Esempio n. 1
0
grad_g = lambda x: np.dot(A.T, np.dot(A, x) - y)

L = lin.norm(A, 2)**2  # Lipschitz constant

# context
maxiter = 1000
ctx = Context(full_output=True, maxiter=maxiter)
ctx.callback = lambda x: F(x) + G(x)

res = np.zeros((maxiter, len(methods)))
i = 0
for method in methods:
    t1 = time.time()
    x, fx = forward_backward(prox_f,
                             grad_g,
                             np.zeros((n, 1)),
                             L,
                             method=method,
                             context=ctx)
    t2 = time.time()
    print ("[" + method + "]: Performed 1000 iterations in " \
          + str(t2 - t1) + "seconds.")
    res[:, i] = fx
    i += 1

e = np.min(res.flatten())

plt.loglog(res[:(maxiter // 10), :] - e)
plt.legend(methods)
plt.grid(True, which="both", ls="-")
plt.tight_layout()
plt.show()
Esempio n. 2
0
grad_g = lambda x: np.dot(A.T, np.dot(A, x) - y)

L = lin.norm(A, 2)**2  # Lipschitz constant

callback = lambda x: F(x) + G(x)
maxiter = 1000

res = np.zeros((maxiter, len(methods)))
i = 0
for method in methods:
    t1 = time.time()
    x, fx = forward_backward(prox_f,
                             grad_g,
                             np.zeros((n, 1)),
                             L,
                             maxiter=maxiter,
                             method=method,
                             full_output=1,
                             retall=0,
                             callback=callback)
    t2 = time.time()
    print "[" + method + "]: Performed 1000 iterations in " \
          + str(t2 - t1) + "seconds."
    res[:, i] = fx
    i += 1

e = np.min(res.flatten())

pl.loglog(res[:(maxiter // 10), :] - e)
pl.legend(methods)
pl.grid(True, which="both", ls="-")
Esempio n. 3
0
F = lambda x: la * lin.norm(x, 1)
G = lambda x: 1 / 2 * lin.norm(y - np.dot(A, x)) ** 2
prox_f = lambda x, tau: soft_thresholding(x, la * tau)
grad_g = lambda x: np.dot(A.T, np.dot(A, x) - y)

L = lin.norm(A, 2) ** 2  # Lipschitz constant

callback = lambda x: F(x) + G(x)
maxiter = 1000

res = np.zeros((maxiter, len(methods)))
i = 0
for method in methods:
    t1 = time.time()
    x, fx = forward_backward(prox_f, grad_g, np.zeros((n, 1)), L,
        maxiter=maxiter, method=method,
        full_output=1, retall=0, callback=callback)
    t2 = time.time()
    print "[" + method + "]: Performed 1000 iterations in " \
          + str(t2 - t1) + "seconds."
    res[:, i] = fx
    i += 1

e = np.min(res.flatten())

pl.loglog(res[:(maxiter // 10), :] - e)
pl.legend(methods)
pl.grid(True, which="both", ls="-")
pl.tight_layout()
pl.show()
Esempio n. 4
0
F = lambda x: la*np.linalg.norm(x,1)
G = lambda x: 1/2*np.linalg.norm(y - np.dot(A,x)) ** 2
ProxF = lambda x,tau: soft_thresholding(x, la*tau)
GradG = lambda x: np.dot(A.T,np.dot(A,x) - y)

L = np.linalg.norm(A, 2) ** 2 #Lipschitz constant

callback = lambda x: F(x) + G(x)
maxiter = 1000

res = np.zeros((maxiter,len(methods)))
i = 0
for method in methods:
    t1 = time.time()
    x, fx = forward_backward(ProxF, GradG, np.zeros((n,1)), L,
        maxiter=maxiter, method=method,
        full_output=1, retall=0, callback=callback)
    t2 = time.time()
    print "[" + method + "]: Performed 1000 iterations in " \
          + str(t2-t1) +"seconds."
    res[:,i] = fx
    i += 1

e = np.min(res.flatten())

plt.loglog(res[:(maxiter // 10),:] - e)
plt.legend(methods)
plt.grid(True,which="both",ls="-")
plt.tight_layout()
plt.show()