Esempio n. 1
0
File: types.py Progetto: njues/Sypy
 def logaddexp(self, v1, v2):
     tmp = v1 - v2
     if tmp > 0:
         return v1 + rfloat.log1p(math.exp(-tmp))
     elif tmp <= 0:
         return v2 + rfloat.log1p(math.exp(tmp))
     else:
         return v1 + v2
Esempio n. 2
0
 def logaddexp(self, v1, v2):
     tmp = v1 - v2
     if tmp > 0:
         return v1 + rfloat.log1p(math.exp(-tmp))
     elif tmp <= 0:
         return v2 + rfloat.log1p(math.exp(tmp))
     else:
         return v1 + v2
Esempio n. 3
0
 def log1p(self, v):
     try:
         return rfloat.log1p(v)
     except OverflowError:
         return -rfloat.INFINITY
     except ValueError:
         return rfloat.NAN
Esempio n. 4
0
def c_atanh(x, y):
    if not isfinite(x) or not isfinite(y):
        return atanh_special_values[special_type(x)][special_type(y)]

    # Reduce to case where x >= 0., using atanh(z) = -atanh(-z).
    if x < 0.:
        return c_neg(*c_atanh(*c_neg(x, y)))

    ay = fabs(y)
    if x > CM_SQRT_LARGE_DOUBLE or ay > CM_SQRT_LARGE_DOUBLE:
        # if abs(z) is large then we use the approximation
        # atanh(z) ~ 1/z +/- i*pi/2 (+/- depending on the sign
        # of y
        h = math.hypot(x/2., y/2.)   # safe from overflow
        real = x/4./h/h
        # the two negations in the next line cancel each other out
        # except when working with unsigned zeros: they're there to
        # ensure that the branch cut has the correct continuity on
        # systems that don't support signed zeros
        imag = -copysign(math.pi/2., -y)
    elif x == 1. and ay < CM_SQRT_DBL_MIN:
        # C99 standard says:  atanh(1+/-0.) should be inf +/- 0i
        if ay == 0.:
            raise ValueError("math domain error")
            #real = INF
            #imag = y
        else:
            real = -math.log(math.sqrt(ay)/math.sqrt(math.hypot(ay, 2.)))
            imag = copysign(math.atan2(2., -ay) / 2, y)
    else:
        real = log1p(4.*x/((1-x)*(1-x) + ay*ay))/4.
        imag = -math.atan2(-2.*y, (1-x)*(1+x) - ay*ay) / 2.
    return (real, imag)
Esempio n. 5
0
File: types.py Progetto: njues/Sypy
 def log1p(self, v):
     try:
         return rfloat.log1p(v)
     except OverflowError:
         return -rfloat.INFINITY
     except ValueError:
         return rfloat.NAN
Esempio n. 6
0
def c_atanh(x, y):
    if not isfinite(x) or not isfinite(y):
        return atanh_special_values[special_type(x)][special_type(y)]

    # Reduce to case where x >= 0., using atanh(z) = -atanh(-z).
    if x < 0.:
        return c_neg(*c_atanh(*c_neg(x, y)))

    ay = fabs(y)
    if x > CM_SQRT_LARGE_DOUBLE or ay > CM_SQRT_LARGE_DOUBLE:
        # if abs(z) is large then we use the approximation
        # atanh(z) ~ 1/z +/- i*pi/2 (+/- depending on the sign
        # of y
        h = math.hypot(x / 2., y / 2.)  # safe from overflow
        real = x / 4. / h / h
        # the two negations in the next line cancel each other out
        # except when working with unsigned zeros: they're there to
        # ensure that the branch cut has the correct continuity on
        # systems that don't support signed zeros
        imag = -copysign(math.pi / 2., -y)
    elif x == 1. and ay < CM_SQRT_DBL_MIN:
        # C99 standard says:  atanh(1+/-0.) should be inf +/- 0i
        if ay == 0.:
            raise ValueError("math domain error")
            #real = INF
            #imag = y
        else:
            real = -math.log(math.sqrt(ay) / math.sqrt(math.hypot(ay, 2.)))
            imag = copysign(math.atan2(2., -ay) / 2, y)
    else:
        real = log1p(4. * x / ((1 - x) * (1 - x) + ay * ay)) / 4.
        imag = -math.atan2(-2. * y, (1 - x) * (1 + x) - ay * ay) / 2.
    return (real, imag)
Esempio n. 7
0
def c_log(x, y):
    # The usual formula for the real part is log(hypot(z.real, z.imag)).
    # There are four situations where this formula is potentially
    # problematic:
    #
    # (1) the absolute value of z is subnormal.  Then hypot is subnormal,
    # so has fewer than the usual number of bits of accuracy, hence may
    # have large relative error.  This then gives a large absolute error
    # in the log.  This can be solved by rescaling z by a suitable power
    # of 2.
    #
    # (2) the absolute value of z is greater than DBL_MAX (e.g. when both
    # z.real and z.imag are within a factor of 1/sqrt(2) of DBL_MAX)
    # Again, rescaling solves this.
    #
    # (3) the absolute value of z is close to 1.  In this case it's
    # difficult to achieve good accuracy, at least in part because a
    # change of 1ulp in the real or imaginary part of z can result in a
    # change of billions of ulps in the correctly rounded answer.
    #
    # (4) z = 0.  The simplest thing to do here is to call the
    # floating-point log with an argument of 0, and let its behaviour
    # (returning -infinity, signaling a floating-point exception, setting
    # errno, or whatever) determine that of c_log.  So the usual formula
    # is fine here.

    # XXX the following two lines seem unnecessary at least on Linux;
    # the tests pass fine without them
    if not isfinite(x) or not isfinite(y):
        return log_special_values[special_type(x)][special_type(y)]

    ax = fabs(x)
    ay = fabs(y)

    if ax > CM_LARGE_DOUBLE or ay > CM_LARGE_DOUBLE:
        real = math.log(math.hypot(ax / 2., ay / 2.)) + M_LN2
    elif ax < DBL_MIN and ay < DBL_MIN:
        if ax > 0. or ay > 0.:
            # catch cases where hypot(ax, ay) is subnormal
            real = math.log(
                math.hypot(math.ldexp(ax, DBL_MANT_DIG),
                           math.ldexp(ay, DBL_MANT_DIG)))
            real -= DBL_MANT_DIG * M_LN2
        else:
            # log(+/-0. +/- 0i)
            raise ValueError("math domain error")
            #real = -INF
            #imag = atan2(y, x)
    else:
        h = math.hypot(ax, ay)
        if 0.71 <= h and h <= 1.73:
            am = max(ax, ay)
            an = min(ax, ay)
            real = log1p((am - 1) * (am + 1) + an * an) / 2.
        else:
            real = math.log(h)
    imag = math.atan2(y, x)
    return (real, imag)
Esempio n. 8
0
def c_log(x, y):
    # The usual formula for the real part is log(hypot(z.real, z.imag)).
    # There are four situations where this formula is potentially
    # problematic:
    #
    # (1) the absolute value of z is subnormal.  Then hypot is subnormal,
    # so has fewer than the usual number of bits of accuracy, hence may
    # have large relative error.  This then gives a large absolute error
    # in the log.  This can be solved by rescaling z by a suitable power
    # of 2.
    #
    # (2) the absolute value of z is greater than DBL_MAX (e.g. when both
    # z.real and z.imag are within a factor of 1/sqrt(2) of DBL_MAX)
    # Again, rescaling solves this.
    #
    # (3) the absolute value of z is close to 1.  In this case it's
    # difficult to achieve good accuracy, at least in part because a
    # change of 1ulp in the real or imaginary part of z can result in a
    # change of billions of ulps in the correctly rounded answer.
    #
    # (4) z = 0.  The simplest thing to do here is to call the
    # floating-point log with an argument of 0, and let its behaviour
    # (returning -infinity, signaling a floating-point exception, setting
    # errno, or whatever) determine that of c_log.  So the usual formula
    # is fine here.

    # XXX the following two lines seem unnecessary at least on Linux;
    # the tests pass fine without them
    if not isfinite(x) or not isfinite(y):
        return log_special_values[special_type(x)][special_type(y)]

    ax = fabs(x)
    ay = fabs(y)

    if ax > CM_LARGE_DOUBLE or ay > CM_LARGE_DOUBLE:
        real = math.log(math.hypot(ax/2., ay/2.)) + M_LN2
    elif ax < DBL_MIN and ay < DBL_MIN:
        if ax > 0. or ay > 0.:
            # catch cases where hypot(ax, ay) is subnormal
            real = math.log(math.hypot(math.ldexp(ax, DBL_MANT_DIG),
                                       math.ldexp(ay, DBL_MANT_DIG)))
            real -= DBL_MANT_DIG*M_LN2
        else:
            # log(+/-0. +/- 0i)
            raise ValueError("math domain error")
            #real = -INF
            #imag = atan2(y, x)
    else:
        h = math.hypot(ax, ay)
        if 0.71 <= h and h <= 1.73:
            am = max(ax, ay)
            an = min(ax, ay)
            real = log1p((am-1)*(am+1) + an*an) / 2.
        else:
            real = math.log(h)
    imag = math.atan2(y, x)
    return (real, imag)
Esempio n. 9
0
 def npy_log2_1p(self, v):
     return log2e * rfloat.log1p(v)
Esempio n. 10
0
File: types.py Progetto: njues/Sypy
 def npy_log2_1p(self, v):
     return log2e * rfloat.log1p(v)