Esempio n. 1
0
def cla_min_vol_weights(rets_bl, covar_bl, config):
    cla = CLA(rets_bl, covar_bl, weight_bounds= \
            (config['min_position_size'] ,config['max_position_size']))
    cla.min_volatility()
    weights = cla.clean_weights()
    weights = pd.DataFrame.from_dict(weights, orient='index')
    weights.columns = ['CLA Min Vol']
    return weights, cla
def omptimizePortCLA(port,
                     weights,
                     start,
                     plot=False,
                     short=False,
                     printBasicStats=True,
                     how='Sharpe'):
    #Getting Data
    df = bpf.getData(port, start)
    #Plotting the portfolio
    if plot:
        bpf.plotPort(df, port)

    if printBasicStats:
        bpf.basicStats(df, weights)
    #Optimization for Sharpe using Efficient Frontier
    if short:
        bounds = (-1, 1)
    else:
        bounds = (0, 1)
    mu = df.pct_change().mean() * 252
    S = risk_models.sample_cov(df)

    if how == 'Sharpe':
        # Maximized on Sharpe Ratio
        cla = CLA(
            mu, S
        )  #Here the weight bounds are being used to allow short positions as well
        weights = cla.max_sharpe()
        cleaned_weights = dict(cla.clean_weights())
        print("Weights of an optimal portfolio maximised on Sharpe Ratio:")
        print(cleaned_weights)
        cla.portfolio_performance(verbose=True)
        bpf.getDiscreteAllocations(df, weights)
        plot_ef(cla)
        plotting.plot_weights(weights)
    elif how == "Vol":
        # Minimized on Volatility
        cla = CLA(mu, S)
        cla.min_volatility()
        w = dict(cla.clean_weights())
        print("Weights of an optimal portfolio minimized on Volatilty (Risk):")
        print(w)
        cla.portfolio_performance(verbose=True)
        bpf.getDiscreteAllocations(df, w)
        plot_ef(cla)
        plotting.plot_weights(w)
# In[265]:

type(e_cov_during)

# In[266]:

returns_during = np.array(df6.mean())

# In[267]:

efficient_portfolio_during = CLA(returns_during, e_cov_during)

# In[268]:

print(efficient_portfolio_during.min_volatility())

# In[269]:

# Compute the efficient frontier
(ret, vol, weights) = efficient_portfolio_during.efficient_frontier()

# In[278]:

plt.figure(figsize=(20, 12))
plt.xlabel('Standard Deviation/Volatiltiy/Risk')
plt.ylabel('Return for period 2007-2008')
plt.title('Efficient Frontier during crisis', size=20)
plt.plot(vol, ret, c='r')

# In[271]:
#we also create a barchart
#create barchart
barchart = pd.Series(
    tickers['Weight']).sort_values(ascending=True).plot.barh(figsize=(10, 6))
plt.show(barchart)

#covariance heatmap
#to get a grasp how our chosen portfolio correlates with each other asset in the portfolio we state a cov heatmap
plotting.plot_covariance(cov_matrix_tickers, plot_correlation=True)

##create the Efficient frontier line and visualize it
#in order to visualize the efficient frontier from the optimized portfolio, we need to initiate a new built-in method
#we use the CLA method, because it is more robust than the default option
cla = CLA(mu_target_tickers, cov_matrix_tickers)
if risk_tolerance == 'Low':
    cla.min_volatility()
else:
    cla.max_sharpe()

#plot the efficient frontier line
ax_portfolio = plotting.plot_efficient_frontier(cla,
                                                ef_param='risk',
                                                ef_param_range=np.linspace(
                                                    0.2, 0.6, 100),
                                                points=1000)

#initialize Discrete Allocation to get a full picture what you could buy with a given amount
#the Discrete Allocation gives you the discrete amount of shares you have to allocate given your available funds
from pypfopt import DiscreteAllocation
from datetime import datetime
from datetime import timedelta