Esempio n. 1
0
def test_class_Chain():
    """tests to ensure the behaviour class Chain"""
    test_model = Model('test_model')
    from_pop = Population('from_pop', 0.)
    to_pop = Population('to_pop', 0.)
    pop_a = Population('pop_a', 0.)
    pop_b = Population('pop_b', 0.)
    start = 100000
    from_pop.future = [start]

    mean = 10.
    sigma = 2.
    delay_pars = {'mean': Parameter('mean', mean, parameter_min=0.1, parameter_max=100.),
                  'sigma': Parameter('sigma', sigma, parameter_min=0.1, parameter_max=1000.)}
    delay = Delay('delay', 'norm', delay_pars, test_model)
    frac = 0.8
    fraction = Parameter('frac', frac)
    chain = []
    chain.append(Propagator('prop_0', from_pop, pop_a, fraction, delay))
    chain.append(Propagator('prop_1', pop_a, pop_b, fraction, delay))

    test_chain = Chain('test_chain', from_pop, to_pop, chain, fraction, delay, test_model)
    test_model.add_connector(test_chain)

    for time_step in [1., 1. / 4.]:
        test_model.set_time_step(time_step)
        for func in [test_chain.update_expectation, test_chain.update_data]:
            EPS = 0.02
            if func == test_chain.update_data:
                EPS = 0.2
            to_pop.reset()
            pop_a.reset()
            pop_b.reset()
            func()
            for pop in [to_pop, pop_b]:
                distribution = pop.future
                total = start * (1. - frac ** 2) * frac
                ave = mean
                std_dev = sigma
                if pop == pop_b:
                    total = start * frac ** 2
                    ave = 2. * mean
                    std_dev = np.sqrt(2.) * sigma
                sum_p = 0.
                sum_tp = 0.
                sum_ttp = 0.
                for i in range(len(distribution)):
                    sum_p += distribution[i]
                    sum_tp += i * distribution[i] * time_step
                    sum_ttp += i * i * distribution[i] * time_step ** 2
                assert np.abs(sum_p - total) < EPS * total
                est_mean = sum_tp / total
                assert np.abs(est_mean - ave) < EPS * ave
                est_sigma = np.sqrt(sum_ttp / total - est_mean ** 2)
                assert np.abs(est_sigma - std_dev) < EPS * std_dev
Esempio n. 2
0
def test_class_Parameter():
    """tests to ensure the behaviour class Parameter"""
    test_parameter = Parameter('test_par', 10., parameter_min=5., parameter_max=100.)
    for value in [50]:
        error_caught = False
        try:
            test_parameter.set_value(value)
        except ValueError:
            error_caught = True
        except TypeError:
            error_caught = True
        assert error_caught
Esempio n. 3
0
def test_class_Operator():
    r1 = 10.
    r2 = 11.3
    i1 = 5
    i2 = 7
    rp1 = Parameter('r1', r1, parameter_min=5., parameter_max=100.)
    rp2 = Parameter('r2', r2, parameter_min=5., parameter_max=100.)
    ip1 = Parameter('i1', i1, parameter_type='int', parameter_min=5, parameter_max=100)
    ip2 = Parameter('r1', i2, parameter_type='int', parameter_min=5, parameter_max=100)

    assert Operator([rp1, rp2], '*').get_value() == r1 * r2
    assert Operator([rp1, ip1], '*').get_value() == r1 * i1
    assert Operator([ip1, ip2], '*').get_value() == i1 * i2
    assert Operator([rp1, rp2, rp1, ip2], '*+/').get_value() == r1 * r2 + r1 / i2
    assert Operator([ip1, ip2, ip1, ip2], '*/+').get_value() == i1 * i2 / i1 + i2
Esempio n. 4
0
def test_Ensemble_data():
    """tests to check data from an ensemble"""
    # Test that the ensemble of two identical models
    # behalves like twice a single model.
    # Only for the independent (ie. diagonal) case
    # Note: this test would fail if a fixed contact_matrix
    # is passed which happens to be the identity matrix
    # The difference is that when specified as independent
    # each model is booted independently
    # If a contact matrix is specified, then the boot goal
    # is the combined total of all models. So there will be a different starting point.
    test_a = Model.open_file(path_model_2)
    test_a.name = 'test_a'
    test_b = Model.open_file(path_model_2)
    test_b.name = 'test_b'
    test_b.parameters['alpha_0'].set_value(0.7)

    reference = Model.open_file(path_model_2)
    reference.name = 'reference'

    off_diag = Parameter('off_diagonal',
                         0.1,
                         parameter_min=0.,
                         parameter_max=1.,
                         description='off diagonal element of contact matrix')
    off_diags = [off_diag]

    test_ensemble = Ensemble('test_ensemble', reference)
    test_ensemble.upload_models([test_a, test_b])
    test_ensemble.define_cross_transmission('infection cycle',
                                            'infected',
                                            'susceptible',
                                            'total',
                                            'contagious',
                                            'alpha',
                                            contact_type='simple',
                                            contact=off_diags)

    n_days = 100
    norm_day = 50
    test_ensemble.reset()
    test_ensemble.evolve_expectations(norm_day)
    for key in test_ensemble.populations:
        pop = test_ensemble.populations[key]
        nu = pop.history[norm_day]
        pop.history[norm_day] = int(round(nu))
        pop.scale_future(1., expectations=False)
    for model_name in test_ensemble.models:
        model = test_ensemble.models[model_name]
        for pop_name in model.populations:
            pop = model.populations[pop_name]
            nu = pop.history[norm_day]
            pop.history[norm_day] = int(round(nu))
            pop.scale_future(1., expectations=False)

    test_ensemble.generate_data(n_days, norm_day)
    for pop_name in test_ensemble.populations:
        pop = test_ensemble.populations[pop_name]
        if pop.show_sim:
            ens_hist = test_ensemble.populations[pop_name].history
Esempio n. 5
0
def test_class_Injector():
    """tests to ensure the behaviour class Injector"""
    test_model = Model('test_model')
    number = 50.
    inject = Parameter('inject', number, parameter_min=0., parameter_max=1000.)
    time = 5
    trans_time = Parameter('time', time, parameter_type='int', parameter_min=0, parameter_max=1000)
    to_pop = Population('to_pop', 0)
    test_injector = Injector('injector', 'rel_days', trans_time, to_pop, inject, model=test_model)
    test_model.add_transition(test_injector)
    for time_step in [1., 1. / 4.]:
        test_model.set_time_step(time_step)
        to_pop.reset()
        test_injector.take_action()
        assert to_pop.future[0] == number
        assert np.abs(test_injector.trigger_step - time / time_step) < 0.1
Esempio n. 6
0
def test_class_Splitter():
    """tests to ensure the behaviour class Splitter"""
    test_model = Model('test_model')
    start = 100000
    from_pop = Population('from_pop', 0)
    from_pop.future = [start]
    to_pops = [Population('to_pop1', 0.), Population('to_pop2', 0.)]
    fracs = [0.4, 0.6]
    fraction = Parameter('frac', fracs[0])
    mean = 10.
    std_dev = 4.
    delay_pars = {
        'mean': Parameter('mean', mean, parameter_min=-100., parameter_max=100.),
        'sigma': Parameter('sigma', std_dev, parameter_min=-100., parameter_max=100.)
    }
    test_delay = Delay('test_delay', 'norm', delay_parameters=delay_pars, model=test_model)

    test_split = Splitter('test_prop', from_pop, to_pops, [fraction], test_delay)
    test_model.add_connector(test_split)
    for time_step in [1., 1. / 4.]:
        test_model.set_time_step(time_step)
        for func in [test_split.update_expectation, test_split.update_data]:
            EPS = 0.01
            if func == test_split.update_data:
                EPS = 0.1
            to_pops[0].reset()
            to_pops[1].reset()
            func()
            total = 0
            for i in range(2):
                distribution = to_pops[i].future
                frac = fracs[i]
                sum_p = 0.
                sum_tp = 0.
                sum_ttp = 0.
                for i in range(len(distribution)):
                    sum_p += distribution[i]
                    sum_tp += i * distribution[i] * time_step
                    sum_ttp += i * i * distribution[i] * time_step ** 2
                total += sum_p
                assert np.abs(sum_p - start * frac) < EPS * start * frac
                est_mean = sum_tp / (start * frac)
                assert np.abs(est_mean - mean) < EPS * mean
                est_sigma = np.sqrt(sum_ttp / (start * frac) - est_mean ** 2)
                assert np.abs(est_sigma - std_dev) < EPS * std_dev
            assert np.abs(total - start) < 0.1
Esempio n. 7
0
def test_class_Multiplier():
    """tests to ensure the behaviour class Multiplier"""
    test_model = Model('test_model')
    EPS = 1.
    n1 = 50.
    n2 = 20.
    n3 = 2.
    scale = 0.1
    f_pops = [Population('f1_pop', n1), Population('f2_pop', n2), Population('f3_pop', n3)]
    to_pop = Population('to_pop', 0.)
    scale_par = Parameter('alpha', scale)
    delay = Delay('fast', 'fast')
    test_multiplier = Multiplier('test_multiplier', f_pops, to_pop, scale_par, delay, model=test_model)
    test_model.add_connector(test_multiplier)
    for time_step in [1., 1. / 4.]:
        test_model.set_time_step(time_step)
        # expectation:
        expected = n1 * n2 / n3 * scale * time_step
        to_pop.reset()
        test_multiplier.set_distribution('poisson', None)
        test_multiplier.update_expectation()
        assert to_pop.future[0] == expected

        # Poisson
        n_rep = 1000
        n_list = []
        for i in range(n_rep):
            to_pop.reset()
            test_multiplier.update_data()
            n_list.append(to_pop.future[0])
        assert np.abs(np.mean(n_list) - expected) < EPS
        assert np.abs(np.std(n_list) - np.sqrt(expected)) < EPS

        # Negative binomial
        p_nb = 0.2
        nbinom_par = Parameter('nb', p_nb)
        test_multiplier.set_distribution('nbinom', nbinom_par)

        n_rep = 1000
        n_list = []
        for i in range(n_rep):
            to_pop.reset()
            test_multiplier.update_data()
            n_list.append(to_pop.future[0])
        assert np.abs(np.mean(n_list) - expected) < EPS
        assert np.abs(np.std(n_list) - np.sqrt(expected / p_nb)) < EPS
Esempio n. 8
0
def test_class_Propagator():
    """tests to ensure the behaviour class Propagator"""
    test_model = Model('test_model')
    start = 100000
    from_pop = Population('from_pop', 0)
    from_pop.future = [start]
    to_pop = Population('to_pop', 0.)
    frac = 0.4
    fraction = Parameter('frac', frac)
    mean = 10.
    std_dev = 4.
    delay_pars = {
        'mean': Parameter('mean', mean, parameter_min=-100., parameter_max=100.),
        'sigma': Parameter('sigma', std_dev, parameter_min=-100., parameter_max=100.)
    }
    test_delay = Delay('test_delay', 'norm', delay_parameters=delay_pars, model=test_model)

    test_prop = Propagator('test_prop', from_pop, to_pop, fraction, test_delay)
    test_model.add_connector(test_prop)
    for time_step in [1., 1. / 4.]:
        test_model.set_time_step(time_step)
        for func in [test_prop.update_expectation, test_prop.update_data]:
            EPS = 0.01
            if func == test_prop.update_data:
                EPS = 0.1
            to_pop.reset()
            func()
            distribution = to_pop.future
            sum_p = 0.
            sum_tp = 0.
            sum_ttp = 0.
            for i in range(len(distribution)):
                sum_p += distribution[i]
                sum_tp += i * distribution[i] * time_step
                sum_ttp += i * i * distribution[i] * time_step ** 2
            assert np.abs(sum_p - start * frac) < EPS * start * frac
            est_mean = sum_tp / (start * frac)
            assert np.abs(est_mean - mean) < EPS * mean
            est_sigma = np.sqrt(sum_ttp / (start * frac) - est_mean ** 2)
            assert np.abs(est_sigma - std_dev) < EPS * std_dev
Esempio n. 9
0
def test_class_Delay():
    """tests to ensure the behaviour class Delay"""
    test_model = Model('test_model')
    EPS = 0.1
    mean = 10.
    std_dev = 4.
    half_width = float(std_dev * np.sqrt(12.) / 2.)
    k_vals = [1, 2, 3]
    for delay_type in ['norm', 'uniform', 'erlang', 'gamma']:
        k_s = [1]
        if delay_type == 'erlang':
            k_s = k_vals
        for k in k_s:
            delay_pars = {
                'mean': Parameter('mean', mean, parameter_min=-100., parameter_max=100.),
                'sigma': Parameter('sigma', std_dev, parameter_min=-100., parameter_max=100.),
                'half_width': Parameter('hw', half_width, parameter_min=-100., parameter_max=100.),
                'k': Parameter('k', k, parameter_type='int', parameter_min=1, parameter_max=100)
            }
            for time_step in [1., 1. / 4.]:
                test_model.set_time_step(time_step)
                # The delay is created after the model: since it is not associated with a connector, the model
                # does not know to call its update method. (The model does not have stand alone delays.)
                test_delay = Delay('test_delay', delay_type, delay_parameters=delay_pars, model=test_model)
                distribution = test_delay.future_expectations
                sum_p = 0.
                sum_tp = 0.
                sum_ttp = 0.
                for i in range(len(distribution)):
                    sum_p += distribution[i]
                    sum_tp += i * distribution[i] * time_step
                    sum_ttp += i * i * distribution[i] * time_step ** 2
                assert np.abs(sum_p - 1.) < EPS
                est_mean = sum_tp
                assert np.abs(est_mean - mean) < EPS
                est_sigma = np.sqrt(sum_ttp - sum_tp * sum_tp)
                if delay_type != 'erlang':
                    assert np.abs(est_sigma - std_dev) < EPS
                else:
                    assert np.abs(est_sigma - mean / np.sqrt(1. * k)) < EPS
Esempio n. 10
0
def test_class_Modifier():
    """tests to ensure the behaviour class Modifier"""
    test_model = Model('test_model')
    mod_time = Parameter('time', 5, parameter_type='int', parameter_min=0, parameter_max=1000)
    par_val = 0.3
    par_0_val = 0.5
    par_1_val = 0.7
    parameter = Parameter('par', par_val)
    parameter_0 = Parameter('par_0', par_0_val)
    parameter_1 = Parameter('par_1', par_1_val)
    test_modifier = Modifier('test_modifier', 'rel_days', mod_time, parameter, parameter_0, parameter_1,
                             model=test_model)
    test_model.add_transition(test_modifier)
    for time_step in [1., 1. / 4.]:
        test_model.set_time_step(time_step)
        parameter.reset()
        assert parameter.get_value() == par_val
        test_modifier.take_action()
        assert parameter.get_value() == par_1_val
        test_modifier.reset()
        assert parameter.get_value() == par_0_val
        assert np.abs(test_modifier.trigger_step - 5 / time_step) < 0.1
Esempio n. 11
0
def test_class_Adder():
    """tests to ensure the behaviour class Adder"""
    for itest in range(6):
        from_init = 5
        to_init = 10
        f_over_t = 1.*from_init/to_init
        from_pop = Population('from_pop', from_init)
        from_next = 40
        from_pop.future = [from_next]
        to_pop = Population('to_pop', to_init)
        if itest == 0:
            test_adder = Adder('test_add', from_pop, to_pop)
            test_adder.update_expectation()
            assert to_pop.future[0] == from_next
        elif itest == 1:
            sf = 0.2
            scale_factor = Parameter('scale_factor', sf, 0., 10.)
            test_adder = Adder('test_add', from_pop, to_pop, scale_factor=scale_factor)
            test_adder.update_expectation()
            assert to_pop.future[0] == from_next * sf
        elif itest == 2:
            sf = 0.3
            ratio_pops = [from_pop, to_pop]
            scale_factor = Parameter('scale_factor', sf, 0., 10.)
            test_adder = Adder('test_add', from_pop, to_pop, scale_factor=scale_factor, ratio_populations=ratio_pops)
            test_adder.update_expectation()
            assert to_pop.future[0] == from_next * sf * f_over_t
        elif itest == 3:
            sf = 0.3
            ratio_pops = [from_pop, to_pop]
            scale_factor = Parameter('scale_factor', sf, 0, 10.)
            test_adder = Adder('test_add', from_pop, to_pop, scale_factor=scale_factor, ratio_populations=ratio_pops)
            test_adder.update_data()
            prob = sf * f_over_t
            sigma = np.sqrt(from_next*prob*(1-prob))
            assert np.abs(to_pop.future[0] - from_next * sf * f_over_t)<3.*sigma
        elif itest == 4:
            sf = 0.31
            ratio_pops = [from_pop, to_pop]
            scale_factor = Parameter('scale_factor', sf, 0., 10.)
            test_adder = Adder('test_add', from_pop, to_pop, scale_factor=scale_factor, ratio_populations=ratio_pops)
            test_adder.update_data()
            assert np.abs(to_pop.future[0] - from_next * sf * f_over_t)<3.*sigma
        elif itest == 5:
            sf = 0.31
            r1 = Parameter('r1', sf/3., parameter_min=1., parameter_max=100.)
            r2 = Parameter('r2', 3., parameter_min=1., parameter_max=100.)
            ratio_pops = [from_pop, to_pop]
            # scale_factor = Parameter('scale_factor', sf, 0., 10.)
            scale_factor = Operator([r1,r2],'*')
            test_adder = Adder('test_add', from_pop, to_pop, scale_factor=scale_factor, ratio_populations=ratio_pops)
            test_adder.update_data()
            assert to_pop.future[0] >= from_next * int(sf) * f_over_t
Esempio n. 12
0
def test_class_Population():
    """tests to ensure the behaviour class Population"""
    init_value = 100
    test_pop = Population('test population', init_value, description='For testing populations',
                          hidden=True, color='black', show_sim=False, report_noise=False,
                          report_noise_par=None)
    assert test_pop.history[0] == init_value

    model = Model.open_file(path_model_2_8)
    test_pop.set_model(model)

    incoming = 10
    test_pop.update_future_fast(incoming)
    assert test_pop.future[0] == incoming

    test_pop.do_time_step()
    assert test_pop.history[1] == init_value + incoming
    assert len(test_pop.future) == 0 or test_pop.future == 0

    scale_factor = 0.5
    test_pop.scale_history(scale_factor)
    assert test_pop.history[0] == init_value * scale_factor
    assert test_pop.history[1] == (init_value + incoming) * scale_factor

    # check that noise in reporting makes sense
    # Expectations are not effected - data should be
    # but the total reported should be the same after all reporting complete
    noise_factor = Parameter('noise_factor', 0.3)
    backlog_factor = Parameter('backlog_factor', 0.8)
    # restart - back to initial value
    for expectations in [True, False]:
        test_pop.reset()
        future = [0, 10, 100, 100, 100, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
        future_sum = np.sum(np.array(future))
        test_pop.set_report_noise(True, noise_factor, backlog_factor, None)
        test_pop.future = future
        for i in range(len(future) + 5):
            test_pop.do_time_step(expectations=expectations)
        assert test_pop.history[-1] == init_value + future_sum

    report_days = Parameter('report_days', 127, parameter_min=-7, parameter_max=127, parameter_type='int')
    for report_day_value in [127, 63, -1, -2, -5, -7]:
        report_days.set_value(report_day_value)
        test_pop.reset()
        future = [0, 10, 100, 100, 100, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
        future_sum = np.sum(np.array(future))
        test_pop.set_report_noise(True, noise_factor, backlog_factor, report_days)
        test_pop.future = future
        for i in range(len(future) + 5):
            test_pop.do_time_step(expectations=expectations)
        assert test_pop.history[-1] == init_value + future_sum
Esempio n. 13
0
 - add second infection cycle for B117 variant

@author: karlen
"""

from pypmca import Model, Population, Delay, Parameter, Multiplier, Propagator, \
    Splitter, Adder, Subtractor, Chain, Modifier, Injector

# Test by building a population model for BC

bc_model = Model('ref_model_2_8')
bc_model.set_t0(2020, 3, 1)

# Initialization

initial_pop_par = Parameter('N_0', 5000000, 5000, 50000000,
                            'Population of the region at t0', 'int')

total_pop = Population('total', initial_pop_par,
                       'total population of the region', color='black')
susceptible_pop = Population('susceptible', initial_pop_par,
                             'number of people who could become infected', color='cornflowerblue')
infected_pop = Population('infected', 0,
                          'total number of people ever infected', color='orange')

# Define the infection cycle
# oooooooooooooooooooooooooooo

initial_contagious_par = Parameter('cont_0', 10., 0., 5000.,
                                   'Number of contagious people at t0',
                                   hidden=False)
Esempio n. 14
0
 - set death reporting noise to be weekly

@author: karlen
"""

from pypmca import Model, Population, Delay, Parameter, Multiplier, Propagator, \
    Splitter, Adder, Subtractor, Chain, Modifier, Injector

# Test by building a population model for BC

bc_model = Model('ref_model_2_6')
bc_model.set_t0(2020, 3, 1)

# Initialization

initial_pop_par = Parameter('N_0', 5000000, 5000, 50000000,
                            'Population of the region at t0', 'int')

total_pop = Population('total',
                       initial_pop_par,
                       'total population of the region',
                       color='black')
susceptible_pop = Population('susceptible',
                             initial_pop_par,
                             'number of people who could become infected',
                             color='cornflowerblue')
infected_pop = Population('infected',
                          0,
                          'total number of people ever infected',
                          color='orange')

# Define the infection cycle
Esempio n. 15
0
update: May 21, 2020. Fix error: need to remove "departed ventillator" from "in_icu"

@author: karlen
"""

from pypmca import Model, Population, Delay, Parameter, Multiplier, Propagator, \
    Splitter, Adder, Subtractor, Chain, Modifier, Injector

# Test by building a population model for BC

bc_model = Model('ref_model_1')
bc_model.set_t0(2020, 3, 1)

# Initialization

initial_pop_par = Parameter('N_0', 5000000, 5000, 50000000,
                            'Population of the region at t0', 'int')

total_pop = Population('total', initial_pop_par,
                       'total population of the region', color='black')
susceptible_pop = Population('susceptible', initial_pop_par,
                             'number of people who could become infected', color='cornflowerblue')
infected_pop = Population('infected', 0,
                          'total number of people ever infected', color='orange')

# Define the infection cycle
# oooooooooooooooooooooooooooo

initial_contagious_par = Parameter('cont_0', 55., 0., 5000.,
                                   'Number of contagious people at t0',
                                   hidden=False)
Esempio n. 16
0
is switched on.

@author: karlen
"""

from pypmca import Model, Population, Delay, Parameter, Multiplier, Propagator, \
    Splitter, Adder, Subtractor, Chain, Modifier, Injector

# Test by building a population model for BC

bc_model = Model('ref_model_2')
bc_model.set_t0(2020, 3, 1)

# Initialization

initial_pop_par = Parameter('N_0', 5000000, 5000, 50000000,
                            'Population of the region at t0', 'int')

total_pop = Population('total',
                       initial_pop_par,
                       'total population of the region',
                       color='black')
susceptible_pop = Population('susceptible',
                             initial_pop_par,
                             'number of people who could become infected',
                             color='cornflowerblue')
infected_pop = Population('infected',
                          0,
                          'total number of people ever infected',
                          color='orange')

# Define the infection cycle