Esempio n. 1
0
    def plot(self,
             type: str = 'Gradient',
             time_range=(0, np.inf),
             time_disp: str = 's',
             save: bool = False):
        """
        Plot `Sequence`.

        Parameters
        ----------
        type : str
            Gradients display type, must be one of either 'Gradient' or 'Kspace'.
        time_range : List
            Time range (x-axis limits) for plotting the sequence. Default is 0 to infinity (entire sequence).
        time_disp : str
            Time display type, must be one of `s`, `ms` or `us`.
        save_as : bool
            Boolean flag indicating if plots should be saved. The two figures will be saved as JPG with numerical
            suffixes to the filename 'seq_plot'.
        """

        valid_plot_types = ['Gradient', 'Kspace']
        valid_time_units = ['s', 'ms', 'us']
        if type not in valid_plot_types:
            raise Exception()
        if time_disp not in valid_time_units:
            raise Exception()

        fig1, fig2 = plt.figure(1), plt.figure(2)
        sp11 = fig1.add_subplot(311)
        sp12, sp13 = fig1.add_subplot(312, sharex=sp11), fig1.add_subplot(
            313, sharex=sp11)
        fig2_sp_list = [
            fig2.add_subplot(311, sharex=sp11),
            fig2.add_subplot(312, sharex=sp11),
            fig2.add_subplot(313, sharex=sp11)
        ]

        t_factor_list = [1, 1e3, 1e6]
        t_factor = t_factor_list[valid_time_units.index(time_disp)]
        t0 = 0
        for iB in range(1, len(self.block_events) + 1):
            block = self.get_block(iB)
            is_valid = time_range[0] <= t0 <= time_range[1]
            if is_valid:
                if hasattr(block, 'adc'):
                    adc = block.adc
                    t = adc.delay + [(x * adc.dwell)
                                     for x in range(0, int(adc.num_samples))]
                    sp11.plot((t0 + t), np.zeros(len(t)), 'rx')
                if hasattr(block, 'rf'):
                    rf = block.rf
                    tc, ic = calc_rf_center(rf)
                    t = rf.t + rf.delay
                    tc = tc + rf.delay
                    sp12.plot(t_factor * (t0 + t), abs(rf.signal))
                    sp13.plot(
                        t_factor * (t0 + t),
                        np.angle(
                            rf.signal * np.exp(1j * rf.phase_offset) *
                            np.exp(1j * 2 * math.pi * rf.t * rf.freq_offset)),
                        t_factor * (t0 + tc),
                        np.angle(rf.signal[ic] * np.exp(1j * rf.phase_offset) *
                                 np.exp(1j * 2 * math.pi * rf.t[ic] *
                                        rf.freq_offset)), 'xb')
                grad_channels = ['gx', 'gy', 'gz']
                for x in range(0, len(grad_channels)):
                    if hasattr(block, grad_channels[x]):
                        grad = getattr(block, grad_channels[x])
                        if grad.type == 'grad':
                            # In place unpacking of grad.t with the starred expression
                            t = grad.delay + [
                                0, *(grad.t + (grad.t[1] - grad.t[0]) / 2),
                                grad.t[-1] + grad.t[1] - grad.t[0]
                            ]
                            waveform = np.array([grad.first, grad.last])
                            waveform = 1e-3 * np.insert(
                                waveform, 1, grad.waveform)
                        else:
                            t = np.cumsum([
                                0, grad.delay, grad.rise_time, grad.flat_time,
                                grad.fall_time
                            ])
                            waveform = 1e-3 * grad.amplitude * np.array(
                                [0, 0, 1, 1, 0])
                        fig2_sp_list[x].plot(t_factor * (t0 + t), waveform)
            t0 += calc_duration(block)

        grad_plot_labels = ['x', 'y', 'z']
        sp11.set_ylabel('ADC')
        sp12.set_ylabel('RF mag (Hz)')
        sp13.set_ylabel('RF phase (rad)')
        [
            fig2_sp_list[x].set_ylabel(f'G{grad_plot_labels[x]} (kHz/m)')
            for x in range(3)
        ]
        # Setting display limits
        disp_range = t_factor * np.array(
            [time_range[0], min(t0, time_range[1])])
        sp11.set_xlim(disp_range)
        sp12.set_xlim(disp_range)
        sp13.set_xlim(disp_range)
        [x.set_xlim(disp_range) for x in fig2_sp_list]

        fig1.tight_layout()
        fig2.tight_layout()
        if save:
            fig1.savefig('seq_plot1.jpg')
            fig2.savefig('seq_plot2.jpg')
        plt.show()
Esempio n. 2
0
TR_fill = (TR - n_slices * TE_train) / n_slices

TR_fill = system.grad_raster_time * round(TR_fill / system.grad_raster_time)
if TR_fill < 0:
    TR_fill = 1e-3
    warnings.warn(f'TR too short, adapted to include all slices to: {1000 * n_slices * (TE_train + TR_fill)} ms')
else:
    print(f'TR fill: {1000 * TR_fill} ms')
delay_TR = make_delay(TR_fill)
delay_end = make_delay(5)

for k_ex in range(n_ex):
    for s in range(n_slices):
        rfex.freq_offset = GS_ex.amplitude * slice_thickness * (s - (n_slices - 1) / 2)
        rfref.freq_offset = GS_ref.amplitude * slice_thickness * (s - (n_slices - 1) / 2)
        rfex.phase_offset = rfex_phase - 2 * math.pi * rfex.freq_offset * calc_rf_center(rfex)[0]
        rfref.phase_offset = rfref_phase - 2 * math.pi * rfref.freq_offset * calc_rf_center(rfref)[0]

        seq.add_block(GS1)
        seq.add_block(GS2, rfex)
        seq.add_block(GS3, GR3)

        for k_ech in range(n_echo):
            if k_ex >= 0:
                phase_area = phase_areas[k_ech]
            else:
                phase_area = 0

            GP_pre = make_trapezoid(channel='y', system=system, area=phase_area, duration=t_sp, rise_time=dG)
            GP_rew = make_trapezoid(channel='y', system=system, area=-phase_area, duration=t_sp, rise_time=dG)
Esempio n. 3
0
if TR_fill < 0:
    TR_fill = 1e-3
    warnings.warn(
        f'TR too short, adapted to include all slices to: {1000 * n_slices * (TE_train + TR_fill)} ms'
    )
else:
    print(f'TR fill: {1000 * TR_fill} ms')
delay_TR = make_delay(TR_fill)

for k_ex in range(n_ex + 1):
    for s in range(n_slices):
        rf_ex.freq_offset = gs_ex.amplitude * slice_thickness * (
            s - (n_slices - 1) / 2)
        rf_ref.freq_offset = gs_ref.amplitude * slice_thickness * (
            s - (n_slices - 1) / 2)
        rf_ex.phase_offset = rf_ex_phase - 2 * np.pi * rf_ex.freq_offset * calc_rf_center(
            rf_ex)[0]
        rf_ref.phase_offset = rf_ref_phase - 2 * np.pi * rf_ref.freq_offset * calc_rf_center(
            rf_ref)[0]

        seq.add_block(gs1)
        seq.add_block(gs2, rf_ex)
        seq.add_block(gs3, gr3)

        for k_echo in range(n_echo):
            if k_ex > 0:
                phase_area = phase_areas[k_echo, k_ex - 1]
            else:
                phase_area = 0.0  # 0.0 and not 0 because -phase_area should successfully result in negative zero

            gp_pre = make_trapezoid(channel='y',
                                    system=system,
Esempio n. 4
0
    def calculate_kspace(self, trajectory_delay: int = 0):
        """
        Calculates the k-space trajectory of the entire pulse sequence.

        Parameters
        ----------
        trajectory_delay : int
            Compensation factor in millis to align ADC and gradients in the reconstruction.

        Returns
        -------
        k_traj_adc : numpy.ndarray
            K-space trajectory sampled at `t_adc` timepoints.
        k_traj : numpy.ndarray
            K-space trajectory of the entire pulse sequence.
        t_excitation : numpy.ndarray
            Excitation timepoints.
        t_refocusing : numpy.ndarray
            Refocusing timepoints.
        t_adc : numpy.ndarray
            Sampling timepoints.
        """
        c_excitation = 0
        c_refocusing = 0
        c_adc_samples = 0

        for i in range(len(self.block_events)):
            block = self.get_block(i + 1)
            if hasattr(block, 'rf'):
                if not hasattr(block.rf,
                               'use') or block.rf.use != 'refocusing':
                    c_excitation += 1
                else:
                    c_refocusing += 1

            if hasattr(block, 'adc'):
                c_adc_samples += int(block.adc.num_samples)

        t_excitation = np.zeros(c_excitation)
        t_refocusing = np.zeros(c_refocusing)
        k_time = np.zeros(c_adc_samples)
        current_dur = 0
        c_excitation = 0
        c_refocusing = 0
        k_counter = 0
        traj_recon_delay = trajectory_delay

        for i in range(len(self.block_events)):
            block = self.get_block(i + 1)
            if hasattr(block, 'rf'):
                rf = block.rf
                rf_center, _ = calc_rf_center(rf)
                t = rf.delay + rf_center
                if not hasattr(block.rf,
                               'use') or block.rf.use != 'refocusing':
                    t_excitation[c_excitation] = current_dur + t
                    c_excitation += 1
                else:
                    t_refocusing[c_refocusing] = current_dur + t
                    c_refocusing += 1
            if hasattr(block, 'adc'):
                k_time[k_counter:k_counter + block.adc.num_samples] = np.arange(
                    block.adc.num_samples
                ) * block.adc.dwell + block.adc.delay + current_dur + traj_recon_delay
                k_counter += block.adc.num_samples
            current_dur += calc_duration(block)

        gw = self.gradient_waveforms()
        i_excitation = np.round(t_excitation / self.grad_raster_time)
        i_refocusing = np.round(t_refocusing / self.grad_raster_time)
        k_traj = np.zeros(gw.shape)
        k = [0, 0, 0]
        for i in range(gw.shape[1]):
            k += gw[:, i] * self.grad_raster_time
            k_traj[:, i] = k
            if len(np.where(i_excitation == i + 1)[0]) >= 1:
                k = 0
                k_traj[:, i] = np.nan
            if len(np.where(i_refocusing == i + 1)[0]) >= 1:
                k = -k

        k_traj_adc = []
        for i in range(k_traj.shape[0]):
            k_traj_adc.append(
                np.interp(
                    k_time,
                    np.arange(1, k_traj.shape[1] + 1) * self.grad_raster_time,
                    k_traj[i]))
        k_traj_adc = np.asarray(k_traj_adc)
        t_adc = k_time

        return k_traj_adc, k_traj, t_excitation, t_refocusing, t_adc
                        system=system,
                        area=-(Ny / 2 - 0.5 - (Ny - Nyeff)) * delta_k,
                        duration=pre_time)

# Phase blip in shortest possible time
gy = make_trapezoid(channel='y', system=system, area=delta_k)
dur = math.ceil(calc_duration(gy) / seq.grad_raster_time) / i_raster_time

# Integer times needed for TE optimization
# The time(gy) refers to the number of blips, thus we substract 0.5 since the number of lines is always even.
# The time(gx) refers to the time needed to read each line of the k-space. Thus, if Ny is even, it would take half of the lines plus another half.
n_duration_center = math.ceil(
    (calc_duration(gx) * (Ny / 2 + 0.5 - (Ny - Nyeff)) + dur *
     (Ny / 2 - 0.5 -
      (Ny - Nyeff)) + calc_duration(gx_pre, gy_pre)) / seq.grad_raster_time)
rf_center_with_delay = rf.delay + calc_rf_center(rf)[0]

n_rf90r = math.ceil((calc_duration(gz) - rf_center_with_delay + pre_time) /
                    seq.grad_raster_time)
n_rf180r = math.ceil((calc_duration(rf180) + 2 * calc_duration(gz_spoil)) / 2 /
                     seq.grad_raster_time)
n_rf180l = math.floor((calc_duration(rf180) + 2 * calc_duration(gz_spoil)) /
                      2 / seq.grad_raster_time)

# Group variables
seq_sys_Dict = {"seq": seq, "system": system, "i_raster_time": i_raster_time}

grads_times_Dict = {
    "n_rf90r": n_rf90r,
    "n_rf180r": n_rf180r,
    "n_rf180l": n_rf180l,
Esempio n. 6
0
    def calculate_kspace(self, trajectory_delay=0):
        c_excitation = 0
        c_refocusing = 0
        c_adc_samples = 0

        for i in range(len(self.block_events)):
            block = self.get_block(i + 1)
            if hasattr(block, 'rf'):
                if not hasattr(block.rf,
                               'use') or block.rf.use != 'refocusing':
                    c_excitation += 1
                else:
                    c_refocusing += 1

            if hasattr(block, 'adc'):
                c_adc_samples += int(block.adc.num_samples)

        t_excitation = np.zeros(c_excitation)
        t_refocusing = np.zeros(c_refocusing)
        k_time = np.zeros(c_adc_samples)
        current_dur = 0
        c_excitation = 0
        c_refocusing = 0
        k_counter = 0
        traj_recon_delay = trajectory_delay

        for i in range(len(self.block_events)):
            block = self.get_block(i + 1)
            if hasattr(block, 'rf'):
                rf = block.rf
                rf_center, _ = calc_rf_center(rf)
                t = rf.delay + rf_center
                if not hasattr(block.rf,
                               'use') or block.rf.use != 'refocusing':
                    t_excitation[c_excitation] = current_dur + t
                    c_excitation += 1
                else:
                    t_refocusing[c_refocusing] = current_dur + t
                    c_refocusing += 1
            if hasattr(block, 'adc'):
                k_time[k_counter:k_counter + block.adc.num_samples] = np.arange(
                    block.adc.num_samples
                ) * block.adc.dwell + block.adc.delay + current_dur + traj_recon_delay
                k_counter += block.adc.num_samples
            current_dur += calc_duration(block)

        gw = self.gradient_waveforms()
        i_excitation = np.round(t_excitation / self.grad_raster_time)
        i_refocusing = np.round(t_refocusing / self.grad_raster_time)
        k_traj = np.zeros(gw.shape)
        k = [0, 0, 0]
        for i in range(gw.shape[1]):
            k += gw[:, i] * self.grad_raster_time
            k_traj[:, i] = k
            if len(np.where(i_excitation == i + 1)[0]) >= 1:
                k = 0
                k_traj[:, i] = np.nan
            if len(np.where(i_refocusing == i + 1)[0]) >= 1:
                k = -k

        k_traj_adc = []
        for i in range(k_traj.shape[0]):
            k_traj_adc.append(
                np.interp(
                    k_time,
                    np.arange(1, k_traj.shape[1] + 1) * self.grad_raster_time,
                    k_traj[i]))
        k_traj_adc = np.asarray(k_traj_adc)
        t_adc = k_time

        return k_traj_adc, k_traj, t_excitation, t_refocusing, t_adc
Esempio n. 7
0
def write_tse(n=256,
              fov=250e-3,
              thk=5e-3,
              fa_exc=90,
              fa_ref=180,
              te=50e-3,
              tr=2000e-3,
              slice_locations=[0],
              turbo_factor=4,
              enc='xyz'):
    """
    2D TSE sequence with interleaved slices and user-defined turbo factor

    Inputs
    ------
    n : integer
        Matrix size (isotropic)
    fov : float
        Field-of-View in [meters]
    thk : float
        Slice thickness in [meters]
    fa_exc : float
        Initial excitation flip angle in [degrees]
    fa_ref : float
        All following flip angles for spin echo refocusing in [degrees]
    te : float
        Echo Time in [seconds]
    tr : float
        Repetition Time in [seconds]
    slice_locations : array_like
        Array of slice locations from isocenter in [meters]
    turbo_factor : integer
        Number of echoes per TR
    enc : str
        Spatial encoding directions; 1st - readout; 2nd - phase encoding; 3rd - slice select
        Use str with any permutation of x, y, and z to obtain orthogonal slices
        e.g. The default 'xyz' means axial(z) slice with readout in x and phase encoding in y

    Returns
    -------
    seq : pypulseq.Sequence.sequence Sequence object
        Output sequence object. Can be saved with seq.write('file_name.seq')
    pe_order : numpy.ndarray
        (turbo_factor) x (number_of_excitations) matrix of phase encoding order
        This is required for phase sorting before ifft2 reconstruction.

    """
    # Set system limits
    ramp_time = 250e-6  # Ramp up/down time for all gradients where this is specified
    system = Opts(
        max_grad=32,
        grad_unit='mT/m',
        max_slew=130,
        slew_unit='T/m/s',
        rf_ringdown_time=100e-6,  # changed from 30e-6
        rf_dead_time=100e-6,
        adc_dead_time=20e-6)
    # Initialize sequence
    seq = Sequence(system)

    # Spatial encoding directions
    ch_ro = enc[0]
    ch_pe = enc[1]
    ch_ss = enc[2]

    # Derived parameters
    Nf, Np = (n, n)
    delta_k = 1 / fov
    k_width = Nf * delta_k

    # Number of echoes per excitation (i.e. turbo factor)
    n_echo = turbo_factor

    # Readout duration
    readout_time = 6.4e-3 + 2 * system.adc_dead_time

    # Excitation pulse duration
    t_ex = 2.5e-3
    t_exwd = t_ex + system.rf_ringdown_time + system.rf_dead_time

    # Refocusing pulse duration
    t_ref = 2e-3
    t_refwd = t_ref + system.rf_ringdown_time + system.rf_dead_time

    # Time gaps for spoilers
    t_sp = 0.5 * (te - readout_time - t_refwd
                  )  # time gap between pi-pulse and readout
    t_spex = 0.5 * (te - t_exwd - t_refwd
                    )  # time gap between pi/2-pulse and pi-pulse

    # Spoiling factors
    fsp_r = 1  # in readout direction per refocusing
    fsp_s = 0.5  # in slice direction per refocusing

    # 3. Calculate sequence components

    ## Slice-selective RF pulses & gradient
    #* RF pulses with zero frequency shift are created. The frequency is then changed before adding the pulses to sequence blocks for each slice.

    # 90 deg pulse (+y')
    rf_ex_phase = np.pi / 2
    flip_ex = fa_exc * np.pi / 180
    rf_ex, g_ss, _ = make_sinc_pulse(flip_angle=flip_ex,
                                     system=system,
                                     duration=t_ex,
                                     slice_thickness=thk,
                                     apodization=0.5,
                                     time_bw_product=4,
                                     phase_offset=rf_ex_phase,
                                     return_gz=True)
    gs_ex = make_trapezoid(channel=ch_ss,
                           system=system,
                           amplitude=g_ss.amplitude,
                           flat_time=t_exwd,
                           rise_time=ramp_time)

    # 180 deg pulse (+x')
    rf_ref_phase = 0
    flip_ref = fa_ref * np.pi / 180
    rf_ref, gz, _ = make_sinc_pulse(flip_angle=flip_ref,
                                    system=system,
                                    duration=t_ref,
                                    slice_thickness=thk,
                                    apodization=0.5,
                                    time_bw_product=4,
                                    phase_offset=rf_ref_phase,
                                    use='refocusing',
                                    return_gz=True)
    gs_ref = make_trapezoid(channel=ch_ss,
                            system=system,
                            amplitude=gs_ex.amplitude,
                            flat_time=t_refwd,
                            rise_time=ramp_time)

    rf_ex, g_ss, _ = make_sinc_pulse(flip_angle=flip_ex,
                                     system=system,
                                     duration=t_ex,
                                     slice_thickness=thk,
                                     apodization=0.5,
                                     time_bw_product=4,
                                     phase_offset=rf_ex_phase,
                                     return_gz=True)

    ## Make gradients and ADC
    # gs_spex : slice direction spoiler between initial excitation and 1st 180 pulse
    # gs_spr : slice direction spoiler between 180 pulses
    # gr_spr : readout direction spoiler; area is (fsp_r) x (full readout area)

    # SS spoiling
    ags_ex = gs_ex.area / 2
    gs_spr = make_trapezoid(channel=ch_ss,
                            system=system,
                            area=ags_ex * (1 + fsp_s),
                            duration=t_sp,
                            rise_time=ramp_time)
    gs_spex = make_trapezoid(channel=ch_ss,
                             system=system,
                             area=ags_ex * fsp_s,
                             duration=t_spex,
                             rise_time=ramp_time)

    # Readout gradient and ADC
    gr_acq = make_trapezoid(channel=ch_ro,
                            system=system,
                            flat_area=k_width,
                            flat_time=readout_time,
                            rise_time=ramp_time)

    # No need for risetime delay since it is set at beginning of flattime; delay is ADC deadtime
    adc = make_adc(num_samples=Nf,
                   duration=gr_acq.flat_time - 40e-6,
                   delay=20e-6)

    # RO spoiling
    gr_spr = make_trapezoid(channel=ch_ro,
                            system=system,
                            area=gr_acq.area * fsp_r,
                            duration=t_sp,
                            rise_time=ramp_time)

    # Following is not used anywhere
    # gr_spex = make_trapezoid(channel=ch_ro, system=system, area=gr_acq.area * (1 + fsp_r), duration=t_spex, rise_time=ramp_time)

    # Prephasing gradient in RO direction
    agr_preph = gr_acq.area / 2 + gr_spr.area
    gr_preph = make_trapezoid(channel=ch_ro,
                              system=system,
                              area=agr_preph,
                              duration=t_spex,
                              rise_time=ramp_time)

    # Phase encoding areas
    # Need to export the pe_order for reconsturuction

    # Number of readouts/echoes to be produced per TR
    n_ex = math.floor(Np / n_echo)
    pe_steps = np.arange(1, n_echo * n_ex + 1) - 0.5 * n_echo * n_ex - 1
    if divmod(n_echo, 2)[1] == 0:  # If there is an even number of echoes
        pe_steps = np.roll(pe_steps, -round(n_ex / 2))

    pe_order = pe_steps.reshape((n_ex, n_echo), order='F').T

    savemat('pe_info.mat', {'order': pe_order, 'dims': ['n_echo', 'n_ex']})
    phase_areas = pe_order * delta_k

    # Split gradients and recombine into blocks

    # gs1 : ramp up of gs_ex
    gs1_times = [0, gs_ex.rise_time]
    gs1_amp = [0, gs_ex.amplitude]
    gs1 = make_extended_trapezoid(channel=ch_ss,
                                  times=gs1_times,
                                  amplitudes=gs1_amp)

    # gs2 : flat part of gs_ex
    gs2_times = [0, gs_ex.flat_time]
    gs2_amp = [gs_ex.amplitude, gs_ex.amplitude]
    gs2 = make_extended_trapezoid(channel=ch_ss,
                                  times=gs2_times,
                                  amplitudes=gs2_amp)

    # gs3 : Bridged slice pre-spoiler
    gs3_times = [
        0, gs_spex.rise_time, gs_spex.rise_time + gs_spex.flat_time,
        gs_spex.rise_time + gs_spex.flat_time + gs_spex.fall_time
    ]
    gs3_amp = [
        gs_ex.amplitude, gs_spex.amplitude, gs_spex.amplitude, gs_ref.amplitude
    ]
    gs3 = make_extended_trapezoid(channel=ch_ss,
                                  times=gs3_times,
                                  amplitudes=gs3_amp)

    # gs4 : Flat slice selector for pi-pulse
    gs4_times = [0, gs_ref.flat_time]
    gs4_amp = [gs_ref.amplitude, gs_ref.amplitude]
    gs4 = make_extended_trapezoid(channel=ch_ss,
                                  times=gs4_times,
                                  amplitudes=gs4_amp)

    # gs5 : Bridged slice post-spoiler
    gs5_times = [
        0, gs_spr.rise_time, gs_spr.rise_time + gs_spr.flat_time,
        gs_spr.rise_time + gs_spr.flat_time + gs_spr.fall_time
    ]
    gs5_amp = [gs_ref.amplitude, gs_spr.amplitude, gs_spr.amplitude, 0]
    gs5 = make_extended_trapezoid(channel=ch_ss,
                                  times=gs5_times,
                                  amplitudes=gs5_amp)

    # gs7 : The gs3 for next pi-pulse
    gs7_times = [
        0, gs_spr.rise_time, gs_spr.rise_time + gs_spr.flat_time,
        gs_spr.rise_time + gs_spr.flat_time + gs_spr.fall_time
    ]
    gs7_amp = [0, gs_spr.amplitude, gs_spr.amplitude, gs_ref.amplitude]
    gs7 = make_extended_trapezoid(channel=ch_ss,
                                  times=gs7_times,
                                  amplitudes=gs7_amp)

    # gr3 : pre-readout gradient
    gr3 = gr_preph

    # gr5 : Readout post-spoiler
    gr5_times = [
        0, gr_spr.rise_time, gr_spr.rise_time + gr_spr.flat_time,
        gr_spr.rise_time + gr_spr.flat_time + gr_spr.fall_time
    ]
    gr5_amp = [0, gr_spr.amplitude, gr_spr.amplitude, gr_acq.amplitude]
    gr5 = make_extended_trapezoid(channel=ch_ro,
                                  times=gr5_times,
                                  amplitudes=gr5_amp)

    # gr6 : Flat readout gradient
    gr6_times = [0, readout_time]
    gr6_amp = [gr_acq.amplitude, gr_acq.amplitude]
    gr6 = make_extended_trapezoid(channel=ch_ro,
                                  times=gr6_times,
                                  amplitudes=gr6_amp)

    # gr7 : the gr3 for next repeat
    gr7_times = [
        0, gr_spr.rise_time, gr_spr.rise_time + gr_spr.flat_time,
        gr_spr.rise_time + gr_spr.flat_time + gr_spr.fall_time
    ]
    gr7_amp = [gr_acq.amplitude, gr_spr.amplitude, gr_spr.amplitude, 0]
    gr7 = make_extended_trapezoid(channel=ch_ro,
                                  times=gr7_times,
                                  amplitudes=gr7_amp)

    # Timing (delay) calculations

    # delay_TR : delay at the end of each TSE pulse train (i.e. each TR)
    t_ex = gs1.t[-1] + gs2.t[-1] + gs3.t[-1]
    t_ref = gs4.t[-1] + gs5.t[-1] + gs7.t[-1] + readout_time
    t_end = gs4.t[-1] + gs5.t[-1]
    TE_train = t_ex + n_echo * t_ref + t_end
    TR_fill = (tr - n_slices * TE_train) / n_slices
    TR_fill = system.grad_raster_time * round(
        TR_fill / system.grad_raster_time)
    if TR_fill < 0:
        TR_fill = 1e-3
        print(
            f'TR too short, adapted to include all slices to: {1000 * n_slices * (TE_train + TR_fill)} ms'
        )
    else:
        print(f'TR fill: {1000 * TR_fill} ms')
    delay_TR = make_delay(TR_fill)

    # Add building blocks to sequence

    for k_ex in range(n_ex + 1):  # For each TR
        for s in range(n_slices):  # For each slice (multislice)

            if slice_locations is None:
                rf_ex.freq_offset = gs_ex.amplitude * thk * (
                    s - (n_slices - 1) / 2)
                rf_ref.freq_offset = gs_ref.amplitude * thk * (
                    s - (n_slices - 1) / 2)
                rf_ex.phase_offset = rf_ex_phase - 2 * np.pi * rf_ex.freq_offset * calc_rf_center(
                    rf_ex)[0]
                rf_ref.phase_offset = rf_ref_phase - 2 * np.pi * rf_ref.freq_offset * calc_rf_center(
                    rf_ref)[0]
            else:
                rf_ex.freq_offset = gs_ex.amplitude * slice_locations[s]
                rf_ref.freq_offset = gs_ref.amplitude * slice_locations[s]
                rf_ex.phase_offset = rf_ex_phase - 2 * np.pi * rf_ex.freq_offset * calc_rf_center(
                    rf_ex)[0]
                rf_ref.phase_offset = rf_ref_phase - 2 * np.pi * rf_ref.freq_offset * calc_rf_center(
                    rf_ref)[0]

            seq.add_block(gs1)
            seq.add_block(gs2, rf_ex)  # make sure gs2 has channel ch_ss
            seq.add_block(gs3, gr3)

            for k_echo in range(n_echo):  # For each echo
                if k_ex > 0:
                    phase_area = phase_areas[k_echo, k_ex - 1]
                else:
                    # First TR is skipped so zero phase encoding is needed
                    phase_area = 0.0  # 0.0 and not 0 because -phase_area should successfully result in negative zero

                gp_pre = make_trapezoid(channel=ch_pe,
                                        system=system,
                                        area=phase_area,
                                        duration=t_sp,
                                        rise_time=ramp_time)
                # print('gp_pre info: ', gp_pre)

                gp_rew = make_trapezoid(channel=ch_pe,
                                        system=system,
                                        area=-phase_area,
                                        duration=t_sp,
                                        rise_time=ramp_time)

                seq.add_block(gs4, rf_ref)
                seq.add_block(gs5, gr5, gp_pre)

                # Skipping first TR
                if k_ex > 0:
                    seq.add_block(gr6, adc)
                else:
                    seq.add_block(gr6)

                seq.add_block(gs7, gr7, gp_rew)

            seq.add_block(gs4)
            seq.add_block(gs5)
            seq.add_block(delay_TR)

    # Check timing to make sure sequence runs on scanner
    seq.check_timing()

    return seq, pe_order
Esempio n. 8
0
def write_irse_interleaved_split_gradient(n=256,
                                          fov=250e-3,
                                          thk=5e-3,
                                          fa=90,
                                          te=12e-3,
                                          tr=2000e-3,
                                          ti=150e-3,
                                          slice_locations=[0],
                                          enc='xyz'):
    """
    2D IRSE sequence with overlapping gradient ramps and interleaved slices

    Inputs
    ------
    n : integer
        Matrix size (isotropic)
    fov : float
        Field-of-View in [meters]
    thk : float
        Slice thickness in [meters]
    fa : float
        Flip angle in [degrees]
    te : float
        Echo Time in [seconds]
    tr : float
        Repetition Time in [seconds]
    ti : float
        Inversion Time in [seconds]
    slice_locations : array_like
        Array of slice locations from isocenter in [meters]
    enc : str
        Spatial encoding directions; 1st - readout; 2nd - phase encoding; 3rd - slice select
        Use str with any permutation of x, y, and z to obtain orthogonal slices
        e.g. The default 'xyz' means axial(z) slice with readout in x and phase encoding in y


    Returns
    -------
    seq : pypulseq.Sequence.sequence Sequence object
        Output sequence object. Can be saved with seq.write('file_name.seq')
    sl_order : numpy.ndarray
        Randomly generated slice order. Useful for reconstruction.

    """
    # =========
    # SYSTEM LIMITS
    # =========
    # Set the hardware limits and initialize sequence object
    dG = 250e-6  # Fixed ramp time for all gradients
    system = Opts(max_grad=32,
                  grad_unit='mT/m',
                  max_slew=130,
                  slew_unit='T/m/s',
                  rf_ringdown_time=100e-6,
                  rf_dead_time=100e-6,
                  adc_dead_time=10e-6)
    seq = Sequence(system)

    # =========
    # TIME CALCULATIONS
    # =========
    readout_time = 6.4e-3 + 2 * system.adc_dead_time
    t_ex = 2.5e-3
    t_exwd = t_ex + system.rf_ringdown_time + system.rf_dead_time
    t_ref = 2e-3
    t_refwd = t_ref + system.rf_ringdown_time + system.rf_dead_time
    t_sp = 0.5 * (te - readout_time - t_refwd)
    t_spex = 0.5 * (te - t_exwd - t_refwd)
    fsp_r = 1
    fsp_s = 0.5

    # =========
    # ENCODING DIRECTIONS
    # ==========
    ch_ro = enc[0]
    ch_pe = enc[1]
    ch_ss = enc[2]

    # =========
    # RF AND GRADIENT SHAPES - BASED ON RESOLUTION REQUIREMENTS : kmax and Npe
    # =========

    # RF Phases
    rf_ex_phase = np.pi / 2
    rf_ref_phase = 0

    # Excitation phase (90 deg)
    flip_ex = 90 * np.pi / 180
    rf_ex, gz, _ = make_sinc_pulse(flip_angle=flip_ex,
                                   system=system,
                                   duration=t_ex,
                                   slice_thickness=thk,
                                   apodization=0.5,
                                   time_bw_product=4,
                                   phase_offset=rf_ex_phase,
                                   return_gz=True)
    gs_ex = make_trapezoid(channel=ch_ss,
                           system=system,
                           amplitude=gz.amplitude,
                           flat_time=t_exwd,
                           rise_time=dG)

    # Refocusing (same gradient & RF is used for initial inversion)
    flip_ref = fa * np.pi / 180
    rf_ref, gz, _ = make_sinc_pulse(flip_angle=flip_ref,
                                    system=system,
                                    duration=t_ref,
                                    slice_thickness=thk,
                                    apodization=0.5,
                                    time_bw_product=4,
                                    phase_offset=rf_ref_phase,
                                    use='refocusing',
                                    return_gz=True)
    gs_ref = make_trapezoid(channel=ch_ss,
                            system=system,
                            amplitude=gs_ex.amplitude,
                            flat_time=t_refwd,
                            rise_time=dG)

    ags_ex = gs_ex.area / 2
    gs_spr = make_trapezoid(channel=ch_ss,
                            system=system,
                            area=ags_ex * (1 + fsp_s),
                            duration=t_sp,
                            rise_time=dG)
    gs_spex = make_trapezoid(channel=ch_ss,
                             system=system,
                             area=ags_ex * fsp_s,
                             duration=t_spex,
                             rise_time=dG)

    delta_k = 1 / fov
    k_width = n * delta_k

    gr_acq = make_trapezoid(channel=ch_ro,
                            system=system,
                            flat_area=k_width,
                            flat_time=readout_time,
                            rise_time=dG)
    adc = make_adc(num_samples=n,
                   duration=gr_acq.flat_time - 40e-6,
                   delay=20e-6)
    gr_spr = make_trapezoid(channel=ch_ro,
                            system=system,
                            area=gr_acq.area * fsp_r,
                            duration=t_sp,
                            rise_time=dG)
    gr_spex = make_trapezoid(channel=ch_ro,
                             system=system,
                             area=gr_acq.area * (1 + fsp_r),
                             duration=t_spex,
                             rise_time=dG)

    agr_spr = gr_spr.area
    agr_preph = gr_acq.area / 2 + agr_spr
    gr_preph = make_trapezoid(channel=ch_ro,
                              system=system,
                              area=agr_preph,
                              duration=t_spex,
                              rise_time=dG)

    phase_areas = (np.arange(n) - n / 2) * delta_k

    # Split gradients and recombine into blocks
    gs1_times = [0, gs_ex.rise_time]
    gs1_amp = [0, gs_ex.amplitude]
    gs1 = make_extended_trapezoid(channel=ch_ss,
                                  times=gs1_times,
                                  amplitudes=gs1_amp)

    gs2_times = [0, gs_ex.flat_time]
    gs2_amp = [gs_ex.amplitude, gs_ex.amplitude]
    gs2 = make_extended_trapezoid(channel=ch_ss,
                                  times=gs2_times,
                                  amplitudes=gs2_amp)

    gs3_times = [
        0, gs_spex.rise_time, gs_spex.rise_time + gs_spex.flat_time,
        gs_spex.rise_time + gs_spex.flat_time + gs_spex.fall_time
    ]
    gs3_amp = [
        gs_ex.amplitude, gs_spex.amplitude, gs_spex.amplitude, gs_ref.amplitude
    ]
    gs3 = make_extended_trapezoid(channel=ch_ss,
                                  times=gs3_times,
                                  amplitudes=gs3_amp)

    gs4_times = [0, gs_ref.flat_time]
    gs4_amp = [gs_ref.amplitude, gs_ref.amplitude]
    gs4 = make_extended_trapezoid(channel=ch_ss,
                                  times=gs4_times,
                                  amplitudes=gs4_amp)

    gs5_times = [
        0, gs_spr.rise_time, gs_spr.rise_time + gs_spr.flat_time,
        gs_spr.rise_time + gs_spr.flat_time + gs_spr.fall_time
    ]
    gs5_amp = [gs_ref.amplitude, gs_spr.amplitude, gs_spr.amplitude, 0]
    gs5 = make_extended_trapezoid(channel=ch_ss,
                                  times=gs5_times,
                                  amplitudes=gs5_amp)

    gs7_times = [
        0, gs_spr.rise_time, gs_spr.rise_time + gs_spr.flat_time,
        gs_spr.rise_time + gs_spr.flat_time + gs_spr.fall_time
    ]
    gs7_amp = [0, gs_spr.amplitude, gs_spr.amplitude, gs_ref.amplitude]
    gs7 = make_extended_trapezoid(channel=ch_ss,
                                  times=gs7_times,
                                  amplitudes=gs7_amp)

    gr3 = gr_preph

    gr5_times = [
        0, gr_spr.rise_time, gr_spr.rise_time + gr_spr.flat_time,
        gr_spr.rise_time + gr_spr.flat_time + gr_spr.fall_time
    ]
    gr5_amp = [0, gr_spr.amplitude, gr_spr.amplitude, gr_acq.amplitude]
    gr5 = make_extended_trapezoid(channel=ch_ro,
                                  times=gr5_times,
                                  amplitudes=gr5_amp)

    gr6_times = [0, readout_time]
    gr6_amp = [gr_acq.amplitude, gr_acq.amplitude]
    gr6 = make_extended_trapezoid(channel=ch_ro,
                                  times=gr6_times,
                                  amplitudes=gr6_amp)

    gr7_times = [
        0, gr_spr.rise_time, gr_spr.rise_time + gr_spr.flat_time,
        gr_spr.rise_time + gr_spr.flat_time + gr_spr.fall_time
    ]
    gr7_amp = [gr_acq.amplitude, gr_spr.amplitude, gr_spr.amplitude, 0]
    gr7 = make_extended_trapezoid(channel=ch_ro,
                                  times=gr7_times,
                                  amplitudes=gr7_amp)

    t_ex = gs1.t[-1] + gs2.t[-1] + gs3.t[-1]
    t_ref = gs4.t[-1] + gs5.t[-1] + gs7.t[-1] + readout_time
    t_end = gs4.t[-1] + gs5.t[-1]

    # Calculate maximum number of slices that can fit in one TR
    # Without spoilers on each side
    TE_prime = 0.5 * calc_duration(gs_ref) + ti + te + 0.5 * readout_time + np.max(
        [calc_duration(gs7), calc_duration(gr7)]) + \
               calc_duration(gs4) + calc_duration(gs5)

    ns_per_TR = np.floor(tr / TE_prime)
    print('Number of slices that can be accommodated = ' + str(ns_per_TR))

    # Lengthen TR to accommodate slices if needed, and display message
    n_slices = len(slice_locations)
    if (ns_per_TR < n_slices):
        print(
            f'TR too short, adapted to include all slices to: {n_slices * TE_prime + 50e-6} s'
        )
        TR = round(n_slices * TE_prime + 50e-6, ndigits=5)
        print('New TR = ' + str(TR))
        ns_per_TR = np.floor(TR / TE_prime)
    if (n_slices < ns_per_TR):
        ns_per_TR = n_slices
    # randperm so that adjacent slices do not get excited one after the other
    sl_order = np.random.permutation(n_slices)

    print('Number of slices acquired per TR = ' + str(ns_per_TR))

    # Delays
    TI_fill = ti - (0.5 * calc_duration(gs_ref) + calc_duration(gs1) +
                    0.5 * calc_duration(gs2))
    delay_TI = make_delay(TI_fill)
    TR_fill = tr - ns_per_TR * TE_prime
    delay_TR = make_delay(TR_fill)

    for k_ex in range(n):
        phase_area = phase_areas[k_ex]
        gp_pre = make_trapezoid(channel=ch_pe,
                                system=system,
                                area=phase_area,
                                duration=t_sp,
                                rise_time=dG)
        gp_rew = make_trapezoid(channel=ch_pe,
                                system=system,
                                area=-phase_area,
                                duration=t_sp,
                                rise_time=dG)
        s_in_TR = 0

        for s in range(len(sl_order)):

            # rf_ex.freq_offset = gs_ex.amplitude * slice_thickness * (sl_order[s] - (n_slices - 1) / 2)
            # rf_ref.freq_offset = gs_ref.amplitude * slice_thickness * (sl_order[s] - (n_slices - 1) / 2)

            rf_ex.freq_offset = gs_ex.amplitude * slice_locations[sl_order[s]]
            rf_ref.freq_offset = gs_ref.amplitude * slice_locations[
                sl_order[s]]

            rf_ex.phase_offset = rf_ex_phase - 2 * np.pi * rf_ex.freq_offset * calc_rf_center(
                rf_ex)[0]
            rf_ref.phase_offset = rf_ref_phase - 2 * np.pi * rf_ref.freq_offset * calc_rf_center(
                rf_ref)[0]

            # Inversion using refocusing pulse
            seq.add_block(gs_ref, rf_ref)
            seq.add_block(delay_TI)

            # SE portion
            seq.add_block(gs1)
            seq.add_block(gs2, rf_ex)
            seq.add_block(gs3, gr3)

            seq.add_block(gs4, rf_ref)

            seq.add_block(gs5, gr5, gp_pre)
            seq.add_block(gr6, adc)

            seq.add_block(gs7, gr7, gp_rew)

            seq.add_block(gs4)
            seq.add_block(gs5)
            s_in_TR += 1
            if (s_in_TR == ns_per_TR):
                seq.add_block(delay_TR)
                s_in_TR = 0

    # Check timing to make sure sequence runs on scanner
    seq.check_timing()

    return seq, sl_order
Esempio n. 9
0
    def calculate_kspace(self, trajectory_delay: int = 0) -> Tuple[np.array, np.array, np.array, np.array, np.array]:
        """
        Calculates the k-space trajectory of the entire pulse sequence.

        Parameters
        ----------
        trajectory_delay : int, default=0
            Compensation factor in millis to align ADC and gradients in the reconstruction.

        Returns
        -------
        k_traj_adc : numpy.array
            K-space trajectory sampled at `t_adc` timepoints.
        k_traj : numpy.array
            K-space trajectory of the entire pulse sequence.
        t_excitation : numpy.array
            Excitation timepoints.
        t_refocusing : numpy.array
            Refocusing timepoints.
        t_adc : numpy.array
            Sampling timepoints.
        """
        # Initialise the counters and accumulator objects
        count_excitation = 0
        count_refocusing = 0
        count_adc_samples = 0

        # Loop through the blocks to prepare preallocations
        for block_counter in range(len(self.dict_block_events)):
            block = self.get_block(block_counter + 1)
            if hasattr(block, 'rf'):
                if not hasattr(block.rf, 'use') or block.rf.use != 'refocusing':
                    count_excitation += 1
                else:
                    count_refocusing += 1

            if hasattr(block, 'adc'):
                count_adc_samples += int(block.adc.num_samples)

        t_excitation = np.zeros(count_excitation)
        t_refocusing = np.zeros(count_refocusing)
        k_time = np.zeros(count_adc_samples)
        current_duration = 0
        count_excitation = 0
        count_refocusing = 0
        kc_outer = 0
        traj_recon_delay = trajectory_delay

        # Go through the blocks and collect RF and ADC timing data
        for block_counter in range(len(self.dict_block_events)):
            block = self.get_block(block_counter + 1)

            if hasattr(block, 'rf'):
                rf = block.rf
                rf_center, _ = calc_rf_center(rf)
                t = rf.delay + rf_center
                if not hasattr(block.rf, 'use') or block.rf.use != 'refocusing':
                    t_excitation[count_excitation] = current_duration + t
                    count_excitation += 1
                else:
                    t_refocusing[count_refocusing] = current_duration + t
                    count_refocusing += 1

            if hasattr(block, 'adc'):
                _k_time = np.arange(block.adc.num_samples) + 0.5
                _k_time = _k_time * block.adc.dwell + block.adc.delay + current_duration + traj_recon_delay
                k_time[kc_outer:kc_outer + block.adc.num_samples] = _k_time
                kc_outer += block.adc.num_samples
            current_duration += self.arr_block_durations[block_counter]

        # Now calculate the actual k-space trajectory based on the gradient waveforms
        gw = self.gradient_waveforms()
        i_excitation = np.round(t_excitation / self.grad_raster_time)
        i_refocusing = np.round(t_refocusing / self.grad_raster_time)
        i_periods = np.sort([1, *(i_excitation + 1), *(i_refocusing + 1), gw.shape[1] + 1]).astype(np.int)
        # i_periods -= 1  # Python is 0-indexed
        ii_next_excitation = min(len(i_excitation), 1)
        ii_next_refocusing = min(len(i_refocusing), 1)
        k_traj = np.zeros_like(gw)
        k = np.zeros((3, 1))

        for i in range(len(i_periods) - 1):
            i_period_end = i_periods[i + 1] - 1
            k_period = np.concatenate((k, gw[:, i_periods[i] - 1:i_period_end] * self.grad_raster_time), axis=1)
            k_period = np.cumsum(k_period, axis=1)
            k_traj[:, i_periods[i] - 1:i_period_end] = k_period[:, 1:]
            k = k_period[:, -1]

            if ii_next_excitation > 0 and i_excitation[ii_next_excitation - 1] == i_period_end:
                k[:] = 0
                k_traj[:, i_period_end - 1] = np.nan
                ii_next_excitation = min(len(i_excitation), ii_next_excitation + 1)

            if ii_next_refocusing > 0 and i_refocusing[ii_next_refocusing - 1] == i_period_end:
                k = -k
                ii_next_refocusing = min(len(i_refocusing), ii_next_refocusing + 1)

            k = k.reshape((-1, 1))  # To be compatible with np.concatenate

        k_traj_adc = []
        for _k_traj_row in k_traj:
            result = np.interp(xp=np.array(range(1, k_traj.shape[1] + 1)) * self.grad_raster_time,
                               fp=_k_traj_row,
                               x=k_time)
            k_traj_adc.append(result)
        k_traj_adc = np.stack(k_traj_adc)
        t_adc = k_time

        return k_traj_adc, k_traj, t_excitation, t_refocusing, t_adc
Esempio n. 10
0
    def plot(self, label: str = str(), save: bool = False, time_range=(0, np.inf), time_disp: str = 's',
             plot_type: str = 'Gradient') -> None:
        """
        Plot `Sequence`.

        Parameters
        ----------
        label : str, defualt=str()

        save : bool, default=False
            Boolean flag indicating if plots should be saved. The two figures will be saved as JPG with numerical
            suffixes to the filename 'seq_plot'.
        time_range : iterable, default=(0, np.inf)
            Time range (x-axis limits) for plotting the sequence. Default is 0 to infinity (entire sequence).
        time_disp : str, default='s'
            Time display type, must be one of `s`, `ms` or `us`.
        plot_type : str, default='Gradient'
            Gradients display type, must be one of either 'Gradient' or 'Kspace'.
        """
        mpl.rcParams['lines.linewidth'] = 0.75  # Set default Matplotlib linewidth

        valid_plot_types = ['Gradient', 'Kspace']
        valid_time_units = ['s', 'ms', 'us']
        valid_labels = get_supported_labels()
        if plot_type not in valid_plot_types:
            raise ValueError('Unsupported plot type')
        if not all([isinstance(x, (int, float)) for x in time_range]) or len(time_range) != 2:
            raise ValueError('Invalid time range')
        if time_disp not in valid_time_units:
            raise ValueError('Unsupported time unit')

        fig1, fig2 = plt.figure(1), plt.figure(2)
        sp11 = fig1.add_subplot(311)
        sp12, sp13 = fig1.add_subplot(312, sharex=sp11), fig1.add_subplot(313, sharex=sp11)
        fig2_subplots = [fig2.add_subplot(311, sharex=sp11), fig2.add_subplot(312, sharex=sp11),
                         fig2.add_subplot(313, sharex=sp11)]

        t_factor_list = [1, 1e3, 1e6]
        t_factor = t_factor_list[valid_time_units.index(time_disp)]

        t0 = 0
        label_defined = False
        label_idx_to_plot = []
        label_legend_to_plot = []
        label_store = dict()
        for i in range(len(valid_labels)):
            label_store[valid_labels[i]] = 0
            if label.upper() == valid_labels[i]:
                label_idx_to_plot.append(i)
                label_legend_to_plot.append(valid_labels[i])

        if len(label_idx_to_plot) != 0:
            p = parula.main(len(label_idx_to_plot) + 1)
            label_colors_to_plot = p(np.arange(len(label_idx_to_plot)))

        for block_counter in range(len(self.dict_block_events)):
            block = self.get_block(block_counter + 1)
            is_valid = time_range[0] <= t0 <= time_range[1]
            if is_valid:
                if hasattr(block, 'label'):
                    for i in range(len(block.label)):
                        if block.label[i].type == 'labelinc':
                            label_store[block.label[i].label] += block.label[i].value
                        else:
                            label_store[block.label[i].label] = block.label[i].value
                    label_defined = True

                if hasattr(block, 'adc'):
                    adc = block.adc
                    # From Pulseq: According to the information from Klaus Scheffler and indirectly from Siemens this
                    # is the present convention - the samples are shifted by 0.5 dwell
                    t = adc.delay + (np.arange(int(adc.num_samples)) + 0.5) * adc.dwell
                    sp11.plot(t_factor * (t0 + t), np.zeros(len(t)), 'rx')
                    sp13.plot(t_factor * (t0 + t),
                              np.angle(np.exp(1j * adc.phase_offset) * np.exp(1j * 2 * np.pi * t * adc.freq_offset)),
                              'b.')

                    if label_defined and len(label_idx_to_plot) != 0:
                        cycler = mpl.cycler(color=label_colors_to_plot)
                        sp11.set_prop_cycle(cycler)
                        label_store_arr = list(label_store.values())
                        lbl_vals = np.take(label_store_arr, label_idx_to_plot)
                        t = t0 + adc.delay + (adc.num_samples - 1) / 2 * adc.dwell
                        p = sp11.plot(t_factor * t, lbl_vals, '.')
                        if len(label_legend_to_plot) != 0:
                            sp11.legend(p, label_legend_to_plot, loc='upper left')
                            label_legend_to_plot = []

                if hasattr(block, 'rf'):
                    rf = block.rf
                    tc, ic = calc_rf_center(rf)
                    t = rf.t + rf.delay
                    tc = tc + rf.delay
                    sp12.plot(t_factor * (t0 + t), np.abs(rf.signal))
                    sp13.plot(t_factor * (t0 + t), np.angle(rf.signal * np.exp(1j * rf.phase_offset)
                                                            * np.exp(1j * 2 * math.pi * rf.t * rf.freq_offset)),
                              t_factor * (t0 + tc), np.angle(rf.signal[ic] * np.exp(1j * rf.phase_offset)
                                                             * np.exp(1j * 2 * math.pi * rf.t[ic] * rf.freq_offset)),
                              'xb')

                grad_channels = ['gx', 'gy', 'gz']
                for x in range(len(grad_channels)):
                    if hasattr(block, grad_channels[x]):
                        grad = getattr(block, grad_channels[x])
                        if grad.type == 'grad':
                            # In place unpacking of grad.t with the starred expression
                            t = grad.delay + [0, *(grad.t + (grad.t[1] - grad.t[0]) / 2),
                                              grad.t[-1] + grad.t[1] - grad.t[0]]
                            waveform = 1e-3 * np.array((grad.first, *grad.waveform, grad.last))
                        else:
                            t = np.cumsum([0, grad.delay, grad.rise_time, grad.flat_time, grad.fall_time])
                            waveform = 1e-3 * grad.amplitude * np.array([0, 0, 1, 1, 0])
                        fig2_subplots[x].plot(t_factor * (t0 + t), waveform)
            t0 += self.arr_block_durations[block_counter]

        grad_plot_labels = ['x', 'y', 'z']
        sp11.set_ylabel('ADC')
        sp12.set_ylabel('RF mag (Hz)')
        sp13.set_ylabel('RF/ADC phase (rad)')
        sp13.set_xlabel('t(s)')
        for x in range(3):
            _label = grad_plot_labels[x]
            fig2_subplots[x].set_ylabel(f'G{_label} (kHz/m)')
        fig2_subplots[-1].set_xlabel('t(s)')

        # Setting display limits
        disp_range = t_factor * np.array([time_range[0], min(t0, time_range[1])])
        [x.set_xlim(disp_range) for x in [sp11, sp12, sp13, *fig2_subplots]]

        fig1.tight_layout()
        fig2.tight_layout()
        if save:
            fig1.savefig('seq_plot1.jpg')
            fig2.savefig('seq_plot2.jpg')
        plt.show()
# Pre-phasing gradients
pre_time = 1e-3
gx_pre = make_trapezoid(channel='x', system=system, area=-gx.area / 2, duration=pre_time)
gz_reph = make_trapezoid(channel='z', system=system, area=-gz.area / 2, duration=pre_time)
gy_pre = make_trapezoid(channel='y', system=system, area=-(Ny / 2 - 0.5 - (Ny - Nyeff)) * delta_k, duration=pre_time)

# Phase blip in shortest possible time
gy = make_trapezoid(channel='y', system=system, area=delta_k)
dur = math.ceil(calc_duration(gy) / seq.grad_raster_time) * seq.grad_raster_time

# Calculate some times constant throughout the process
# The time(gy) refers to the number of blips, thus we substract 0.5 since the number of lines is always even.
# The time(gx) refers to the time needed to read each line of the k-space. Thus, if Ny is even, it would take half of the lines plus another half.
duration_center = (calc_duration(gx)*(Ny/2 + 0.5 - (Ny - Nyeff)) + dur * (Ny/2 - 0.5 - (Ny - Nyeff)) + calc_duration(gx_pre, gy_pre))
rf_center_with_delay = rf.delay + calc_rf_center(rf)[0]
rf180_center_with_delay = rf180.delay + calc_rf_center(rf180)[0]

# Group variables
seq_sys_Dict = {"seq" : seq,
           "system" : system}

grads_times_Dict = {"rf180" : rf180,
           "rf180_center_with_delay" : rf180_center_with_delay,
           "rf_center_with_delay" : rf_center_with_delay,
           "gz_spoil_1": gz_spoil_1,
           "gz_spoil_2" : gz_spoil_2,
           "gz" : gz,
           "duration_center" : duration_center,
           "pre_time": pre_time}