def fit_polychord(self, n_live_points=1000, n_chords=None, basename='polychains/1-', **kwargs): import pypolychord self._pchord_basename = basename if hasattr(self, 'which'): self.n_dim = 9 + 6 * self.lc.n_planets else: self.n_dim = 5 + 6 * self.lc.n_planets if n_chords is not None: self.n_chords = n_chords else: self.n_chords = 3 * self.n_dim pypolychord.run(self.pchord_loglike, self.pchord_prior, self.n_dim, n_live=n_live_points, n_chords=self.n_chords, output_basename=self._pchord_basename, **kwargs)
def fit_polychord(self, n_live_points=1000, n_chords=None, basename="polychains/1-", **kwargs): import pypolychord self._pchord_basename = basename if hasattr(self, "which"): self.n_dim = 9 + 6 * self.lc.n_planets else: self.n_dim = 5 + 6 * self.lc.n_planets if n_chords is not None: self.n_chords = n_chords else: self.n_chords = 3 * self.n_dim pypolychord.run( self.pchord_loglike, self.pchord_prior, self.n_dim, n_live=n_live_points, n_chords=self.n_chords, output_basename=self._pchord_basename, **kwargs )
prior_array = np.append(model.pmin, model.pmax) def chord_like(ndim, theta, phi): # check prior if model.mark3LogPrior(theta) != -np.inf: return loglike(theta, **loglkwargs) else: #print 'WARNING: Prior returns -np.inf!!' return -np.inf n_live = 1000 ndim = len(p0) pypolychord.run(chord_like, ndim, prior_array, n_live=n_live, n_chords=5, \ output_basename=args.outDir+"/pcord-") if args.sampler == 'multinest': print('WARNING: Using MultiNest, will use uniform priors on all parameters') import pymultinest p0 = model.initParameters(startEfacAtOne=True, fixpstart=False) # mark2 loglike if args.incJitterEquad: ndim = len(p0) def myloglike(cube, ndim, nparams):
from __future__ import print_function import numpy from numpy import cos, pi import pypolychord def loglikelihood(params): return (numpy.prod(cos(params / 2)) + 2)**5 def prior(pars): return (4 + 1) * pi * pars if __name__ == "__main__": ndim = 2 import os if not os.path.exists('chains'): os.mkdir('chains') if not os.path.exists('chains/clusters'): os.mkdir('chains/clusters') pypolychord.run(loglikelihood, prior, ndim, n_live=500, n_chords=1, output_basename='chains/eggbox-')
prior_array = np.append(model.pmin, model.pmax) def chord_like(ndim, theta, phi): # check prior if model.mark3LogPrior(theta) != -np.inf: return loglike(theta, **loglkwargs) else: #print 'WARNING: Prior returns -np.inf!!' return -np.inf n_live = 1000 ndim = len(p0) pypolychord.run(chord_like, ndim, prior_array, n_live=n_live, n_chords=5, \ output_basename=args.outDir+"/pcord-") if args.sampler == 'multinest': print 'WARNING: Using MultiNest, will use uniform priors on all parameters' import pymultinest p0 = model.initParameters(startEfacAtOne=True, fixpstart=False) # mark2 loglike if args.incJitterEquad: ndim = len(p0) def myloglike(cube, ndim, nparams):