': 1,
            'method': 'local',
            'stepTol': 1e-5,
        },
        # Main optimization
        cbdOptions={
            'debug': 1,
            'method': 'local',
            'stepTol': 1e-5,
        },
        wcOptions={'debug': 0},
        debug=2,
        spawnerLevel=1)
    atDesign, agg, wc, anCount = yt()
    print(formatParameters(atDesign))
    print(wc.formatResults())
    print(agg.formatResults())
    print(anCount)

    # Finalize cOS parallel environment
    cOS.finalize()