def dfunc(p, centers):

    #cpos = 372; natoms = 124
    indr = np.arange(9, 122 * 3)
    natoms_r = 119

    xi = p[indr].reshape((natoms_r, 3))
    xi -= np.mean(xi, axis=0)
    xi = xi.T.astype(np.float64)

    d = np.empty((centers.shape[0], ))

    for ci, ck in enumerate(centers):
        cen = ck[indr].reshape((natoms_r, 3))

        d[ci] = qcp.CalcRMSDRotationalMatrix(xi,
                                             cen.T.astype(np.float64),
                                             natoms_r,
                                             None,
                                             None,
                                             center_ref=0,
                                             center_conf=1,
                                             copy=0)

    return d.astype(pcoord_dtype)
Esempio n. 2
0
def interpolate_conformations(confA, confB, N):

    assert confA.shape == confB.shape

    natoms = confA.shape[0]

    x0 = confA.copy()
    xN = confB.copy()

    # Align confA and confB
    x0 -= np.mean(x0, axis=0)
    xN -= np.mean(xN, axis=0)

    R = np.zeros((9, ), dtype=np.float64)

    rmsd = qcp.CalcRMSDRotationalMatrix(x0.T.astype(np.float64),
                                        xN.T.astype(np.float64), natoms, R,
                                        None)
    print('RMSD: {}'.format(rmsd))

    R = np.matrix(R.reshape(3, 3))
    xN = xN * R

    # Interpolate coordinates form x0 to xN
    confs = np.zeros((N, natoms * 3))

    x0 = np.ravel(x0)
    xN = np.ravel(xN)

    for k in xrange(natoms * 3):
        confs[:, k] = np.linspace(x0[k], xN[k], N)

    return confs
def average_position(self, n_iter):
    """Get average position of replicas in each bin as of n_iter for the
    the user selected update interval
    """

    nbins = self.system.bin_mapper.nbins
    ndim = self.system.pcoord_ndim

    natoms = ndim // 6
    cpos = natoms * 3

    avg_pos = np.zeros((nbins, ndim), dtype=self.system.pcoord_dtype)
    sum_bin_weight = np.zeros((nbins, ), dtype=self.system.pcoord_dtype)

    start_iter = max(n_iter - min(self.windowsize, n_iter), 1)
    stop_iter = n_iter + 1

    for n in xrange(start_iter, stop_iter):
        with self.data_manager.lock:
            iter_group = self.data_manager.get_iter_group(n)
            seg_index = iter_group['seg_index'][...]

            pcoords = iter_group['pcoord'][:, -1, :]  # Only read final point
            bin_indices = self.system.bin_mapper.assign(pcoords)
            weights = seg_index['weight']

            uniq_indices = np.unique(bin_indices)

            for indx in uniq_indices:

                ii = np.where(bin_indices == indx)[0]
                bpc = pcoords[ii, :cpos]
                nmemb = bpc.shape[0]

                # (1) Align all structures to confA
                xref = self.strings.centers[0, :cpos].reshape((natoms, 3))
                xref -= np.mean(xref, axis=0)
                xref = xref.T.astype(np.float64)

                for k in xrange(nmemb):
                    xi = bpc[k, :].reshape((natoms, 3))

                    R = np.zeros((9, ), dtype=np.float64)

                    qcp.CalcRMSDRotationalMatrix(xref,
                                                 xi.T.astype(np.float64),
                                                 natoms,
                                                 R,
                                                 None,
                                                 center_ref=0,
                                                 center_conf=1,
                                                 copy=0)
                    R = np.matrix(R.reshape(3, 3))

                    xi[:] = xi * R
                    avg_pos[indx, :cpos] += xi.ravel() * weights[ii[k]]

            sum_bin_weight += np.bincount(bin_indices.astype(np.int),
                                          weights=weights,
                                          minlength=nbins)

        # Some bins might have zero samples so exclude to avoid divide by zero
        occ_ind = np.nonzero(sum_bin_weight)
        avg_pos[occ_ind] /= sum_bin_weight[occ_ind][:, np.newaxis]

        return avg_pos, sum_bin_weight
Esempio n. 4
0
 def _h_rmsd(self, coord1, coord2):
     return pyqcprot.CalcRMSDRotationalMatrix(coord1, coord2, None, None)
frag_b[1][6] = -10.001
frag_b[2][6] =  17.996

# Allocate rotation array
rot = numpy.zeros((9,),dtype=numpy.float64) 

# Calculate center of geometry
comA = numpy.sum(frag_a,axis=1)/N
comB = numpy.sum(frag_b,axis=1)/N 

# Center each fragment
frag_a = frag_a - comA.reshape(3,1)
frag_b = frag_b - comB.reshape(3,1)

# Calculate rmsd and rotation matrix
rmsd = qcp.CalcRMSDRotationalMatrix(frag_a,frag_b,N,rot,None)

print 'qcp rmsd = ',rmsd
print 'rotation matrix:'
print rot.reshape((3,3))

# Calculate rmsd after applying rotation
def rmsd(a,b):
    """Returns RMSD between two coordinate sets a and b."""
    return numpy.sqrt(numpy.sum(numpy.power(a-b,2))/a.shape[1])
    
# rotate frag_b to obtain optimal alignment
frag_br = frag_b.T*numpy.matrix(rot.reshape((3,3)))    
rmsd = rmsd(frag_br.T,frag_a)
print 'rmsd after applying rotation: ',rmsd
Esempio n. 6
0
# reference centre of mass system
ref_com = ref_atoms.centerOfMass()
ref_coordinates = ref_atoms.coordinates() - ref_com

# allocate the array for selection atom coords
traj_coordinates = traj_atoms.coordinates().copy()

# R: rotation matrix that aligns r-r_com, x~-x~com
#    (x~: selected coordinates, x: all coordinates)
# Final transformed traj coordinates: x' = (x-x~_com)*R + ref_com
for k, ts in enumerate(frames):
    # shift coordinates for rotation fitting
    # selection is updated with the time frame
    x_com = traj_atoms.centerOfMass()
    traj_coordinates[:] = traj_atoms.coordinates() - x_com
    R = numpy.zeros((9, ), dtype=numpy.float64)
    # Need to transpose coordinates such that the coordinate array is
    # 3xN instead of Nx3. Also qcp requires that the dtype be float64
    a = ref_coordinates.T.astype('float64')
    b = traj_coordinates.T.astype('float64')
    rmsd[k] = qcp.CalcRMSDRotationalMatrix(a, b, natoms, R, None)

    R = numpy.matrix(R.reshape(3, 3))

    # Transform each atom in the trajectory (use inplace ops to avoid copying arrays)
    ts._pos -= x_com
    ts._pos[:] = ts._pos * R  # R acts to the left & is broadcasted N times.
    ts._pos += ref_com
    writer.write(traj.atoms)  # write whole input trajectory system

numpy.savetxt('rmsd.out', rmsd)