Esempio n. 1
0
def createtiles_truchet_roundonly(drawing, tile_size, nlines=None):  

    circumference = tile_size * math.pi * 2
    sections = circumference / drawing.pen_type.pen_width
    n = int(sections / 4)
    
    nlines = 3 if nlines is None else nlines
        
    paths = [[] for i in range(0, nlines)]
    for i in range(0, n+1):
        a = math.pi * i / (2*n)
        for j in range(0, nlines):
            paths[j].append(Point(math.cos(a), math.sin(a)) * tile_size * (j+1)/nlines)
            
    clip_path = [x for x in paths[nlines-1]]
    clip_path.append(Point(0,0))
    sf = ShapeFiller([clip_path])

    paths2 = [[] for i in range(0, nlines)]
    for i in range(0, n+1):
        a = math.pi * i / (2*n)
        for j in range(0, nlines):
            paths2[j].append(Point(tile_size, tile_size) - Point(math.cos(a), math.sin(a)) * tile_size * (j+1)/nlines)
    paths2 = sf.clip(paths2)
    tile_paths1 = paths
    tile_paths1.extend(paths2)

    return [tile_paths1]
Esempio n. 2
0
def draw_shape_clips(d):

    all_polylines = []
    shapes = []
    for i in range(0, 40):
        x = 20 + random.random() * 25
        y = 20 + random.random() * 25
        size = 2.5 + 30 * random.random()
        shape = d.make_square(Point(x, y), size)
        a = random.random() * math.pi * 2
        shape = [
            StandardDrawing.rotate_about(pt, (x + size / 2, y + size / 2), a)
            for pt in shape
        ]
        shape_polyline = [x for x in shape]
        shape_polyline.append(shape_polyline[0])
        # print(shape_polyline)
        if i == 0:
            all_polylines.append(shape_polyline)
        else:
            # print(f"shapes={shapes}")
            sf = ShapeFiller(shapes)
            clipped_polylines = sf.clip([shape_polyline], union=True)
            #print(polyline)
            #print(polylines)
            all_polylines.extend(clipped_polylines)
        #print(all_polylines[-1])
        shapes.append(shape)
    d.add_polylines(all_polylines)
Esempio n. 3
0
def draw_wakefield(drawing):    
    
    import lsystem

    nslice = 40    
    
    polylines = []
    
    paper_centre = Point(102.5, 148)
    
    rect_size = Point(192, 276)
    clip_2 = drawing.make_rect(paper_centre - rect_size / 2, rect_size.x, rect_size.y)
    clip_shape = drawing.make_circle(paper_centre, 44, x_scale=0.8)
    sf = ShapeFiller([clip_shape, clip_2])

    drawing.image_spiral_single(drawing.dwg, 'wakefield2.jpg', paper_centre, 40, x_scale=0.8)

    all_lines = lsystem.test_lsystem_hilbert(order=8, size=1)
    def centre_on(polylines, new_centre):
        n = 0
        sumx = 0
        sumy = 0
        for line in polylines:
            for point in line[:-1]:
                n += 1
                sumx += point.x
                sumy += point.y
        centre = Point(sumx / n, sumy / n)
        adj = paper_centre - centre
        return [[p + adj for p in line] for line in polylines]
    all_lines = centre_on(all_lines, paper_centre)
    all_lines = sf.clip(all_lines, inverse=True)
    
    background_layer = drawing.add_layer("2-hilbert")
    drawing.add_polylines(all_lines, container=background_layer)
Esempio n. 4
0
def draw_shape_clips2(d):

    paper_centre = Point(102.5, 148)
    paper_size = Point(192, 276)
    all_polylines = []
    shapes = []
    size = 10
    for i in range(0, 1000):
        cx = paper_centre.x + (random.random() - 0.5) * (paper_size.x - size -
                                                         20)
        cy = paper_centre.y + (random.random() - 0.5) * (paper_size.y - size -
                                                         20)
        shape = d.make_square(Point(cx - size / 2, cy - size / 2), size)
        a = random.random() * math.pi * 2
        shape = [StandardDrawing.rotate_about(pt, (cx, cy), a) for pt in shape]
        shape_polyline = [x for x in shape]
        shape_polyline.append(shape_polyline[0])
        if len(shapes) == 0:
            all_polylines.append(shape_polyline)
            shapes.append(shape)
        else:
            sf = ShapeFiller(shapes)
            clipped_polylines = sf.clip([shape_polyline], union=True)
            if (len(clipped_polylines) > 0):
                # print(shape_polyline)
                # print(clipped_polylines)
                all_polylines.extend(clipped_polylines)
                shapes.append(shape)
    d.add_polylines(all_polylines)
Esempio n. 5
0
def make_hash_square2(tl, side, gap, a, factor):

    centre = tl + Point(1, 1) * side / 2
    r = side * math.sqrt(2)
    gap = 2
    disp = 0
    while disp > -r / 2:
        disp -= gap
    unclipped_lines = []
    while disp < r / 2:
        line = []
        x = -r / 2
        indic = -1
        while x < r / 2:
            line.append(centre + Point(x, disp + indic * gap * factor))
            indic *= -1
            x += gap
        unclipped_lines.append(line)
        disp += gap

    unclipped_lines = [[
        StandardDrawing.rotate_about(x, centre, a) for x in line
    ] for line in unclipped_lines]
    c = math.cos(a)

    shape = [
        tl, tl + Point(side, 0), tl + Point(side, side), tl + Point(0, side)
    ]
    sf = ShapeFiller([shape])
    return sf.clip(unclipped_lines, inverse=True)
Esempio n. 6
0
def make_hash_square3(tl, side, gap, a, pen_width, factor):

    centre = tl + Point(1, 1) * side / 2
    r = side * math.sqrt(2)
    gap = 2
    disp = 0
    while disp > -r / 2:
        disp -= gap
    unclipped_lines = []
    while disp < r / 2:
        line = []
        x = -r / 2
        a1 = 0
        x_inc = pen_width
        a_inc = math.pi * 2 * (x_inc / gap) * factor
        while x < r / 2:
            line.append(centre + Point(x, disp + gap * math.sin(a1) * factor))
            x += x_inc
            a1 += a_inc
        unclipped_lines.append(line)
        disp += gap

    unclipped_lines = [[
        StandardDrawing.rotate_about(x, centre, a) for x in line
    ] for line in unclipped_lines]
    c = math.cos(a)

    shape = [
        tl, tl + Point(side, 0), tl + Point(side, side), tl + Point(0, side)
    ]
    sf = ShapeFiller([shape])
    return sf.clip(unclipped_lines, inverse=True)
Esempio n. 7
0
def spiral_moire(drawing):

    centre = Point(102.5, 148)
    scale = 80
    factor = 2
    
    side = 2
    h = side * 0.5 * math.sqrt(3)
    
    drawing.add_spiral(centre + Point(0, 0), scale, r_per_circle = (factor*1.00) * drawing.pen_type.pen_width)
    
    centre2 = centre + Point(0,5)
    all_polylines = [drawing.make_spiral(centre2, scale*1.09, r_per_circle = (factor*1.09) * drawing.pen_type.pen_width)]

    '''
    shapes = []
    for i in range(0,6):
        a = math.pi * 2 * i / 6
        shapes = []
        shapes.append(drawing.make_circle(centre + Point(math.cos(a), math.sin(a)) * scale * (2/3), scale * (1/3), n=100))
        sf = ShapeFiller(shapes)
        polylines = sf.clip(all_polylines, union=True, inverse=True)
        #for p in polylines:
        #    drawing.add_polyline(p)
        drawing.add_polylines(polylines)
        # drawing.add_polylines(shapes)
    shapes = []
    shapes.append(drawing.make_circle(centre, scale * (1/3), n=100))
    sf = ShapeFiller(shapes)
    polylines = sf.clip(all_polylines, union=True, inverse=True)
    drawing.add_polylines(polylines)
    '''

    shapes = []
    sgap = 9
    size = sgap
    while size < scale*2: # math.sqrt(2):
        shapes.append(drawing.make_square(centre - Point(size/2, size/2), size))
        size += sgap
    sf = ShapeFiller(shapes)
    polylines = sf.clip(all_polylines, inverse=True)
    shapes2 = [drawing.make_circle(centre, scale, n=100)]
    sf2 = ShapeFiller(shapes2)
    polylines = sf2.clip(polylines, inverse=True)
    drawing.add_polylines(polylines)
Esempio n. 8
0
def linked_shapes(d):

    paper_centre = Point(102.5, 148)
    radius = 70
    node_size = 5
    n = 29

    pts_and_angles = []
    for i in range(0, n):
        a = math.pi * 2 * i / n
        c = math.cos(a)
        s = math.sin(a)
        pt = paper_centre + Point(c, s) * radius
        pts_and_angles.append((pt, a))
        
    unclipped_lines = []
    for i1 in range(0, len(pts_and_angles)):
        for i2 in range(0, i1):
            (pt1, _) = pts_and_angles[i1]
            (pt2, _) = pts_and_angles[i2]
            if pt1.x != pt2.x or pt1.y != pt2.y:
                unclipped_lines.append([pt1, pt2])

    shapes = []
    for (pt, a) in pts_and_angles:
        shape = [pt + Point(1,1)*node_size/2, pt + Point(1,-1)*node_size/2, pt + Point(-1,-1)*node_size/2, pt + Point(-1,1)*node_size/2]
        shape = [StandardDrawing.rotate_about(x, pt, a) for x in shape]
        shapes.append(shape)
        
    sf = ShapeFiller(shapes)
    clipped_lines = sf.clip(unclipped_lines)
    for shape in shapes:
        closed_shape = [x for x in shape]
        closed_shape.append(shape[0])
        clipped_lines.append(closed_shape)
    
    d.add_polylines(clipped_lines)
Esempio n. 9
0
    def clip(sorted_faces):

        tStart = time.perf_counter()

        all_shapes = []
        all_polylines = []

        for face in sorted_faces:
            # First face
            if len(all_shapes) == 0:
                all_polylines.append(face)
                shape = face[0:-1]
                all_shapes.append(shape)
                sf = ShapeFiller([shape])
                continue

            # 4% just from this!
            print(f".", end='', flush=True)

            # Only 50% of the time spent here?
            clipped = sf.clip([face], union=True)

            # Only do anything if the shape has something to display
            if len(clipped) == 0:
                continue
            all_polylines.extend(clipped)
            shape = face[0:-1]
            all_shapes.append(shape)
            sf.add_shape(shape)

        tEnd = time.perf_counter()
        print(f"clip-tot={tEnd - tStart:.2f}s")
        print(f"len(all_polylines)={len(all_polylines)}")
        print(f"len(shapes)={len(all_shapes)}")

        return all_polylines
Esempio n. 10
0
def make_hash_square(tl, side, gap, a):

    centre = tl + Point(1, 1) * side / 2
    r = side * math.sqrt(2)
    gap = 2
    disp = 0
    while disp > -r / 2:
        disp -= gap
    unclipped_lines = []
    while disp < r / 2:
        unclipped_lines.append(
            [centre + Point(-r / 2, disp), centre + Point(r / 2, +disp)])
        disp += gap

    unclipped_lines = [[
        StandardDrawing.rotate_about(x, centre, a) for x in line
    ] for line in unclipped_lines]
    c = math.cos(a)

    shape = [
        tl, tl + Point(side, 0), tl + Point(side, side), tl + Point(0, side)
    ]
    sf = ShapeFiller([shape])
    return sf.clip(unclipped_lines, inverse=True)
Esempio n. 11
0
def test_clip():

    disp = (0, 5)
    shape1 = [Point(10, 10), Point(20, 10), Point(20, 20), Point(10, 20)]

    # all inside: clip everything
    shape2 = [Point(11, 11), Point(19, 11), Point(19, 19), Point(11, 19)]
    sf = ShapeFiller([shape1])
    polylines = sf.clip([shape2], union=True)
    assert (len(polylines) == 0)

    def clip_displaced_square(sf, disp):
        shape2 = [(x[0] + disp[0], x[1] + disp[1]) for x in shape1]
        shape2.append(shape2[0])
        return sf.clip([shape2], union=True)

    # on boundary - no clipping
    polylines = clip_displaced_square(sf, (0, 0))
    assert (len(polylines) == 1)
    assert (len(polylines[0]) == 5)
    assert (polylines[0][0] == (10, 10))
    assert (polylines[0][1] == (20, 10))
    assert (polylines[0][2] == (20, 20))
    assert (polylines[0][3] == (10, 20))
    assert (polylines[0][4] == (10, 10))

    # (15,15) - (25,15) - (25,25) - (15,25) - (15,15)
    polylines = clip_displaced_square(sf, (5, 5))
    assert (len(polylines) == 1)
    assert (len(polylines[0]) == 5)
    print(polylines)
    assert (polylines[0][0] == (20, 15))
    assert (polylines[0][1] == (25, 15))
    assert (polylines[0][2] == (25, 25))
    assert (polylines[0][3] == (15, 25))
    assert (polylines[0][4] == (15, 20))

    # (5,15) - (15,15) - (15,25) - (5,25) - (5,15)
    polylines = clip_displaced_square(sf, (-5, 5))
    assert (len(polylines) == 2)
    assert (len(polylines[0]) == 2)
    assert (len(polylines[1]) == 4)
    assert (polylines[0][0] == (5, 15))
    assert (polylines[0][1] == (10, 15))
    assert (polylines[1][0] == (15, 20))
    assert (polylines[1][1] == (15, 25))
    assert (polylines[1][2] == (5, 25))
    assert (polylines[1][3] == (5, 15))

    # (5,5) - (15,5) - (15,15) - (5,15) - (5,5)
    polylines = clip_displaced_square(sf, (-5, -5))
    assert (len(polylines) == 2)
    assert (len(polylines[0]) == 3)
    assert (len(polylines[1]) == 3)
    assert (polylines[0][0] == (5, 5))
    assert (polylines[0][1] == (15, 5))
    assert (polylines[0][2] == (15, 10))
    assert (polylines[1][0] == (10, 15))
    assert (polylines[1][1] == (5, 15))
    assert (polylines[1][2] == (5, 5))

    # (15,5) - (25,5) - (25,15) - (15,15) - (15,5)
    polylines = clip_displaced_square(sf, (5, -5))
    assert (len(polylines) == 2)
    assert (len(polylines[0]) == 4)
    assert (len(polylines[1]) == 2)
    assert (polylines[0][0] == (15, 5))
    assert (polylines[0][1] == (25, 5))
    assert (polylines[0][2] == (25, 15))
    assert (polylines[0][3] == (20, 15))
    assert (polylines[1][0] == (15, 10))
    assert (polylines[1][1] == (15, 5))
Esempio n. 12
0
def draw_false_prophets(d):

    # A4
    top_left = (0, 0)
    x_size = 210
    y_size = 297
    projection_angle=math.pi*0.2
    p = perlin.PerlinNoise(scale=400, octaves=2)
    polylines = d.make_surface(top_left, x_size, int(y_size / math.cos(projection_angle)), p.calc2d, projection_angle=projection_angle)

    # clip to margin around edge of paper
    topleft = (20, 20)
    shapes = [d.make_rect(topleft, x_size - 2 * topleft[0], y_size - 2 * topleft[1])]
    sf = ShapeFiller(shapes)
    polylines = sf.clip(polylines, inverse=True)
    
    # medallion
    medallion_centre = (int(x_size/2), int(y_size/2))
    shapes = [d.make_circle(medallion_centre, 29, x_scale = 0.7), d.make_circle(medallion_centre, 27, x_scale = 0.7)]
    sf = ShapeFiller(shapes)
    polylines = sf.clip(polylines, union=True)
    new_lines = sf.get_paths(d.pen_type.pen_width / 5)
    for line in new_lines:
        polylines.append(line)
    
    image_path = d.make_image_spiral_single('burroughs.jpg', medallion_centre, 25, x_scale = 0.7)
    polylines.append(image_path)

    family='CNC Vector'
    # family = 'HersheyScript1smooth'
    family = 'Arial'
    family = 'Caslon Antique'
    header_pos = (int(x_size/2), 40)
    fontsize = 36
    text = "False Prophets Of The New Millenium."
    ext = d.text_bound(text, fontsize, family)
    position = (header_pos[0] - ext.width/2, header_pos[1])
    text_paths = d.make_text(text, position, fontsize=fontsize, family=family)
    rect_width = 0.5
    rect1 = d.make_rect((position[0] - 2, position[1] + ext.y_bearing - 2), ext.width + 4, ext.height + 4)
    rect2 = d.make_rect((position[0] - (2+rect_width), position[1] + ext.y_bearing - (2+rect_width)), ext.width + (4+2*rect_width), ext.height + (4+2*rect_width))
    sf = ShapeFiller([rect1, rect2])
    polylines = sf.clip(polylines, union=True)
    rect_paths = sf.get_paths(d.pen_type.pen_width / 5)
    for p in rect_paths:
        polylines.append(p)
    sf = ShapeFiller(text_paths)
    filled_text_paths = sf.get_paths(d.pen_type.pen_width / 5)
    for p in filled_text_paths:
        polylines.append(p)
    
    for text_path in text_paths:
        polylines.append(text_path)

    # legend

    family='CNC Vector'
    # family = 'HersheyScript1smooth'
    family = 'Caslon Antique'
    fontsize = 24
    text = "WAKEFIELD"
    ext = d.text_bound(text, fontsize, family)
    
    position = (medallion_centre[0] - ext.width/2, medallion_centre[1]+30+4+ext.height)
    text_paths = d.make_text(text, position, fontsize=fontsize, family=family)
    sf = ShapeFiller(text_paths)
    filled_text_paths = sf.get_paths(d.pen_type.pen_width / 5)
    
    rect_width = 0.5
    rect1 = d.make_rect((position[0] - 2, position[1] + ext.y_bearing - 2), ext.width + 4, ext.height + 4)
    rect2 = d.make_rect((position[0] - (2+rect_width), position[1] + ext.y_bearing - (2+rect_width)), ext.width + (4+2*rect_width), ext.height + (4+2*rect_width))
    sf = ShapeFiller([rect1, rect2])
    polylines = sf.clip(polylines, union=True)
    rect_paths = sf.get_paths(d.pen_type.pen_width / 5)
    for p in rect_paths:
        polylines.append(p)
    for text_path in filled_text_paths:
        polylines.append(text_path)

    polylines2 = []
    family = 'Aquifer'
    family = 'Caslon Antique'
    fontsize = 48

    row_ext = d.text_bound("Op", fontsize, family)
    
    header_pos = (int(x_size/2), 80)
    text = "False Prophets Of"
    ext = d.text_bound(text, fontsize, family)
    position = (header_pos[0] - ext.width/2, header_pos[1])
    text_paths = d.make_text(text, position, fontsize=fontsize, family=family)
    sf = ShapeFiller(text_paths)
    filled_text_paths = sf.get_paths(d.pen_type.pen_width / 5)
    for p in filled_text_paths:
        polylines2.append(p)
        
    header_pos = (header_pos[0], header_pos[1] + row_ext.height + 2)
    text = "The New Millenium"
    ext = d.text_bound(text, fontsize, family)
    position = (header_pos[0] - ext.width/2, header_pos[1])
    text_paths = d.make_text(text, position, fontsize=fontsize, family=family)
    sf = ShapeFiller(text_paths)
    filled_text_paths = sf.get_paths(d.pen_type.pen_width / 5)
    for p in filled_text_paths:
        polylines2.append(p)

    d.add_polylines(polylines)
Esempio n. 13
0
def draw_shape_clips3(d):

    # Try developing a shade fill class that we can put in here
    # Can use for more general area fill art

    paper_centre = Point(102.5, 148)
    paper_size = Point(192, 276)
    all_shape_polylines = []
    all_fill_polyline_lists = []
    shapes = []
    max_size = 30
    for i in range(0, 50):
        cx = paper_centre.x + (random.random() - 0.5) * (paper_size.x -
                                                         (max_size + 20))
        cy = paper_centre.y + (random.random() - 0.5) * (paper_size.y -
                                                         (max_size + 20))

        r = random.random()
        size = max_size * (0.5 + 0.5 * r)
        r = random.random()
        if r < 0.333:
            tl = Point(cx - size / 2, cy - size / 2)
            line = [
                Point(1, 0),
                Point(2, 0),
                Point(2, 1),
                Point(3, 1),
                Point(3, 2),
                Point(2, 2),
                Point(2, 3),
                Point(1, 3),
                Point(1, 2),
                Point(0, 2),
                Point(0, 1),
                Point(1, 1)
            ]
            shape = [tl + pt * (size / 3) for pt in line]
        elif r < 0.666:
            shape = d.make_square(Point(cx - size / 2, cy - size / 2), size)
        else:
            tl = Point(cx - size / 2, cy - size / 2)
            line = [Point(0, 0), Point(3, 0), Point(1.5, 3 * math.sqrt(3) / 2)]
            shape = [tl + pt * (size / 3) for pt in line]

        fill_lines = []
        r = random.random()
        if r < 10.5:
            sf = ShapeFiller([shape])
            w = d.pen_type.pen_width * 0.8
            y = cy - size / 2 + w
            fill_lines = []
            while y < cy + size / 2:
                fill_lines.append(
                    [Point(cx - size / 2, y),
                     Point(cx + size / 2, y)])
                y += w
            fill_lines = sf.clip(fill_lines, inverse=True)

        a = random.random() * math.pi * 2
        fill_lines = [[
            StandardDrawing.rotate_about(pt, (cx, cy), a) for pt in line
        ] for line in fill_lines]
        shape = [StandardDrawing.rotate_about(pt, (cx, cy), a) for pt in shape]
        shape_polyline = [x for x in shape]
        shape_polyline.append(shape_polyline[0])
        if len(shapes) == 0:
            all_shape_polylines.extend([shape_polyline])
            shapes.append(shape)
            clipped_fill_polylines = [[fill_line] for fill_line in fill_lines]
        else:
            sf = ShapeFiller(shapes)
            clipped_shape_polylines = sf.clip([shape_polyline], union=True)
            all_shape_polylines.extend(clipped_shape_polylines)

            # A list of polylines (= list of points)
            clipped_fill_polylines = [
                sf.clip([fill_line], union=True) for fill_line in fill_lines
            ]
            shapes.append(shape)

        ix = 0
        for clipped_fill_polyline in clipped_fill_polylines:
            if (len(clipped_fill_polyline) > 0):
                all_fill_polyline_lists.append(clipped_fill_polyline)
            ix += 1

    d.add_polylines(all_shape_polylines)
    sub_lists = [[], [], [], []]
    mins = paper_centre - paper_size / 2
    maxs = paper_centre + paper_size / 2
    for polyline_list in all_fill_polyline_lists:
        pts = [pt for polyline in polyline_list for pt in polyline]
        avg = Point(sum(pt.x for pt in pts), sum(pt.y
                                                 for pt in pts)) / len(pts)
        cx = min(1, max(0, (avg.x - mins.x) / (maxs.x - mins.x)))
        cy = min(1, max(0, (avg.y - mins.x) / (maxs.y - mins.y)))
        r0 = cx
        r1 = 1 - cx
        r2 = cy
        r3 = 1 - cy
        rtot = r0 + r1 + r2 + r3  #  + 2
        r = random.random()
        if r < r0 / rtot:
            sub_lists[0].extend(polyline_list)
        elif r < (r0 + r1) / rtot:
            sub_lists[1].extend(polyline_list)
        elif r < (r0 + r1 + r2) / rtot:
            sub_lists[2].extend(polyline_list)
        elif r < (r0 + r1 + r2 + r3) / rtot:
            sub_lists[3].extend(polyline_list)

    #d.add_polylines(sub_lists[0], container=d.add_layer("1-xxx"), stroke=svgwrite.rgb(100, 100, 50, '%'))
    #d.add_polylines(sub_lists[1], container=d.add_layer("2-xxx"), stroke=svgwrite.rgb(100, 50, 100, '%'))
    #d.add_polylines(sub_lists[2], container=d.add_layer("3-xxx"), stroke=svgwrite.rgb(100, 0, 0, '%'))
    #d.add_polylines(sub_lists[3], container=d.add_layer("4-xxx"), stroke=svgwrite.rgb(50, 50, 100, '%'))
    d.add_polylines(sub_lists[0],
                    container=d.add_layer("1-xxx"),
                    stroke=svgwrite.rgb(50, 50, 100, '%'))
    d.add_polylines(sub_lists[1],
                    container=d.add_layer("2-xxx"),
                    stroke=svgwrite.rgb(50, 100, 50, '%'))
    d.add_polylines(sub_lists[2],
                    container=d.add_layer("3-xxx"),
                    stroke=svgwrite.rgb(50, 100, 100, '%'))
    d.add_polylines(sub_lists[3],
                    container=d.add_layer("4-xxx"),
                    stroke=svgwrite.rgb(0, 50, 50, '%'))