Esempio n. 1
0
def test_noise_model():
    km1 = KrausModel('I', (5., ), (0, 1), [np.array([[1 + 1j]])], 1.0)
    km2 = KrausModel('RX', (np.pi / 2, ), (0, ), [np.array([[1 + 1j]])], 1.0)
    nm = NoiseModel([km1, km2], {0: np.eye(2), 1: np.eye(2)})

    assert nm == NoiseModel.from_dict(nm.to_dict())
    assert nm.gates_by_name("I") == [km1]
    assert nm.gates_by_name("RX") == [km2]
Esempio n. 2
0
def test_kraus_model():
    km = KrausModel('I', (5., ), (0, 1), [np.array([[1 + 1j]])], 1.0)
    d = km.to_dict()
    assert d == OrderedDict([('gate', km.gate), ('params', km.params),
                             ('targets', (0, 1)),
                             ('kraus_ops', [[[[1.]], [[1.0]]]]),
                             ('fidelity', 1.0)])
    assert KrausModel.from_dict(d) == km
Esempio n. 3
0
def test_kraus_model():
    km = KrausModel("I", (5.0, ), (0, 1), [np.array([[1 + 1j]])], 1.0)
    d = km.to_dict()
    assert d == OrderedDict([
        ("gate", km.gate),
        ("params", km.params),
        ("targets", (0, 1)),
        ("kraus_ops", [[[[1.0]], [[1.0]]]]),
        ("fidelity", 1.0),
    ])
    assert KrausModel.from_dict(d) == km
Esempio n. 4
0
def test_noise_model(kraus_model_I_dict, kraus_model_RX90_dict):
    noise_model_dict = {
        "gates": [kraus_model_I_dict, kraus_model_RX90_dict],
        "assignment_probs": {"1": [[1.0, 0.0], [0.0, 1.0]], "0": [[1.0, 0.0], [0.0, 1.0]]},
    }

    nm = NoiseModel.from_dict(noise_model_dict)
    km1 = KrausModel.from_dict(kraus_model_I_dict)
    km2 = KrausModel.from_dict(kraus_model_RX90_dict)
    assert nm == NoiseModel(gates=[km1, km2], assignment_probs={0: np.eye(2), 1: np.eye(2)})
    assert nm.gates_by_name("I") == [km1]
    assert nm.gates_by_name("RX") == [km2]
    assert nm.to_dict() == noise_model_dict
Esempio n. 5
0
def test_noise_model(kraus_model_I_dict, kraus_model_RX90_dict):
    noise_model_dict = {'gates': [kraus_model_I_dict,
                                  kraus_model_RX90_dict],
                        'assignment_probs': {'1': [[1.0, 0.0], [0.0, 1.0]],
                                             '0': [[1.0, 0.0], [0.0, 1.0]]},
                        }

    nm = NoiseModel.from_dict(noise_model_dict)
    km1 = KrausModel.from_dict(kraus_model_I_dict)
    km2 = KrausModel.from_dict(kraus_model_RX90_dict)
    assert nm == NoiseModel(gates=[km1, km2],
                            assignment_probs={0: np.eye(2), 1: np.eye(2)})
    assert nm.gates_by_name('I') == [km1]
    assert nm.gates_by_name('RX') == [km2]
    assert nm.to_dict() == noise_model_dict
Esempio n. 6
0
def test_kraus_model(kraus_model_I_dict):
    km = KrausModel.from_dict(kraus_model_I_dict)
    assert km == KrausModel(gate=kraus_model_I_dict['gate'],
                            params=kraus_model_I_dict['params'],
                            targets=kraus_model_I_dict['targets'],
                            kraus_ops=[
                                KrausModel.unpack_kraus_matrix(kraus_op)
                                for kraus_op in kraus_model_I_dict['kraus_ops']
                            ],
                            fidelity=kraus_model_I_dict['fidelity'])
    d = km.to_dict()
    assert d == OrderedDict([('gate', km.gate), ('params', km.params),
                             ('targets', (0, 1)),
                             ('kraus_ops', [[[[1.]], [[1.0]]]]),
                             ('fidelity', 1.0)])
Esempio n. 7
0
def test_kraus_model_2(kraus_model_I_dict):
    km = KrausModel.from_dict(kraus_model_I_dict)
    assert km == KrausModel(
        gate=kraus_model_I_dict["gate"],
        params=kraus_model_I_dict["params"],
        targets=kraus_model_I_dict["targets"],
        kraus_ops=[
            KrausModel.unpack_kraus_matrix(kraus_op)
            for kraus_op in kraus_model_I_dict["kraus_ops"]
        ],
        fidelity=kraus_model_I_dict["fidelity"],
    )
    d = km.to_dict()
    assert d == OrderedDict([
        ("gate", km.gate),
        ("params", km.params),
        ("targets", (0, 1)),
        ("kraus_ops", [[[[1.0]], [[1.0]]]]),
        ("fidelity", 1.0),
    ])
Esempio n. 8
0
def _modified_decoherence_noise_model(
    gates: Sequence[Gate],
    T1: Union[Dict[int, float], float] = 30e-6,
    T2: Union[Dict[int, float], float] = 30e-6,
    gate_time_1q: float = 50e-9,
    gate_time_2q: float = 150e-09,
    ro_fidelity: Union[Dict[int, float], float] = 0.95,
) -> NoiseModel:
    """
    The default noise parameters

    - T1 = 30 us
    - T2 = 30 us
    - 1q gate time = 50 ns
    - 2q gate time = 150 ns

    are currently typical for near-term devices.

    This function will define new gates and add Kraus noise to these gates. It will translate
    the input program to use the noisy version of the gates.

    :param gates: The gates to provide the noise model for.
    :param T1: The T1 amplitude damping time either globally or in a
        dictionary indexed by qubit id. By default, this is 30 us.
    :param T2: The T2 dephasing time either globally or in a
        dictionary indexed by qubit id. By default, this is also 30 us.
    :param gate_time_1q: The duration of the one-qubit gates, namely RX(+pi/2) and RX(-pi/2).
        By default, this is 50 ns.
    :param gate_time_2q: The duration of the two-qubit gates, namely CZ.
        By default, this is 150 ns.
    :param ro_fidelity: The readout assignment fidelity
        :math:`F = (p(0|0) + p(1|1))/2` either globally or in a dictionary indexed by qubit id.
    :return: A NoiseModel with the appropriate Kraus operators defined.
    """
    all_qubits = set(sum(([t.index for t in g.qubits] for g in gates), []))
    if isinstance(T1, dict):
        all_qubits.update(T1.keys())
    if isinstance(T2, dict):
        all_qubits.update(T2.keys())
    if isinstance(ro_fidelity, dict):
        all_qubits.update(ro_fidelity.keys())

    if not isinstance(T1, dict):
        T1 = {q: T1 for q in all_qubits}

    if not isinstance(T2, dict):
        T2 = {q: T2 for q in all_qubits}

    if not isinstance(ro_fidelity, dict):
        ro_fidelity = {q: ro_fidelity for q in all_qubits}

    kraus_maps = []
    for g in gates:
        targets = tuple(t.index for t in g.qubits)
        key = (g.name, tuple(g.params))
        if g.name in NO_NOISE:
            if not g.dd:
                g.gate_time = gate_time_1q
            continue
        matrix, _ = get_modified_noisy_gate(g.name, g.params)

        if len(targets) == 1:
            if g.gate_time == None:
                g.gate_time = gate_time_1q
            noisy_I = damping_after_dephasing(T1.get(targets[0], INFINITY),
                                              T2.get(targets[0], INFINITY),
                                              g.gate_time)
        else:
            if len(targets) != 2:
                raise ValueError(
                    "Noisy gates on more than 2Q not currently supported")
            if g.gate_time == None:
                g.gate_time = gate_time_2q

            # note this ordering of the tensor factors is necessary due to how the QVM orders
            # the wavefunction basis
            noisy_I = tensor_kraus_maps(
                damping_after_dephasing(T1.get(targets[1], INFINITY),
                                        T2.get(targets[1], INFINITY),
                                        g.gate_time),
                damping_after_dephasing(T1.get(targets[0], INFINITY),
                                        T2.get(targets[0], INFINITY),
                                        g.gate_time))
        kraus_maps.append(
            KrausModel(g.name, tuple(g.params), targets,
                       combine_kraus_maps(noisy_I, [matrix]), 1.0))
    aprobs = {}
    for q, f_ro in ro_fidelity.items():
        aprobs[q] = np.array([[f_ro, 1. - f_ro], [1. - f_ro, f_ro]])

    return NoiseModel(kraus_maps, aprobs)